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Abstract: Oscillatory Hartmann flow of a viscous, incompressible and electrically conducting fluid in a rotating channel with
magnetized walls in the presence of a uniform transverse magnetic field is studied. Exact solution of the governing equations is
obtained in closed form. Mathematical formulation of the problem contains four pertinent flow parameters, namely, magnetic parameter
αm, Ekman numberE, frequency parameterω and magnetic Prandtl numberPm. Solutions in the limit of vanishing magnetic Prandtl
numberPm and small finite magnetic Prandtl numberPm are also obtained. Asymptotic behavior of these solutions is analyzed for large
values of frequency parameterω to gain some physical insight into the flow pattern. Expressions for the shear stress at the plates due to
primary and secondary flows and mass flow rates in the primary and secondary flow directions are also derived. The numericalvalues
of the fluid velocity and induced magnetic field are displayedgraphically whereas that of shear stress at the plates due toprimary and
secondary flows and mass flow rates in the primary and secondary flow directions are presented in tabular form for various values of
α2

m andω.
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1 Introduction

Theoretical/experimental investigation of
magnetohydrodynamic flow of an electrically conducting
fluid assumes considerable importance due to occurrence
of various natural phenomena which are generated by the
action of Coriolis and magnetic forces. It is widely
accepted that the Coriolis force has considerable influence
on hydromagnetic flow in Earth’s liquid core. A large
number of astronomical bodies (i.e. Sun, Earth, Jupiter,
magnetic stars and pulsars) possess fluid interiors and (at
least surface) magnetic field. In addition to its application
in geophysical and astrophysical problems of interest,
such studies may find applications in various areas of
science and technology e.g. turbo machines, vortex type
MHD power generators, nuclear reactors using liquid
metal coolant, material processing etc. Keeping in view
the importance of such studies a number of research
investigations of hydromagnetic flow in a rotating
medium are carried out during past few decades by many
researchers. Mention may be made of research works of

Hide and Roberts [1], Nanda and Mohanty [2], Gupta [3],
Acheson [4], Seth and Jana [5], Sarojamma and Krishna
[6], Seth et al. [7,8,9,10,11,12], Seth and Ghosh [13],
Raptis and Singh [14], Nanousis [15], Chandranet al.
[16], Singh et al. [17], Nagy and Demendy [18], Singh
[19], Hayatet al. [20,21,22,23], Ghosh and Pop [24,25],
Ghoshet al. [26], Guria et al. [27], Das et al. [28] and
Chauhan and Agrawal [29]. It may be noted that the fluid
transient may be expected in many MHD devices,
namely, MHD energy generators, MHD pumps, induction
type pumps used in nuclear reactors, MHD flow meters,
MHD accelerators etc. Keeping in view the importance of
such phenomena Seth and Jana [5], Sarojamma and
Krishna [6], Sethet al. [7,8,9,10,11,12], Seth and Ghosh
[13], Chandranet al. [16], Singh et al. [17], Singh [19],
Hayatet al. [20,21,22,23], Guriaet al. [27] and Daset al.
[28] studied unsteady hydromagnetic flow of a viscous,
incompressible and electrically conducting fluid in a
rotating system considering different aspects of the
problem. In all these investigations induced magnetic
field generated by fluid motion is neglected in comparison
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Fig. 1: Physical Model of the problem

to the applied one. This assumption is valid because
magnetic Reynolds number is very small for liquid metals
and slightly ionized fluids (Cramer and Pai [30]).
However, for the problems of astrophysical and
geophysical interest magnetic Reynolds number is not
very small. Therefore, induced magnetic field plays a
significant role in determining the flow patterns of such
fluid flow problems. Taking into consideration this fact
Ghosh [31], Seth et al. [32] and Ansari et al. [33]
considered oscillatory hydromagnetic flow of a viscous,
incompressible and electrically conducting fluid in a
rotating channel under different conditions taking induced
magnetic field into account.

The purpose of the present study is to investigate
oscillatory hydromagnetic flow of a viscous,
incompressible and electrically conducting fluid in a
rotating channel with magnetized walls in the presence of
a uniform transverse magnetic field. Fluid flow within the
channel is induced due to an oscillating pressure gradient
applied along the channel walls.

2 Mathematical Analysis

Consider oscillatory flow of a viscous, incompressible
and electrically conducting fluid within a parallel plate
channel z= ±L in the presence of a uniform transverse
magnetic fieldB0 which is applied parallel to z-axis.Both
the fluid and channel rotate in unison in a counter
clockwise direction with a uniform angular velocityΩ
about z-axis. Fluid flow within the channel is induced due
to a periodic pressure gradient− ∂ p

∂x = R′
1cosω ′t which is

applied in x-direction.R′
1,ω

′, t and p are amplitude,
frequency of oscillations, time and modified pressure
including centrifugal force respectively. Physical model
of the problem is presented in figure-1. Since plates of the
channel are of infinite extent in x and y-directions, all
physical quantities except pressure depend onz and t
only.

Fluid velocity −→q and induced magnetic field
−→
B are

given by
−→q ≡ (u′,v′,0) and

−→
B ≡ (B′

x,B
′
y,B0). (1)

These assumptions are in agreement with the
fundamental equations of MHD in a rotating frame of
reference.

Under the above assumptions the governing equations
for flow of a viscous, incompressible and electrically
conducting fluid in a rotating system are given by

∂u′

∂ t
−2Ωv′ =− 1

ρ
∂ p
∂x

+ν
∂ 2u′

∂z2 +
B0

ρµe

∂B′
x

∂z
, (2)

∂v′

∂ t
+2Ωu′ = ν

∂ 2v′

∂z2 +
B0

ρµe

∂B′
y

∂z
, (3)

0=− 1
ρ

∂
∂z

{

p+
1

2µ
(B′2

x +B′2
y +B2

0)

}

, (4)

∂B′
x

∂ t
= B0

∂u′

∂z
+νm

∂ 2B′
x

∂z2 , (5)

∂B′
y

∂ t
= B0

∂v′

∂z
+νm

∂ 2B′
y

∂z2 , (6)

whereρ ,ν,µe and νm are, respectively, fluid density,
kinematic coefficient of viscosity, magnetic permeability
and magnetic viscosity of the fluid.

Equation (4) shows the constancy of the modified
pressure along z-axis i.e. axis of rotation. There is a net
cross flow in y-direction so the pressure gradient term∂ p

∂y
is not taken onto account in equation (3).

Since plates of the channel are assumed magnetized,
boundary conditions for the velocity and induced magnetic
fields are










u′ = v′ = 0 at z=±L,

B′
x =

R′
2 (e

iω ′t +e−iω ′t),

B′
y = 0 at z=±L.

(7)

Introducing non-dimensional variablesx = ξ L,

z = ηL, u′ = ΩLu, v′ = ΩLv, B′
x = σ µeB0L(νΩ)

1
2 Bx,

B′
y = σ µeB0L(νΩ)

1
2 By, T = Ω t and p = ρΩ2L2p∗, the

equations (2), (3), (5) and (6), in non-dimensional form,
become

∂u
∂T

−2v=−∂ p∗

∂ξ
+E

∂ 2u
∂η2 +2α2

mE
1
2

∂Bx

∂η
, (8)

∂v
∂T

+2u= E
∂ 2v
∂η2 +2α2

mE
1
2

∂By

∂η
, (9)

Pm
∂Bx

∂T
= E

1
2

∂u
∂η

+E
∂ 2Bx

∂η2 , (10)

Pm
∂By

∂T
= E

1
2

∂v
∂η

+E
∂ 2By

∂η2 , (11)
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whereE = ν
ΩL2 is the Ekman number,Pm= υ

υm
= σ µeν is

the magnetic Prandl number andαm = dE√
2dH

= ( σ
2ρΩ )

1
2 B0

is the magnetic interaction parameter.

Since dE = ( ν
Ω )

1
2 is the Ekman depth and

dH = ( ρν
σB2

0
)

1
2 is the Hartmann depth, therefore, there ratio

given by
√

2αm is the ratio of Ekman and Hartmann
depths.This ratio is independent of viscosity and from its
position in equations (8) and (9), 2α2

m measures the
strength of electromagnetic body force relative to Coriolis
force. Also for physical situations of interest bothE and
Pm are smaller than unity.

The boundary conditions (7), in non-dimensional
form, become










u= v= 0 at η =±1,
Bx =

R
2 (e

iωT +e−iωT),

By = 0 at η =±1,
(12)

where R = R′

σ µe(νΩ)
1
2 B0L

is a non-dimensional constant

andω = ω ′
Ω is frequency parameter.

Combining equations (8) and (10) with equations (9)
and (11) respectively, we obtain
{ ∂F

∂T +2iF =− ∂ p∗
∂ξ

+E ∂ 2F
∂η2 +2α2

mαE
1
2 ∂b

∂η ,
(13)

Pm
∂b
∂T

= E
1
2

∂F
∂η

+E
∂ 2b
∂η2 , (14)

whereF = u+ iv andb= Bx+ iBy.

Boundary conditions (12), in compact form, become










F(η ,T) = 0 at η =±1,
b(η ,T) = R

2 (e
iωT +e−iωT)

at η =±1.
(15)

Since the fluid flow within the channel is induced due
to oscillatory pressure gradient applied in x-direction, the
pressure gradient term−( ∂ p∗

∂ξ ), fluid velocityF(η ,T) and

induced magnetic fieldb(η ,T) are assumed in the
following form

−∂ p∗

∂ξ
=

R1

2
(eiωT +e−iωT), (16)

F(η ,T) = F1(η)eiωT +F2(η)e−iωT , (17)

b(η ,T) = b1(η)eiωT +b2(η)e−iωT , (18)

whereR1 =
R′

1
ρΩ2L

is non-dimensional constant.

Using equations (16) to (18) in equations (13) and (14),
we obtain

E
d2F1

dη2 − i(ω +2)F1 =−2α2
mE

1
2

db1

dη
− R1

2
, (19)

E
d2F2

dη2 + i(ω −2)F2 =−2α2
mE

1
2

db2

dη
− R1

2
, (20)

E
d2b1

dη2 − iωPmb1 =−E
1
2

dF1

dη
, (21)

E
d2b2

dη2 + iωPmb2 =−E
1
2

dF2

dη
. (22)

The boundary conditions (15) with the help of (17) and
(18) reduce to
{

F1 = F2 = 0 at η =±1,
b1 = b2 =

R
2 at η =±1.

(23)

Solving equations (19) to (22) subject to the boundary
conditions (23), we obtain the solution for velocity and
induced magnetic field which are presented in the
following form














































































F(η ,T) =− i
2(ω+2) [R1{C1(coshα1η

− coshα1
coshα2

coshα2η)
+(1− coshα2η

coshα2
)}

+RC2(sinhα1η
− sinhα1

sinhα2
sinhα2η)]eiωT

+ i
2(ω−2) [R1{a1(coshβ1η

− coshβ1
coshβ2

coshβ2η)
+(1− coshβ2η

coshβ2
)}

+Ra2(sinhβ1η
− sinhβ1

sinhβ2
sinhβ2η)]e−iwt ,

(24)











































b(η ,T) = R2[R1(C1{k∗1sinhα1η
−m∗

1
coshα1
coshα2

sinhα2η}−m∗
1

sinhα2η
coshα2

)

+RC2{k∗1coshα1η −m∗
1

sinhα1
sinhα2

coshα2η}]eiwT

+R3[R1(a1{k∗3sinhβ1η −m∗
2

coshβ1
coshβ2

sinhβ2η}
−m∗

3
sinhβ2η
coshβ2

)+Ra2{k∗2coshβ1η
−m∗

3
sinhβ1
sinhβ2

coshβ2η}]e−iwT ,

(25)
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where


























































































































































































R2 = 1/4ω(ω +2).Pmα2
m,

R3 = 1/4ω(ω −2).Pmα2
m,

n1 =
1
2[2α2

m+ i{ω(1+Pm)+2}],
n2 =

1
2[2α2

m− i{ω(1+Pm)−2}],
q1 = i{ω(ω +2)Pm}

1
2 ,

q2 = i{ω(ω −2)Pm}
1
2 ,

k1,m1 = [n1± (n2
1−q2

1)
1/2]1/2,

k2,m2 = [n2± (n2
2−q2

2)
1/2]1/2,

α1,α2 = E−1/2(k1,m1),

β1,β2 = E−1/2(k2,m2),

α∗ = {2α2
m+ i(ω +2)}1/2,

β ∗ = {2α2
m− i(ω −2)}1/2,

k∗1 = k1(k2
1−α∗2),m∗

1 = m1(m2
1−α∗2),

k∗2 = k2(k2
2−α∗2),m∗

2 = m2(m2
2−α∗2),

k∗3 = k2(k2
2−β ∗2),m∗

3 = m2(m2
2−β ∗2),

C1 =
m∗

1tanhα2

k∗1sinhα1−m∗
1coshα1tanhα2

,

C2 =
2ω(ω +2)Pmα2

m

k∗1coshα1−m∗
1sinhα1cothα2

,

a1 =
m∗

1tanhβ2

k∗2sinhβ1−m∗
2coshβ1tanhβ2

,

a2 =
2ω(ω −2)Pmα2

m

k∗2coshβ1−m∗
2sinhβ1cothβ2

.

(26)

We shall now discuss some particular cases of interest
of the general solution (24) to (26) to gain some physical
insight into flow pattern.

Case-I: Oscillatory Hydromagnetic Flow in the Limit
of Vanishing Magnetic Prandtl number (i.e.Pm −→ 0)

WhenPm −→ 0 in equations (24) to (26), we obtain


























n1 =
1
2[2α2

m+ i(ω +2)],
n2 =

1
2[2α2

m− i(ω −2)],
q1 −→ 0,q2 −→ 0,
m1 −→ 0,m2 −→ 0,
k1 = (n1)

1/2,k2 = (n2)
1/2,

(27)























F(η ,T)

= R1
2 [ 1

k2
1
(1− coshE− 1

2 k1η

coshE− 1
2 k1

)eiωT

+ 1
k2
2
(1− coshE− 1

2 k2η

coshE− 1
2 k2

)e−iωT ].

(28)

It may be noted that magnetic Reynolds number is
very small in the case of vanishing magnetic Prandtl
numberPm. Therefore, the induced magnetic fieldb(η ,T)
produced by fluid motion is negligible in comparison to
applied one (Cramer and Pai [30]).

When the frequency parameterω is large and both
Ekman numberE and magnetic interaction parameterα2

m

are small orders of magnitude, fluid flow becomes
boundary layer type. For the boundary layer flow adjacent
to the upper plateη = 1, introducing boundary layer
coordinateξ = 1− η , the expression for fluid velocity
(28) assumes the form











u(η ,T) = R1
ω cos(ωT − Π

2 )

− R1
2ω [e−α3ξ sin(ωT −β3ξ )

+e−α4ξ sin(ωT −β4ξ )],
(29)

{

v(η ,T) = R1
2ω [e−α3ξ cos(ωT −β3ξ )

−e−α4ξ cos(ωT −β4ξ )],
(30)

where























α3 = ( ω
2E )

1
2 (1+ 1

ω +
α2

m
ω ),

β3 = ( ω
2E )

1
2 (1+ 1

ω − α2
m

ω ),

α4 = ( ω
2E )

1
2 (1− 1

ω + α2
m

ω ),

β4 = ( ω
2E )

1
2 (1− 1

ω − α2
m

ω ).

(31)

The expressions (29) and (30) reveal that fluid flow
has three modes of oscillations. The first mode
corresponds to pure oscillations of frequencyω which are
due to applied pressure gradient and fill the entire fluid
region. The other two modes of oscillations correspond to
the modified hydromagnetic Stokes flow and are confined
within double boundary layers of thicknessO( 1

α3
) and

O( 1
α4
). These boundary layers may be recognized as

hydromagnetic Stokes-Ekman boundary layers. In the
absence of magnetic field these boundary layers may be
identified as Stokes-Ekman boundary layers. It is also
evident from expressions in (31) that the thickness of
these boundary layers decreases with increase in either
magnetic interaction parameterαm or frequency
parameterω or both whereas it increases with increase in
Ekman number E. The exponential terms in the
expressions (29) and (30) damp out quickly asξ
increases. Whenξ ≥ 1

α4
i.e. outside the modified

hydromagnetic Stokes-Ekman boundary layer region, we
obtain

u≈ R1

ω
cos(ωT − Π

2
),v≈ 0. (32)

It is observed from (32) that in the central core, given
by ξ ≥ 1

α4
about the axis of the channel, the secondary

velocity vanishes away while the primary velocity persists
and has phase lag ofΠ

2 over it.

It is appropriate to mention here that in the limit of
Pm → 0, m1 andm2 become zero which implies that for
large ω the thickness ofm1 and m2 boundary layers,
which may be recognized as magnetic diffusion boundary
layers, tends to infinity implying thereby that the
magnetic diffusion region extends up to the central line of
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the channel as it happens in the limitω → 0 andPm 6= 0.

Case-II: The Case of Small Finite Magnetic Prandtl
Number(i.e.0< Pm < 1)

It is noticed from Case-I that in the limitPm → 0 and
for large ω the flow-field is divided into two regions,
namely, (i) hydromagnetic Stokes-Ekamn layer region
and (ii) the spatially and temporally uniform region
beyond hydromagnetic Stokes-Ekamn layer region i.e.
magnetic diffusion region. Now we consider more
realistic (but less tractable) situation in which magnetic
Prandtl numberPm is still smaller than unity but greater
than zero. From Case-I it is also evident that magnetic
diffusion region (MDR) is always thicker than
hydromagnetic Stokes-Ekman layer region. Therefore, for
case of interest MDR should be relatively inviscid. The
basis for an approximation valid within the MDR could
now be the inviscid approximation tom1 and m2 itself
(Benton and Loper [34]) which can be found from the
inviscid version of the equations (19) to (23) as






m1 = m11 = i[ ωPm(ω+2)
2α2

m+i(ω+2)
]

1
2 ,

m2 = m22 = i[ ωPm(ω−2)
2α2

m−i(ω−2)
]

1
2 .

(33)

Now expanding full expression fork1,2 andm1,2 in the

expressions (26) in power ofP
1
2

m , we obtain






























































































k1 = [2α2
m+ i(ω +2)]

1
2

×[1+φ1(Pm)+O(P2
m)]

= k11[1+φ1+O(P2
m)],

k2 = [2α2
m− i(ω −2)]

1
2

×[1−φ2(Pm)+O(P2
m)]

= k22[1−φ2+O(P2
m)],

m1 = i[ ωPm(ω+2)
2α2

m+i(ω+2)
]

1
2

×[1−φ1(Pm)+O(P2
m)]

= m11[1−φ1+O(P2
m)],

m2 = i[ ωPm(ω−2)
2α2

m+i(ω−2)
]

1
2

×[1+φ2(Pm)+O(P2
m)]

= m22[1+φ2+O(P2
m)],

(34)

where






φ1 =
Pm(iωα2

m)

{2α2
m+i(ω+2)}2 ,

φ2 =
Pm(iωα2

m)

{2α2
m−i(ω−2)}2 .

(35)

The expressions ofk1,2 andm1,2 are substituted in the
equations (24) and (25) and coefficient function in these

equations are expanded in powers ofP
1
2

m . When terms

only up to orderP
1
2

m are retained, the resulting solution for
velocity and induced magnetic field are expressed in the

following form


























































F(η ,T) =− i
2(ω+2) [R1{C11(coshα11η

− coshα11
coshα22

coshα22η)+ (1− coshα22η
coshα22

)}
+RC22(sinhα11η
− sinhα11

sinhα22
sinhα22η)]eiωT

+ i
2(ω−2) [R1{a11(coshβ11η

− coshβ11
coshβ22

coshβ22η)+ (1− coshβ22η
coshβ22

)}
+Ra22(sinhβ11η
− sinhβ11

sinhβ22
sinhβ22η)]e−iωT ,

(36)















































b(η ,T) =− m11(m
2
11−k2

11)

4ω(ω+2)Pmα2
m

×[R1(C11coshα11+1) sinhα22η
coshα22

+RC22
sinhα11
sinhα22

coshα22η ]eiωT

− m22(m
2
22−k2

22)

4ω(ω−2)Pmα2
m

×[R1(a11coshβ11+1) sinhβ22η
coshβ22

+Ra22
sinhβ11
sinhβ22

coshβ22η ]e−iωT ,

(37)

where










































α11,α22 = E− 1
2 (k11,m11),

β11,β22 = E− 1
2 (k22,m22,)

C11 =−sechα11,

C22 =
2ω(ω+2)Pmα2

m
m11(m

2
11−k2

11)sinhα11cothα22
,

a11=−sechβ11,

a2 =
2ω(ω−2)Pmα2

m
m22(m2

22−k2
22)sinhβ11cothβ22

.

(38)

Whenω is large andE andα2
m are of small orders of

magnitude, the fluid flow represents boundary layer type
flow. For the boundary layer flow near the upper plateη =
1, introducing boundary layer coordinateξ = 1−η , the
expressions for fluid velocity and induced magnetic field,
obtained from (36) to (38), are presented in the following
form






























































u(η ,T) = R1
ω cos(ωT − Π

2 )

−e−α3ξ [R( Pm
2ω )1/2α2

m(1− 2
ω )

×{cos(ωT−β3ξ )+ sin(ωT−β3ξ )}
+ R1

2ω sin(ωT −β3ξ )]
+e−α4ξ [R( Pm

2ω )1/2α2
m(1+

2
ω )

×{cos(ωT−β4ξ )+ sin(ωT−β4ξ )}
− R1

2ω sin(ωT −β4ξ )]
− 4R

2ω ( Pm
2ω )1/2α2

me−α5ξ

×[cos(ωT −β5ξ )+ sin(ωT −β5ξ )],

(39)
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





























































v(η ,T) = e−α3ξ [R( Pm
2ω )1/2α2

m

×(1− 2
ω ){cos(ωT −β3ξ )

−sin(ωT −β3ξ )}
+ R1

2ω cos(ωT −β3ξ )]
+e−α4ξ [R( Pm

2ω )1/2α2
m(1− 2

ω )

{cos(ωT −β3ξ )− sin(ωT−β3ξ )}
− R1

2ω cos(ωT −β3ξ )]−2R(Pm
2ω )1/2α2

m

×e−α5ξ [cos(ωT −β5ξ )
−sin(ωT −β5ξ )],

(40)

Bx = Re−α5ξ cos(ωT −β5ξ ), By = 0, (41)

where
{

α5 = (ωPm
2E )1/2(1− α2

m
ω ),

β5 = (ωPm
2E )1/2(1+ α2

m
ω ).

(42)

The expressions (39) to (42) reveal that the oscillatory
flow has four modes of oscillations. The first mode
corresponds to pure oscillations of frequencyω due to
applied oscillatory pressure gradient which persist into
entire fluid region. The other three modes correspond to
the modified hydromagnetic Stokes flow and are confined
within triple boundary layers of thicknessO( 1

α3
),O( 1

α4
)

and O( 1
α5
). Two of the layers of thicknessO( 1

α3
) and

O( 1
α4
) may be identified as modified hydromagnetic

Stokes-Ekman boundary layer similar to that of Case-I.

Since the magnetic interaction parameterα2
m is

independent of viscosity and it is noted from the
expressions in (42) thatα5 is independent of viscosity and
depending instead only on the magnetic diffusivity or
resistivity. Henceforth, it is referred as an inviscid
magnetic diffusion boundary layer or magnetic diffusion
region of thicknessO( 1

α5
) and it is thicker than

hydromagnetic Stokes-Ekman layer region. The thickness
of this region increases with increase in eitherα2

m or E or
both. The exponential terms in the equations (39) and
(40) damp out quickly asξ increases.

Whenξ ≥ 1/α5, we obtain
{

u≈ R1
ω cos(ωT −Π/2), v≈ 0,

Bx ≈ 0, By ≈ 0.
(43)

It is evident from (43) that the central core, given by
ξ ≥ 1

α5
about the axis of the channel i.e. outside the

hydromagnetic Stokes-Ekman layer region and magnetic
diffusion region, is a current free zone in which fluid has
a velocity in the primary flow direction and it oscillates
with the same frequencyω as the pressure gradient but
has a phase lag ofΠ

2 over it.

It is observed in Cases-I and II that the main
difference between the flow whenPm −→ 0 and
0 < Pm < 1 is that, in the latter case magnetic diffusion
region has a finite thicknessO( 1

α5
) and also there is a

third region of flow, that beyond both hydromagnetic
Stokes-Ekman layer region and magnetic diffusion
region. This outer most region i.e. central core region is
called current free region which extends up to the central
line of the channel. However, in the former case there
exist two regions only, namely, hydromagnetic
Stokes-Ekman layer region and magnetic diffusion region
extending up to the central line of the channel.

3 Shear stress at the plates

The non-dimensional shear stress componentsτx andτy at
both the upper and lower platesη = ±1 due to primary
and secondary flows respectively, are given by






















































(τx+ iτy)η±1 =− i
2(ω+2)

×[±R1{C1(α1sinhα1

−α2coshα1tanhα2)−α2tanhα2}
+RC2(α1coshα1−α2cothα2)]eiωT

+ i
2(ω−2) [±R1{a1(β1sinhβ1

−β2coshβ1tanhβ2)−β2tanhβ2}
+Ra2(β1coshβ1

−β2sinhβ1cothβ2)]e−iωT .

(44)

4 Mass flow rate

The expression for non-dimensional mass flow ratesQx
andQy, due to primary and secondary flows respectively,
is given by























Qx+ iQy =− iR1
(ω+2) [C1(

sinhα1
α1

− coshα1tanhα2
α2

)+ (1− tanhα2
α2

)]eiωT

+ iR1
(ω−2) [a1(

sinhβ1
β1

− coshβ1tanhβ2
β2

)

+(1− tanhβ2
β2

)]e−iωT .

(45)

5 Results and discussion

To study the effects of oscillations and magnetic field on
the flow-field, the numerical values of both the primary
and secondary fluid velocities and primary and secondary
induced magnetic fields, computed from the analytical
solution (24) to (26), are displayed graphically versus
channel width variableη in figures-2 to 9 for various
values of frequency parameterω and magnetic interaction
parameterα2

m taking Ekman numberE = 0.04 , magnetic
Prandtl number Pm = 0.7 (i.e. ionized hydrogen),
R= R1 = 1 andωT = π

2 . Figures-2 and 3 illustrate the
influence of oscillations on the primary velocityu and
secondary velocityv. It is evident from figures-2 and 3
that the primary velocityu increases on increasingω near
the lower and upper plates of the channel and is of
oscillatory character in the region 0.17 ≤ η ≤ 0.47.
Secondary velocityv decreases on increasingω in the
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Fig. 2: Primary velocity profiles whenα2
m = 5
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Fig. 3: Secondary velocity profiles whenα2
m = 5

regions−1 ≤ η ≤ −0.5 and 0.5 ≤ η ≤ 1 and it is of
oscillatory nature in the central region of the channel.
This implies that oscillations tend to accelerate fluid flow
in the primary flow direction near the lower and upper
plates of the channel whereas it has reverse effect on the
fluid flow in the secondary flow direction the regions
−1≤ η ≤−0.5 and 0.5≤ η ≤ 1.

Figures-4 and 5 depict the effects of magnetic field on
the primary velocityu and secondary velocityv. It is
revealed from figures-4 and 5 that both the primary
velocity u and the secondary velocityv increase on
increasingα2

m throughout the channel. This implies that
magnetic field tends to accelerate fluid flow in both the
primary and secondary flow directions throughout the
channel. It may be noted that from figures-2 to 4 that
there exists reverse flow in both the primary and
secondary flow directions on increasing eitherω or α2

m.

Figures-6 and 7 show the effects of oscillations on the
primary induced magnetic fieldBx and secondary induced
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Fig. 4: Primary velocity profiles whenω = 8
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Fig. 5: Secondary velocity profiles whenω = 8

magnetic fieldBy. It is seen from figures-6 and 7 that the
primary induced magnetic fieldBx increases on increasing
ω near the lower and upper plates of the channel and is of
oscillatory nature in the region−0.5 ≤ η ≤ 0.5.
Secondary induced magnetic fieldBv decreases on
increasingω near the lower and upper plates of the
channel and it is of oscillatory character in the region
−0.7 ≤ η ≤ 0.7. This implies that oscillations tends to
enhance induced magnetic field in the primary flow
direction whereas it has reverse effect on the induced
magnetic field in the secondary flow direction near the
lower and upper plates of the channel.

Figures-8 and 9 exhibit the influence of magnetic field
on the primary induced magnetic fieldBx and secondary
induced magnetic fieldBy. It is observed from figures-8
and 9 that the primary induced magnetic fieldBx
increases on increasingα2

m the lower and upper plates of
the channel and is of oscillatory nature in the region
−0.57≤ η ≤ 0.57. Secondary induced magnetic fieldBy

increases on increasingα2
m near the lower and upper
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Fig. 6: Primary induced magnetic field profiles whenα2
m = 5
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Fig. 7: Secondary induced magnetic field profiles whenα2
m = 5

plates of the channel and it is of oscillatory character in
the region−0.8 ≤ η ≤ 0.8. This implies that magnetic
field tends to enhance induced magnetic field in both the
primary and secondary flow directions near the lower and
upper plates of the channel.

The numerical values of the primary shear stressτx
and secondary shear stressτy at the lower and upper
plates of the channel, computed from the analytical
expression (44), are displayed in tabular form in tables-1
and 2 while that of mass flow rate in the primary flow
direction Qx and mass flow rate in the secondary flow
direction Qy, computed from analytical expression (45),
are presented in tabular form in table-3 for various values
of ω andα2

m. It is revealed from table-1 that the primary
shear stress at the lower plate(τx)η=−1 decreases on
increasingω whereas it increases on increasingα2

m when
ω ≥ 8 and it increases, attains a maximum and then
decreases on increasingα2

m whenω = 6. Secondary shear
stress at the lower plate(τy)η=−1 increases on increasing
α2

m whereas it decreases on increasingω except when
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Fig. 8: Primary induced magnetic field profiles whenω = 8

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4

η

B
y

 

 

α2
m

=3

α2
m

=5

α2
m

=7

α2
m

=9

α2
m

=9

α2
m

=7

α2
m

=5

α2
m

=3

Fig. 9: Secondary induced magnetic field profiles whenω = 8

α2
m = 7. Forα2

m = 7, it increases, attains a maximum and
then decreases on increasingω . This implies that
oscillations have tendency to reduce primary shear stress
and also secondary shear stress except whenα2

m = 7 at the
lower plate of the channel. Magnetic field tends to
enhance primary shear stress whenω ≥ 8 and secondary
shear stress at the lower plate of the channel. It is
observed from table-2 that both the primary shear stress at
the upper plate(τx)η=1 and secondary shear stress at the
upper plate(τy)η=1 increase on increasingα2

m. Primary
shear stress at the upper plate(τx)η=1 decreases on
increasingω whereas secondary shear stress at the upper
plate(τy)η=1 decreases on increasingω whenα2

m ≤ 5 and
it increases, attains a maximum and then decreases on
increasingω when α2

m = 7 and 9. This implies that
magnetic field tends to enhance both the primary and
secondary shear stress at the upper plate of the channel.
Oscillations tend to reduce primary shear stress and
secondary shear stress whenα2

m ≤ 5 at the upper plate of
the channel. It is evident from table-3 that mass flow rates
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in the primary flow directionQx and mass flow rate in the
secondary flow directionQy decrease on increasingω .
Mass flow rate in the secondary flow directionQy

increases on increasingα2
m whereas mass flow rate in the

primary flow directionQx increases on increasingα2
m

whenω ≥ 8 and it increases, attains a maximum and then
decreases on increasingα2

m whenω = 6. This implies that
oscillations tend reduce the mass flow rate in both the
primary and secondary flow directions. Magnetic field
tends to enhance mass flow rate in the primary flow
direction whenω ≥ 8 and mass flow rate in the secondary
flow direction.

Table-1: Primary and secondary shear stress at the lower plate
α2

m ↓ ω → (τx)η=−1 −(τy)η=−1
6 8 10 12 6 8 10 12

3 1.4894 1.2591 1.1226 1.0216 1.1817 0.9803 0.8207 0.7086
5 1.7054 1.3321 1.1884 1.0700 1.7801 1.6519 1.3599 1.1751
7 1.9299 1.3979 1.2588 1.1194 2.1504 2.3315 1.9235 1.6321
9 1.8844 1.4751 1.3394 1.1696 3.0384 2.7161 2.6056 2.0673

Table-2:‘ Primary and secondary shear stress at the upper plate
α2

m ↓ ω → −(τx)η=1 −(τy)η=1
6 8 10 12 6 8 10 12

3 1.4754 1.2634 1.1216 1.0217 1.1323 0.9581 0.8076 0.7005
5 1.5468 1.3637 1.1821 1.0705 1.7254 1.6426 1.3510 1.1704
7 1.5933 1.4797 1.2398 1.1209 2.0048 2.3481 1.9161 1.6302
9 1.8350 1.6007 1.2855 1.1727 2.7005 2.7748 2.5994 2.0663

Table-3: Mass flow rates in primary and secondary flow
directions

α2
m ↓ ω → Qx −Qy

6 8 10 12 6 8 10 12
3 0.3470 0.2508 0.1977 0.1636 0.0232 0.0098 0.0053 0.0032
5 0.3488 0.2519 0.1983 0.1640 0.0260 0.0105 0.0056 0.0034
7 0.3492 0.2530 0.1988 0.1643 0.0289 0.0113 0.0059 0.0036
9 0.3482 0.2541 0.1993 0.1646 0.0298 0.0124 0.0062 0.0037

6 Conclusions

A mathematical analysis has been presented for
oscillatory Hartmann flow of a viscous, incompressible
and electrically conducting fluid in a rotating channel
with magnetized walls in the presence of a uniform
transverse magnetic field. The significant results are
summarized below:

Oscillations tend to accelerate fluid flow in the
primary flow direction near the lower and upper plates of
the channel whereas it has reverse effect on the fluid flow
in the secondary flow direction the regions
−1≤ η ≤ −0.5 and 0.5≤ η ≤ 1. Magnetic field tends to
accelerate fluid flow in both the primary and secondary
flow directions throughout the channel. Oscillations tends
to enhance induced magnetic field in the primary flow
direction whereas it has reverse effect on the induced

magnetic field in the secondary flow direction near the
lower and upper plates of the channel. Magnetic field
tends to enhance induced magnetic field in both the
primary and secondary flow directions near the lower and
upper plates of the channel.

Oscillations have tendency to reduce primary shear
stress and also secondary shear stress except when
α2

m = 7 at the lower plate of the channel. Magnetic field
tends to enhance primary shear stress whenω ≥ 8 and
secondary shear stress at the lower plate of the channel.
Magnetic field tends to enhance both the primary and
secondary shear stress at the upper plate of the channel.
Oscillations tend to reduce primary shear stress and
secondary shear stress whenα2

m ≤ 5 at the upper plate of
the channel. Oscillations tend reduce the mass flow rate in
both the primary and secondary flow directions. Magnetic
field tends to enhance mass flow rate in the primary flow
direction whenω ≥ 8 and mass flow rate in the secondary
flow direction.

References

[1] R. Hide, P. H. Roberts,Hydromagnetic flow due to an
oscillating plane, Reviews of Modern Physics32, 799–806
(1960).

[2] R. S. Nanda, H. K. Mohanty,Hydromagnetic flow in a
rotating channel, Appl. Sci. Res.24, 65–78 (1971).

[3] A. S. Gupta,Magnetohydrodynamic Ekmann layer, Acta
Mechanica13, 155–160 (1972).

[4] D. J. Acheson,Forced hydromagnetic oscillations of a
rapidly rotating fluid, Physics of Fluids18, 961–968 (1975).

[5] G. S. Seth, R. N. Jana,Unsteady hydromagnetic flow in
a rotating channel with oscillating pressure gradient, Acta
Mechanica37, 29–41 (1980).

[6] G. Sarojamma, D. V. Krishna,Transient hydromagnetic
convective flow in a rotating channel with porous
boundaries, Acta Mechanica40, 277–288 (1981).

[7] G. S. Seth, R. N. Jana, M. K. Maiti,Unsteady hydromagnetic
Couette flow in a rotating system, Int. J. Engng. Sci.20, 989–
999 (1982).

[8] G. S. Seth, R. Singh, N. Mahato,Oscillatory hydromagnetic
Couette flow in a rotating system, Ind. J. Tech.26, 329–333
(1988).

[9] G. S. Seth, R. Nandkeolyar, Md. S. Ansari,Hall effects on
oscillatory hydromagnetic Couette flow in a rotating system,
Int. J. Acad. Res.1(2), 6–17 (2009).

[10] G. S. Seth, Md. S. Ansari, R. Nandkeolyar,Unsteady
hydromagnetic Couette flow within porous plates in a
rotating system, Adv. Appl. Math. Mech.2(3), 286–302
(2010).

[11] G. S. Seth, Md. S. Ansari, R. Nandkeolyar,Unsteady
hydromagnetic Couette flow induced due to accelerated
movement of one of the porous plates of the channel in
a rotating system, Int. J. Appl. Math. Mech.6(7), 24–42
(2010).

[12] G. S. Seth, Md. S. Ansari, R. Nandkeolyar,Effects of
rotation and magnetic field on unsteady Couette flow in a
porous channel, J. Appl. Fluid Mech.4(2), 95–103 (2011).

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


268 G. Seth et al.: Oscillatory Hartmann Flow in...

[13] G. S. Seth, S. K. Ghosh,Unsteady hydromagnetic flow in a
rotating channel in the presence of oblique magnetic field,
Int. J. Engng. Sci.24, 1183–1193 (1986).

[14] A. Raptis, A. K. Singh,Hydromagnetic Rayleigh problem
in a rotating fluid, Acta Physica Hungarica60, 221–226
(1986).

[15] N. Nanousis,Thermal-Diffusion on MHD free-convection
and mass transfer flow past a moving infinite vertical plate
in a rotating fluid, Astrophysics and Space Science191,
313–322 (1992).

[16] P. Chandran, N. C. Sacheti, A. K. Singh,Effect of rotation
on unsteady hydromagnetic Couette flow, Astrophysics and
Space Science202, 1–10 (1993).

[17] A. K. Singh, N. C. Sacheti, P. Chandran,Transient effects
on Magnetohydrodynamic Couette flow with rotation:
Accelerated motion, Int. J. Engng. Sci.32, 133–139 (1994).

[18] T. Nagy, Z. Demendy,Effects of Hall currents and Coriolis
force on Hartmann flow under general wall conditions, Acta
Mechanica113, 77–91 (1995).

[19] K. D. Singh,An oscillatory hydromagnetic Couette flow in
a rotating system, ZAMM 80, 429–432 (2000).

[20] T. Hayat, S.Nadeem, S. Asghar,Hydromagnetic Couette
flow of a Oldroyd-B fluid in a rotating system, Int. J. Engng.
Sci.42, 65–78 (2004).

[21] T. Hayat, S.Nadeem, A. M. Siddiqui, S. Asghar,An
oscillatory hydromagnetic Non-Newtonian flow in a rotating
system, Appl. Math. Let.17, 609–614(2004).

[22] T. Hayat, K. Hutter, S. Nadeem, S. Asghar,Unsteady
hydromagnetic rotating flow of a conducting second grade
fluid, ZAMP 55, 626–641(2004).

[23] T. Hayat, S. B. Khan, M. Khan,Exact solution for rotating
flows of a generalized Burgers fluid in a porous space, Appl.
Math. Model.32, 749–760 (2008).

[24] S. K. Ghosh, I. Pop,Hall effects on MHD plasma Couette
flow in a rotating environment, Int. J. Appl. Mech. Eng.9,
293–305 (2004).

[25] S. K. Ghosh, I. Pop,An analytical approach on MHD
plasma behavior of rotating environment in the presence
of an inclined magnetic field as compared to excitation
frequency, Int. J. Appl. Mech. Eng.11, 845–856 (2006).

[26] S. K. Ghosh, O. A. Beg, M. Narahari,Hall effects on MHD
flow in a rotating system with heat transfer characteristics,
Mecannica44, 741–765 (2009).

[27] M. Guria, S. Das, R. N. Jana, S. K. Ghosh,Oscillatory
Couette flow in the presence of inclined magnetic field,
Mecannica44, 555–564 (2009).

[28] S. Das, S. L. Maji, M. Guria, R. N. Jana,Unsteady MHD
Couette flow in a rotating system, Math. Comp. Model.50,
1211–1217 (2009).

[29] D. S. Chauhan, R. Agrawal,Effects of Hall current on
MHD Couette flow in a channel partially filled with porous
medium in a rotating sytem, Meccanica47, 405–421 (2012).

[30] K. R. Cramer, S. I. Pai,Magnetofluid-dynamics for
Engineers and Applied Physicists, McGraw Hill Book
Company, New York (1973).

[31] S. K. Ghosh,Unsteady hydromagnetic flow in a rotating
channel with oscillating pressure gradient, J. Phy. Soc.
Japan62, 3893–3903(1993).

[32] G. S. Seth, Md. S. Ansari, R. Nandkeolyar,Unsteady
Hartmann flow in a rotating channel with perfectly
conducting walls,Int. J. Appl. Mech. Eng.16(4), 1129–1146
(2011).

[33] Md. S. Ansari, G. S. Seth, R. Nandkeolyar,Unsteady
Hartmann flow in a rotating channel with arbitrary
conducting walls, Math. Comp. Model.54, 765–779(2011).

[34] E. R. Benton, D. E. Loper,On the spin up of an electrically
conducting fluid Part 1. The unsteady hydromagnetic
Ekman-Hartmann boundary layer problem, J. Fluid Mech.
39, 561–586(1969).

G. S. Sethis a Professor
in the Department of Applied
Mathematics, Indian School
of Mines, Dhanbad, INDIA.
He received his Ph. D. in
the Mathematics from Indian
Institute of Technology,
Kharagpur, India. He has
more than thirty four years
of experience of teaching and

research. His current area of research studies includes
Fluid dynamics, Magnetohydrodynamics and heat and
mass transfer. He was visiting Assistant Professor at
University of Aden, Republic of Yemen during the period
September 01, 1991 to August 31, 1993. He has
published more than one hundred fifteen research papers
in national/International journals of repute.

J. K. Singh is Assistant
Professor in Department
of Studies in Mathematics,
V. S. K. University,
Bellary, INDIA. He
has receive Ph.D. in Applied
Mathematics from Indian
School of Mines, Dhanbad,
INDIA. He has published
a number of reseach papers in

international journals of repute. His research areas are
Fluid Mechanics, MHD and Numerical Analysis.

N. Mahto is an Associate
Professor in the Department
of Mathematics, RSP College
Jharia, Vinobha Bhave
Univeristy, Hazaribagh,
Jharkhand, INDIA. He
received his Ph. D. in Applied
Mathematics from Indian
School of Mines, Dhanbad,
India. He has more than thirty

three years of teaching experience and more than twenty
three years of research experience. His current area of
research studies includes Fluid dynamics,
Magnetohydrodynamics and heat and mass transfer. He
has published more than fifteen research papers in
national/International journals of repute.

c© 2016 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.5, No. 3, 259-269 (2016) /www.naturalspublishing.com/Journals.asp 269

N.
Joshi is doing research work
leading to Ph. D. degree in
Department of Mathematics,
V. S. K. University, Bellary,
INDIA. His research areas
are Fluid Mechanics, MHD
and Numerical Analysis.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Mathematical Analysis
	Shear stress at the plates
	Mass flow rate
	Results and discussion
	Conclusions

