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Abstract: In this paper, we solve the Dirichlet problem for a linear second-order partial differential equation with the Riemann-
Liouville fractional derivative. When the order of fractional differentiation is an integer, the equation under consideration transforms
into a mixed equation of the Lavrent’ev-Bitsadze type. Existence theorem is proved using the Fourier method and methods of special
functions theory.
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1 Introduction
In the domain Q = {(x,y) : 0 < x < r, —a <y < b}, a, b > 0, we consider the equation
Mxx(x7y)_D8;=u)'(x7y):oaO<a<]7y7éov (1)

with the Riemann-Liouville operator Dg‘v [11, [2]:

oy
Slgn&)bf|yft|*a71v(x7t)dt, a <0,

I'(—
o _
Doyv(.x,y) — V(X7y); o = O,
sign”y%Dg;”v(x,y), n—l<oa<nneN

Note, as o = 1 equation (1) transforms into a mixed equation
Mxx(xay) - Signyu)’y(xay) =0. 2)

Differential equations of fractional order occur in mathematical modeling of physical processes in environmental
systems with fractal geometry [1, Chap. 5]. Boundary value problems for linear partial differential equations with
fractional order less than two are investigated in [3] and [4] (see also the References).

In [5], the Dirichlet problem is investigated for the generalized Laplace equation with the Caputo derivative. The
Dirichlet problem for a nonlocal wave equation with the Caputo derivative is addressed in [6] and [7].

The Dirichlet problem for the Lavrent’ev-Bitsadze equation is handled in [8] and [9]. In [10], the Dirichlet problem is
investigated for a mixed-type equation with a singular coefficient.

Assume 2~ = QN {y <0}, 2 = Qn{y > 0}. The function u(x,y) belonging to the class u(x,y) € C(Q),
Dg;luy(x,y) €C(Q7)NC(QT), ux(x,y), Dg uy(x,y) € C(2~UQ7T) and satisfying equation (1) in Q~ U Q™ is called
here a regular solution to equation (1) in the domain Q.
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This paper is organized as follows: In Section Two we solve the Dirichlet problem for equation (1) in the domain Q.
First, we prove the auxiliary lemma. Next, we solve the Dirichlet problem for equation (1) in the domain £~ and solve
in the domain Q% assuming the trace of the solution on y = 0 is known. In addition, using the conjugation conditions, we
have the trace of the desired solution in the line y = 0. Section Three is devoted to conclusion. .

The present paper aims to prove the existence theorem to the Dirichlet problem for equation (1) in the domain Q.

2 Dirichlet problem

Here, we consider the following problem: Find the regular solution to equation (1) in £ satisfying the conditions

u(0,y) =u(r,y) =0, —a<y<b, (3)

u(x,—a) =1, (x), ulxb)=1(x), 0<x<r 4)

where 7,(x) and 7,(x) are the given continuous functions in the segment [0, r],

7(0) = 74(r) = 0, %(0) = 5 (r) =0,

. 1 . 1
yl;rél+ D§ uy = ylﬂ(?, D§ uy. (5)

We know [11], the set of real zeros of a Mittag-Leffler type function

Zk

E, Z)= T ~7 1 P>07”€(Cv
pou (2) ,;)F(PkJrﬂ)

is finite for all p < 2, u € C. In [12], it is proved as 4 = p and p = 1 the set is not empty.

Theorem 1. Assume t,(x) € C?[0,7], 7,(x) € C*[0,7], the functions T (x) and Tév) (x) are piecewise continuous on the

segment [0,1],7/(0) = t/(r) =0, /(0)=1/(r)=0,7")(0) =7 (r) =0,

bot+1 h
2 ©)

,
h=max{t e R:Eq 1 g+1(—1)Eqs1,1(—t) = 0}. The above implies the existence of a regular solution to problem (1)—(5).

First, prove the lemma.

_ DIEqirar1AY*Y) .
Lemma 1. LerC(y,A)= Wy 1y a1 A<y < 0. For any A > 0 the estimates
o+1,0+

0<C(»a) <1, (N

0 < Egi1,1(Aaly|*™") = COLA)Eqir1(Ana® ™) < 1. (8
are valid.

Indeed, the function C(y,A) is the solution to the ordinary fractional differential equation
DGV (y)+Av(y) =0, —a<y<O. )

At the point y € (—a,0) of the maximum value of the function v, we have [1]

—o—1
art, o VO]
o =TT (Ca)
Thus,
pett, VO vy v(0)
oy V 1 = I 1 :
g o (—a) = y|* 0 (—a)  [y[*' T (—a)
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- a+ly, D0 _ papl -
Since Doy v TCa) = DOyDOyv7 we obtain

—a—1
D Dl < s (46 (0))

Asv(y) —v(0) >0, I'(—a) <0, then DgyD(')yv =DV (y) <0,i.e forany —a<y<0

Dg V' (y) > 0.

Thus, we get
DGV (y) + Av(y) > 0,

that contradicts (9). Consequently, the greatest positive or the smallest negative value of the function v(y) is as y = —a or
y = 0. On the other hand,
C(0,A)=0,Cy(—a,A) =1,

implies estimate (7). Similarly, we can establish the validity of estimate (8). The lemma is valid.
Proof of the theorem 1. Find a solution for problem (1) — (4) in the form of

M(x7y) = e(y)u(xvy)Jr + 9(—y)u(x,y)’,
where 0(y) =0,y < 0,6(y) = 1,y > 0. Fhe functions u~ (x,y) and u™ (x,y) are the solutions to the problems:

u 9

1
W—f—a—yl)g) My:O, (10)
M(O,y):u(r,y)zo, 7a§y§07 (11)
ulx,—a)=1,(x), u(x,0)=1x), 0<x<r, (12)
and 2 5
u _
~ a—yDgy luy, =0, (13)
u(0,y) =u(ry)=0, 0<y<b, (14)
u(x,0)=1x), ulx,b)=1(x), 0<x<r (15)
respectively,

where the function 7y(x) is as yet unknown. Assuming that 7p(x) is known we can write out the solutions to these
problems. We assume that 7y(x) € C2[0,r], 7 (x) is a piecewise continuous function on the interval [0, r].
A formal solution of problem (10)-(12) is

M(xvy)7 = f:lun(xvy) = il{ranc(y;ln)‘f'

Ton [EOHI,I ()*nl))|a+1) - C(y, ﬂvn)Eoc+1,1(Afnaa+l):| } Sin(\/)_vnx)v (16)
where i .
S %/fo(z;)sin(\/%ng)dg, = %/fa(g)sin(\/zng)dg,xn _ (@)2
0 0

Taking into account the estimates (7), (8), and the Fourier coefficient properties

[Tan| = 0(n"%),n — oo, (17)

[Ton| = 0(n3),n — oo, (18)
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we obtain ]
|t (2, ) 7| < | Ton| + | Tan| < Kﬁ

It is known from [11] and [13], as A — oo, the asymptotic representations

_1 _1

AotT g AotT g
5 Aa* = — L OA2),Egrri(Aa®) = — 1oAY, 19
a“Eg11,a+1(Aa”") (oc+1)l_l+ (A7%),Eqr1,1(Aa*") ar1 + (27 (19)
are valid. Hence,
2L
C0:2) =0 (exp2F Tl ~a) ) 0 < bl <a
Eor11(Aaly| %) = Cu A Eq1,1(na® ') = O(1/20).
Considering these two estimates and estimates (17) and (18), we can get
|Anttn (x,y) | <
H 1 l
An <|70n|1/ln+|fan|el" ya) §N<—2 +e)“" ya) ,
n
N is some constant. Thus, the series Y, aa—;zu,,(x,y)’ ==Y Lu,(x,y)", ¥ Dg‘ya%un(x,y)’ = Z Antin(x,y)” converge
n=0 n=0 n=0 =0

absolutely and uniformly with respect to any closed subset of . The functions uy,(x,y)~ Do) U u(x,y)~ are continuous

in Q7 since the common terms in these series are continuous and the uniformly convergent series of continuous functions
defines the continuous functions. This proves the function u(x,y)~ is the regular solution to equation (10) and satisfies
conditions (11) and (12). Next, we construct a formal solution for problems (13)-(15) as

=)

M(xvy)Jr = Z {Tbns(yv )%)—’—

n=1
+Ton [Eochl,l(_)vnyaJrl) - S(ya Afrz)Eochl,l (_l”baJrl )} } Sin( \Y l,,x), (20)
where
S( A, ) _ yaEa+l,a+l(7lnya+l)
B B E g 1 gt (b))
bYEyi1yi1(—Aab"h) #0. @n
For Mittag-Leffler type functions of series (20), as A, — oo, we have
ot bfafl 5
E — 1 22
OC+171( )’ b ) A F( ) O( /)’n)a ( )
+1 b72a72 ;
otly
Ea+l,a+l(*xnb )7*m+0(1/ﬂw). (23)

Subject to (21) by asymptotic (23), we get the estimate
AZB 2 Eg i (bt > C.

By (23), replacing b by y, we obtain

M
a+l o+1
|EOC+1 OC+1( | - +A2 OC+1 A’f’ly ZO
With these two estimates, we have
akzbzaﬂ

1Sy, An) (24)

= b (1 + A2ty
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Denote by 78 = A26y?(@+1) Then, y*A2 = 7 A2~26y=26(0+1) Therefore, by (24):

£
|S( )| <)LZ 28yoc 2e(a+1)_Z , 0<e<l.
I+z
Due to sup 1Z_+Ez =C(€) = (1 — €)' €€ obtain
>0
SO )| < Cle)ag '™y e, o< e <1, (25)
Employing (25), we get
M, SO, An)l

a+1 o+1
|Eg+1,1(=Any® ") = S, An) Eq1,1 (= 40" )| < 14 Ayttt T T Ao+ =

o
M M ba+lc e 2—4e (1728((14’1) > O e )

Hence,
(6, 9) 7| < |Ton |1~ + [Ton| (M) + Mab® ' C (&)~ 4y -2 1)),

Since, by the assumption
[%oul = O(n™),n — oo, (26)

we get
|u(x,y)+| < n74871 + (M1n73 +Mzba+lc(£)n74871y06728(06+1))'

This implies absolute and uniform convergence of the series (20). Using the estimates
Egi1,1(=2y**) = S0, A Eq1,1 (= 2ab*1) = 0 (1/2n)
S, An) = O(1),
following from (22) and (23), we obtain
|kn“n(xay)+| < )Ln|Tbn|K+Mxn|TOrz|(1/kn) < K1n73,
K, is some constant.
e v 92 +_ ¥ +
Consequently, we can see the convergence of the series ¥ =u,(x,y)" = — ¥ Auitn(x,y) 7",
n=1 n=1
Z DOyayun(x y) - lenun(xvy)+'
n=

Using conjugation condition (5), find 7p,. Applying the operator Dgyfla% to function (16) and fractional integro-
differentiation of Mittag-Leffler type functions

Dllt—al" 'E (At —alPip) =t —al* TE (Al —alPip—7y), YER, (27)

u>0ify¢g NU{0},andu € R, ify € NU{0},
we obtain

i d Eq1,1(Aaly|**") 1 d
DOCv I_C A I o+, D —E A{ a+1 E A{ a+1 .
b1 COAn) = e b D B by *1) = ~blEasr 2l

and aiming y — 0, on the left-hand side of (5), we obtain

> T E A%t
lim D’ ! b = Z{ bn — Ton ar11(= }sm vV Anx).
=1

y—0 baEaJrl’aJrl (7)Lnba+1) baEa+],a+]( k ba+1
Since .
d E —Ay®
Dg ]—S( ),) O£+l,l( ny ) ,
)y d banhLl,oHl (,/’Lnbowrl)
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., d
Dy, ld—yEaH,l(*lnyaH) = YEq112(—2y®t).

On the right-hand side of (5), we have

had _ E 2 a+l
lim Dggfluy’ = Z { Lan + Ton ar11(Ana®) )}sin(\/k_,,x).

y—0— “ | a®Eqi1,041(Ana®th) a%Eqi1,a+1(Apa%t!

Therefore,

aaEa+l,a+l(7Lnaa+l) baEa+l,a+l(*)Lnba+l)

Ton = A Tpn + A Tan,

where
A = aaEOH] Jo+1 (A,nath] )Ea+[’a+| (7Anba+] ) + baEOhL] Jo+1 (7A,nba+l )EO!+],] (lnaaﬂ )

Since a%Eqi1.a+1(Aa®*™) > 0, Egi11(Aa®™) > 0, and due to (6), (23) Egiiar1(—Ab*) < 0,
Eaﬂ’aﬂ(—ﬂmb““) < 0. Then, A # 0. By asymptotic formulas (19) and (23) and estimates (17) and (26), we get

o 1
Ton = 0()%) |Tbn| +0 ()ynOH] ) |Tan| =0 (E) .

Substituting the expression obtained above for 7y, into (16) and (20), we get the required solution. This proves the
theorem 1.

3 Conclusion

In this paper, the Dirichlet problem for a linear second-order partial differential equation with a fractional derivative is
solved in a rectangular domain using the Fourier method. We proved values b and r that guarantee the existence of a
solution in the whole domain Q. In [14], we have proved the uniqueness of the solution.
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