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Abstract: Amiodarone is a commonly used antiarrhythmic drug which may induce pulmonary toxicity. To achieve high quality medical

treatment, it is necessary to supervise a well-controlled medical protocol to avoid anomalies in such a drug and in any similar one. This

work proposes the use of a fractional-order PIλ Dδ controllers to maintain a consistent pharmacokinetics for drug administration.

The additional fractional-order parameters, 0 < λ ,δ ≤ 1, which provide additional features to such controller, are determined using

the Particle Swarm Optimization (PSO) algorithm. This is accomplished by approximating s−λ or sδ by 1st- or 2nd -order rational

transfer functions to minimize the ITAE, IAE, ISE, and ITSE error functions. The study includes a comparison between Oustaloup’s

and El-Khazalis’ approximations to show the effectiveness and the cost of each controller design. All results are verified via numerical

simulations.

Keywords: Fractional-order pharmacokinetic model for Amiodarone, PIλ Dδ -controller, particle swarm optimization algorithm,

Laplacian operator, Oustaloup’s and El-Khazali’s approximation.

1 Introduction

Many applications in our real-life have been developed based on integer-order differential equations. Such applications
and many complex phenomena, such as viscoelastic material, biological membrane, biomedical and electrochemical
processes, have been accurately modeled and well established using fractional calculus, see [1]. In this field, it is
necessary to know when and how we can fractionalize these classic applications. For example, an ordinary differential
equation can be easily fractionalised by replacing a suitable fractional-order derivative instead of its integer counterpart.
In general, modeling by the fractional calculus can describe several ordinary calculus phenomena in an efficient way.
Recently, the fractional calculus was well utilized to introduce the pharmacokinetics (PK) model in its new fractional
dynamic form [2]. Consequently, several researchers have handled this subject in a significant number of publications
(see e.g. [3,4,5]). The mass balance equation of Physiologically Based Pharmacokinetics Models (PBPK) is well
described by fractional-order dynamics [2,3]. It allows one to understand the interplay of the main factors of the drug
distribution, identifies its concentration time profile, and explores the drug interactions [3]. All these points effectively
contribute to understand the action of the drug which implies an efficient treatment and effective administration.

In medical fields, the implementations of the control theory have been widely accepted for many linear models, (see
e.g. [3,6]). In particular, the drug administration problem can be considered as a control problem. This is due to the need
of having precise and accurate composition of drugs. In fact, the aim of such process is to keep the drug concentration at
specific organs in the body. This concentration must be close to the wished therapeutically setpoints, while the
concentration in the other organs and tissues does not overrun safety limits [3,7]. However, the administered dosage is
considered as a manipulated variable in PK model, while the concentration of the drug in some organs of the body is
considered as the controlled variable [3]. In [2], Dokometzidis et al. have proposed a PK distribution for the Amiodarone

∗ Corresponding author e-mail: reyad.elkhazali@ku.ac.ae

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/080103


54 R. El-Khazali et al.: The drug administration via fractional-order...

drug that enjoys a fractional-order dynamics by following a single intravenous single oral dose. Sopasakis et al. have

proposed the same model for the Amiodarone drug intravenous administration, and used a fractional-order PID (PIλ Dδ )
controller that shows juxtaposed accuracy with actual data [3].

To improve the efficacy of the PK model, a robust control system is proposed here and carried out using the PSO

algorithm. The objective is to optimize the five parameters of the PIλ Dδ controller (Kp,Ki,Kd ,λ , and δ ) using the
minimum order realization of such fractional-order dynamics. This is accomplished by replacing s±α by either a 1st - or
2nd-order rational transfer function of order α ∈ (0,1], i.e. s±α = N(s,α)/D(s,α) [8].

This paper is organized as follows: Basic concepts and background is presented in the next section. A brief overview

of the fractional-order PK model for Amiodarone is presented in Section III, while some basic preliminaries of the PIλ Dδ -

controller are presented in Section IV. Section V introduces some optimum PIλ Dδ -controllers, followed by Section VI
that presents some comparisons of numerical simulation of the results. Section VII is devoted to conclusion.

2 Fractional-order models

Linear systems with hereditary effect are described by fractional-order dynamics [9]. Integer-order systems, however, are
a subset of the fractional-order ones. Moreover, fractional-order controllers outperform their integer-order counterparts
[9,10,11] due to the increase in the controlled system bandwidth, and the flexibility in choosing its parameters. The
fractional-order LTI (FoLTI) systems that are considered in this work are described by the following fractional-order
differential equation [9]:

anDαny(t)+ ...+ a0Dα0y(t) = bmDβmu(t)+ ...+ b0Dβ0u(t) (1)

where u(t) and y(t) are, respectively, the control and output variables, and Dαk (or Dβℓ) denotes the Cuputo’s differential
operator for different incommensurate fractional orders, αk;k = 1,2,3, ...,n, and l = 1,2,3, ...,m, for arbitrary constants
n,m ∈ N.

System (1) is said to be of commensurate order if all its fractional orders are multiples of rational number p/q ≡ kq,
q ∈ N. The system is then described as [12]:

n

∑
k=0

akDkq y(t) =
m

∑
k=0

bkDkq u(t) (2)

Clearly, if one takes p/q= 1/n, where n> 1, then (2) defines systems of commensurate fractional orders. Since fractional-
order linear time-invariant (FoLTI) systems enjoy hereditary effect; i.e, of infinite dimensions, one may approximate such
systems with realizable finite-order rational transfer functions that exhibit almost the same frequency response of the
original system within the desired bandwidth of the rational approximation [13]. The input-output relationships of LTI
systems are defined by:

The frequency response of systems is usually carried out using transfer functions. The transfer function of a LTI
system is defined as the ratio of the Laplace transform of the output (system output response) to the Laplace transform of
the input (system input) under the assumption that all initial conditions are zero [13], i.e.

G(s) =
L (output)

L (input)

∣

∣

∣

zero initial conditions
=

Y (s)

U(s)
(3)

A typical form of FoLTI system (1) can be described by the following transfer function [13]:

G(s) =
bmsβm + bm−1sβm−1 + ...+ b1sβ1 + b0sβ0

ansαn + an−1sαn−1 + ...+ a1sα1 + a0sα0
(4)

3 The PK model for Amiodarone

Amiodarone, which is an antiarrhythmic drug, has many significant clinical implications because of its singularity in a
long-term accumulation pattern, and its highly nonlinear non-exponential dynamics [2,3]. Such drug can be administered
either intravenously or orally. In [2], a PK model for this drug has been proposed considering a fractional compartmental
model based on a single intravenous and a single oral dose [2,3]. Sopasakis et al. in [3] supposed a direct administration
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of the drug into the central compartment (plasma). They also assumed that the control objective is the concentration of the
drug in the target tissues or organs. Anyhow, the fractional-order PK model for Amiodarone has the following form [2,3]:

dA1

dt
=−(k12 + k10)A1 + k21.D

1−αA2 + u

dA2

dt
= k12A1 − k21.D

1−αA2

(5)

where A1 and A2 are the amounts of Amiodarone [ng] in the plasma and the tissues respectively, u is the administration rate
[ng/day], α ∈ (0,1), and k10, k12 and k21 are the parameters of the model. In fact, k21D1−α A2 defines the fractional-order
diffusion of Amiodarone from the tissues to the central compartment, k12A1 represents the rate at which Amiodarone is
transferred from the plasma to the tissues, and k10A1 is the excretion rate [3]. Typical values of the model’s parameters are
presented in Table I [3]. Now, taking Laplace transform to (5) yields the following transfer function:

G(s) =
U(s)

L (A2(t))
=

1
k10

(

1
k21

sα + 1
)

1
k10k21

sα+1 + 1
k10

s+ k10+k12
k10k21

sα + 1
(6)

where U(s) is the Laplace transform of the administration rate, L (u(t)), and L (A2(t)) is the Laplace transform of the
concentration of Amiodarone in the tissues.

Table 1: Parameters of the PK model for Amiodarone

Parameter Value

0.5870α
1.4913k10
2.9522k12
0.4854k21

One can use, respectively, the following El-Khazali’s 1st- and 2nd-order approximations of sα given in [14,15,16],
where α = 0.5870;

s0.5870 =
2.974s+ 1

s+ 2.974
(7)

and

s0.5870 =
2.905s2 + 4.727s+ 0.5575

0.5575s2 + 4.727s+ 2.905
(8)

Substituting both (7) and (8) into (6) yields two different transfer functions, G1(s) that corresponds to the 1st-order El-
Khazali’s approach, and G2(s) that corresponds to the 2nd-order El-Khazali’s approach; i.e.

G1(s) =
s+ 0.7064

s2 + 4.736s+ 1.907
(9)

G2(s) =
s2 + 2.211s+ 0.6196

s3 + 6.403s2+ 8.311s+ 1.442
(10)

Observe that such two transfer functions represent two approximations for the plant of the fractional-order PK model
constructed for Amiodarone under the given values of the parameters. Later on, we will introduce robust techniques to

tune the PIλ Dδ -controller for these models.

4 PIλ Dδ -controller

The concept of PIλ Dδ -controller was introduced by Podlubny in [9,17]. Recently, this controller has been used for many
industrial applications to improve systems’ performance. It provides extra degrees of freedom by adding two more
parameters (λ and δ ) to the original three parameters, (Kp,Ki,Kd), and so increasing the complexity of tuning its
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parameters [9]. The fractional-order integro-differential equation that describes the PIλ Dδ controllers is given by [9,18,
19]:

u(t) = Kpe(t)+KiJ
λ e(t)+KdDδ e(t), (11)

where Jλ is the Riemann-Liouville operator of order λ , and Dδ is the Caputo operator of order δ . The Laplace transform
of (11) is given by:

C(s) =
U(s)

E(s)
= Kp +Kis

−λ +Kdsδ . (12)

However, the closed-loop system for the fractional-order PK model for Amiodarone with unity feedback is shown in
Figure 1.

Fig. 1: Closed-loop uncontrolled system

In Figure 2, the variable e is the tracking error which represents the difference between the desired input value r and the
actual output, the transfer functions Gi(s), given in (9) and (10), i = 1,2, represent the plant of the model.

In this work, the PIλ Dδ -controller will be taken along with the fractional-order PK model for Amiodarone. This
means that we will try to optimize the system performance under consideration to improve its unit-step response. This
optimization will be done by employing the PSO algorithm using El-Khazali’s approximations. For a complete description
of the PSO algorithm, one may find more details in [19] and its references.

To improve the performance of the controlled system one has to minimize the error, e(t), which is the difference
between the desired and the actual system outputs [19]. To appreciate the different tuning mechanisms, one could minimize

several error functions, such as ITAE, IAE, ISE, and ITSE, to generate the best set of parameters for the desired PIλ Dδ

controller. These error functions are listed here for completeness:

–Integral Square Error (ISE)

ISE =
∫ ∞

0
e2(t)dt. (13)

–Integral Time-Absolute Error (ITAE)

ITAE =

∫ ∞

0
t|e(t)|dt. (14)

–Integral Absolute Error (IAE)

IAE =

∫ ∞

0
|e(t)|dt. (15)

–Integral Time Square Error (ITSE)

IT SE =

∫ ∞

0
te2(t)dt. (16)

5 Optimum PIλ Dδ -controller

To illustrate the proposed design technique of the PIλ Dδ -controller, let us return to the two transfer functions G1(s) and
G2(s) given in (9) and (10), respectively, which yield two different approximations for the fractional-order PK Amiodarone

model. Hence, it is required to find the optimal parameters of the PIλ Dδ -controller (Kp, Ki, Kd , λ and δ ). Such parameters
will minimize the four types of the performance indices, ITAE, IAE, ISE and ITSE.

The PSO algorithm is initialized by taking a population size of 20, and the maximum number of iterations is 50.

Furthermore, let us assume the following search spaces for every parameter of the PIλ Dδ -controller:

0 < Kp, Ki, Kd < 50, 0 < λ , δ < 1 (17)
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The PSO algorithm is carried out using the two approaches of El-Khazali’s approximations, and the two approximated
forms of the PK models G1(s) and G2(s) given by (9) and (10), respectively. Two sets of optimum parameters that
correspond to these two functions have been then obtained. Each set consists of the required five parameters (Kp, Ki,

Kd , λ and δ ), and forms two PIλ Dδ -controllers; C1(s) and C2(s), which correspond to El-Khazalis’ 1st- and 2nd-order
approximations.

For more insight about such two controllers C1(s) and C2(s), we have found that the corresponding optimum
parameters when developing C1(s) are Kp = 45.23, Ki = 49.82, and Kd = 35.87 with λ = 0.792, and δ = 0.106, while
the optimal parameters of C2(s) are Kp = 18.4563, Ki = 49.39, and Kd = 0.1 with λ = 0.90659, and δ = 0.210. In other
words,

C1(s) = 45.23+
49.82

s0.792
+ 35.87s0.106 (18)

and

C2(s) = 18.4563+
49.39

s0.90659
+ 0.1s0.210. (19)

One remark should be made here, all optimum parameters of the above two controllers have been tuned by including the
ITAE index through PSO algorithm for a reason that will be stated in Section VI. Both s0.792 and s0.106 in (18) have been
approximated using the 1st-order El-Khazali’s approach, and similarly for both s0.90659 and s0.210 in (19) that have been
approximated using the 2nd-order El-Khazali’s approach. All these approximations should be then substituted in both
controllers; C1(s) and C2(s) to yield the following integer-order structures of the two controllers, perspectively:

C1i
(s) =

95.84s2 + 163.3s+ 73.65

s2 + 1.347s+ 0.1949
(20)

and

C2i
(s) =

19.97s4 + 153.9s3+ 379.7s2+ 319.5s+ 82.11

s4 + 5.006s3+ 6.046s2+ 1.961s+ 0.04494
(21)

In reference [3], P. Sopasakis et al. designed a PIλ Dδ -controller (denoted here by C3(s)) to regulate the dynamic
behavior of the system at hand. Its optimal tuning parameters were found to be: Kp = 50.5197, Ki = 151.0551, and
Kd = 0.0756 with λ = 0.9170, and δ = 0.7590. That is,

C3(s) = 50.5197+
151.0551

s0.9170
+ 0.0756s0.7590 (22)

However, they did not use any of well-known approaches such as Oustaloup’s, Matsuda’s and Carlson’s approaches to
approximate the Laplacian operators s0.5870, s0.9170 nor s0.7590 that are given in (22) (see [8,20]). From this perspective, we
find a needed motivation for employing one of these approaches to obtain suitable integer-order approximations for such
operators, and then perform some numerical comparisons between the results of this work and Oustaloup’s approach (One
of most popular approaches) through reference [3]. For implementing this task, s0.5870, given by (6), is first approximated
using Oustaloup’s approach to formulate an integer-order PK model.

Since a 1st-order Oustaloup approximation to s0.587 ≈ (57.68s+1)/(s+57.68); 0.01 ≤ ω ≤ 100 rad/s, yields a large

phase error of 35
◦

at ωc = 1 rad/s, then it is necessary to jump to the next 3rd-order Oustaloup’s approximation to present
a fair comparison with the 2nd-order El-Khazali’s approximation (10), i.e.

s0.587 =
57.68s3 + 1508s2+ 390.3s+ 1

s3 + 390.3s2+ 1508s+ 57.68
(23)

Now, substituting from (23) into (6) yields the following minimum 8th-order approximation to the PK model after
removing the common poles and zeros:

G3(s) =

s7+809.7s6+1.781e05s5+5.712e06s4+3.923e07s3

+8.76e07s2+4.359e07s+1.111e06

s8+814.1s7+1.817e05s6+6.492e06s5+6.306e07s4

+2.449e08s3+3.679e08s2+1.103e08s+1.77e06

(24)

One may use El-Khazali 1st - and 2nd-order approximations, and Oustaloup’s approximation to replace s0.917 and s0.759 in
(22), and so generating three different forms of integer-order controllers for (22). Figure 2 shows the unit-step response
of the PK model using its integer-order representations given by G1(s), G2(s), and G3(s).
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Fig. 2: Unit-step response of uncontrolled system

Obviously, the uncontrolled system output does not reach its expected reference input. Furthermore, using Oustaloup’s
3rd-order approximations of s0.917 and s0.759, the PI0.917D0.759 controller given by (22) takes the following equivalent
integer-order form:

Hence, for comparison purposes, using 3rd-order Oustaloup’s approximation to (22) yields:

C3i
(s) =

3.669e04s6+1.732e07s5+3.732e08s4+2.213e09s3

+3.746e09s2+4.886e08s+1.612e07

563.6s6+3.338e05s5+5.874e06s4+2.354e07s3

+4.083e06s2+1.612e05s+189.2

(25)

The order reduction in the plant models given by (9) and (10) over (24) is obvious. This also led to a reduced-order
controllers given by (20) and (21) compared to that of (25).

6 Numerical simulation

When minimizing the four object functions, ITAE, IAE, ISE, and ITSE, the step-response of the controlled system is
investigated using the different forms of controllers and model transfer functions as depicted in Figure (3). When using
(9) and (20), the numerical results of the closed-loop transfer function T1(s) =C1i

(s)G1(s)/(1+C1i
(s)G1(s)) is depicted

in Figure (4) and Table II. Similarly, when using (10) and (21), the results of its step response are shown in Figure (5) and
Table III. The same numerical results when using (24) and (25) to form T3(s) =C3i

(s)G3(s)/(1+C3i
(s)G3(s)) are shown

in Figure (6) and Table IV.

Fig. 3: Closed-loop controlled system
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Fig. 4: The closed-loop system T1(s) with respect to the four performance indices

Table 2: Step response specifications of T1(s) with respect to the four performance indices

Step Response ITAE IAE ISE ITSE

0.0253 0.0391 0.0118 0.0621Rise Time
0.5280 1.0631 1.0019 0.8477Settling Time
0.8976 0.8990 0.9024 0.8988Settling Min.
0.9753 0.9965 0.9699 0.9983Settling Max.
0.0000 0.0480 0.0000 0.1272Overshoot
0.9753 0.9965 0.9699 0.9983Peak
0.6702 3.8659 0.0446 2.9422Peak Time
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Fig. 5: The closed-loop system T2(s) with respect to the four performance indices
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Table 3: Step response specifications of T2(s) with respect to the four performance indices

Step Response ITAE IAE ISE ITSE

0.1377 0.0273 0.0114 0.0667Rise Time
0.4674 1.1596 1.3590 0.9372Settling Time
0.9007 0.9001 0.9098 0.8997Settling Min.
0.9957 0.9999 0.9994 0.9994Settling Max.
0.0000 0.0159 0.1027 0.0541Overshoot
0.9957 0.9999 0.9994 0.9994Peak
0.8905 4.5262 3.6543 3.2528Peak Time

For compactness, the closed-loop transfer functions of T1(s), T2(s), and T3(s) are respectively given by (26), (27), and
(28).

T1(s) =
95.84s3 + 231s2+ 189s+ 52.03

s4 + 101.9s3+ 239.5s2+ 192.5s+ 52.4
(26)

T2(s) =

19.97s6+198.1s5+732.3s4+1254s3

+1024s2+379.5s+50.88

s7+31.37s6+244.4s5+816s4+1324s3

+1049s2+382.7s+50.94

(27)

T3(s) =

3.669e04s13+4.702e07s12+2.093e10s11+3.598e12s10

+1.686e14s9+3.211e15s8+2.947e16s7+1.418e17s6

+3.599e17s5+4.443e17s4+2.092e17s3

+2.687e16s2+1.246e15s+1.791e13

563.6s14+8.293e05s13+4.27e08s12+9.002e10s11

+6.886e12s10+2.322e14s9+3.817e15s8+3.254e16s7

+1.5e17s6+3.702e17s5+4.484e17s4+2.097e17s3

+2.69e16s2+1.246e15s+1.791e13

(28)

A closer look to the above figures and tables shows that the ITAE one has more ability than others to provide the
closed-loop response with minimal overshoot and fast settling time. However, we find that it does not give us a fast rise
time compared to the others. Generally, one may conclude that the ITAE index satisfies excellent results, and we would
like here to choose it out of all indices to get us optimal parameters of C1(s) and C2(s) corresponding to both G1(s) and
G2(s), respectively.

Fig. 6: A comparison between T1(s), T2(s) and T3(s)
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Table 4: Step response specifications of T1(s), T2(s) and T3(s)

Step Response T1(s) T2(s) T3(s)

0.0252 0.1377 0.0529Rise Time
0.5280 0.4674 0.1232Settling Time
0.8976 0.9007 0.9009Settling Min.
0.9753 0.9957 1.0051Settling Max.
0.0000 0.0000 0.5315Overshoot
0.9753 0.9957 1.0051Peak
0.6702 0.8906 0.2846Peak Time
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Fig. 7: A Comparison of the bode diagrams between T1(s), T2(s) and T3(s)

Based on the above results, one can deduce that all three controllers are fiercely competing in providing the closed-
loop system response specifications with a best performance. In particular, C1(s) and C2(s) demonstrate a higher efficacy
than the third one in providing the closed-loop system with minimal overshoot, although the settling time is slightly higher
in both of them than the settling time in C3(s). Regarding the rise time, one might observe that the first controller, C1(s),
returns back again to show itself as the best.

7 Conclusion

Three robust PIλ Dδ -controllers based on PSO algorithm via El-Khazali’s and Oustaloup’s approximations have been
designed for controlling the concentration of Amiodarone drug level, which is described by a fractional-order
pharmacokinetic model. These designs have been proposed to satisfy set of time and frequency domain constraints, such
as overshoot, rise time, and settling time. The different types of approximations affected the size and the complexity of
the controller dynamics. Besides reducing the order of the controlled system, it was shown that with the lowest order of
approximation to the fractional-order Laplacian operator, i.e. first-order approximation, the controlled system exhibits a
satisfactory and competitive behavior to that of other higher order ones.
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