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Abstract: In this paper, we present a dynamic system for economic order quantity (EOQ) by utilizing a special type of fractional

calculus named conformable calculus. We present the generalized conformable entropy order quantity (C-EnOQ). In this situation,

we supply the cost functions with reference to time in a recurring dated. In this system, we consider the linked optimization issue

and improve an uninterrupted method for figuring a bounded interval casing the optimal arrangement expanse, exploiting the Tsallis

fractional entropy. Moreover, for an astonishing class of transference functions, we explore these cost functions to compute the optimal

magnitude.
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1 Introduction

Currently, entropy has been the most important quantity of chaos in all physical structures including computer studies
specially image processing [1]. Some assembly investigators have utilized the idea of entropy rented from information
theory employing the Shannon’s entropy formula. Distinctly, the thermodynamic entropy notion has been smeared in
studies containing result trees, work force schemes, logistics organization, business process management, inventory
organization, price-quality relations, organizing orders in a quantity chain, opposite logistics and bio-economy (see[2,3,
4] for recent works).

The economic order quantity (EOQ) system established by Harris [5] is supposed to be the first available record
management system and the foundation for the growth of many record systems. Investigators advised that substantial
error or misconstructions during parameter effort purpose often lead to limited consequences. Ibrahim and Hadid [6]
involved the marginal of EOQ formula. The study is based on the fixed-point theorems in some of compact sets. The
minimization of EOQ is given by allowing a geometric setting for the full cost function through a time. The investigation
correlated to the minimum norm result. This method allows EOQ difficulties to be under variable credit period, where
the classical simulations are fulfilled Leray-Schauder theorem [7].

Jaber et al. [8] planned a correlation between the performance of manufacture structures as well as the behavior of physical
scheme. They recommended a research work by employing the first and second formulas of the thermodynamics to
decrease scheme entropy and increase progress in construction structure achievement. They familiarized the notion of
entropy based on the cost function and its derivative. That is desirable to control the development procedure and enlarged
union influence. Their consequences recommended that stuffs must be demanded in superior values than designated by
the classical EOQ system. Also, Jaber et al. [8] examined their earlier system for organizing tips in a two-tier source
chain lower than the molds of a constant rather than an increasing product. Lately, they modified the system for the
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supposition of approved delay in costs. Many studies later appeared in the EnOQ. Pattnaik [9] presented and generalized
a new style of replenishment policy in EnOQ system for a delicate invention with two component request under cash
discounts predominantly over a finite time limit. Researchers investigated the estimating and lot sizing EnOQ system
for a moldering thing under finite construction, exponential decay, limited back ordering and lost sales. Moreover, they
considered EnOQ system with marketing price in need of demand and showing to discrete damaged quality producers.
They found a significant reflection about the conclusion of entropy cost on the maximization of income, which shapes
that the entropy cost has analogous conduct as the marketing price of the produce. Their results inform the visions of the
entropic order record system and supplement the progress of the works of record system [10].

Anderson and Ulness suggested a novel class of a calculus, which is conformable (CC) [11] (extended in [12]) having a
control construction, which is called the proportional-integral-derivative controller (PID). PID is a control loop mechanism
using feedback generally utilized in industrial and economy control systems and a selection of other applications that
require continuously tempered control. These PID controller approaches have different advantages, disadvantages, and
concerns if one approach controls. Extreme relative action leads to falter the economy or hesitation in the growth of the
economy, extreme integral activation implies overreaches, and the extreme derivative achievement causes an oscillatory
attitude to set-point. Therefore, in such systems, it is confidential to build an entropy solution formula. Based on CC, we
define the Tsallis conformable entropy (TCE) and employ the result to deliver a new look of EnOQ calling conformable
entropy order quantity (C-EnOQ).

2 Processing

We process our method in this part.

2.1 CC

Definition 1.A Conformable operator (CO) Dβ is called conformable of order β ∈ [0,1], if D0 is the identity operator

and D1 is the ordinary differential operator. Particularly, the operator

D
β f (t) =

(

t1−β
)

f ′(t) (1)

is conformable if for a differential function f (t),

D
0 f (t) = f (t) and D

1 f (t) = f ′(t). (2)

Utilizing the control system with the controller u at time t with two tuning criteria has the setting

u(t) = νpΣ(t)+νdΣ ′(t), (3)

where νp is the proportional gain, νd is the derivative gain, and Σ is the error between the formal variable and the actual
variable. Based on (3), Anderson and Ulness [11] suggested the following construction:

Definition 2.Consider two continuous functions k0,k1 : [0,1]×R→ (0,∞) such that

D
β f (t) = k1(ℓ, t) f (t)+k0(ℓ, t) f ′(t) (4)

such that k1(ℓ, t) 6= −k0(ℓ, t),

lim
ℓ→0

k1(ℓ, t) = 1, lim
ℓ→1

k1(ℓ, t) = 0, k1(ℓ, t) 6= 0, ∀t, ℓ ∈ (0,1), (5)

and

lim
ℓ→0

k0(ℓ, t) = 0, lim
ℓ→1

k0(ℓ, t) = 1, k0(ℓ, t) 6= 0, ∀t, ℓ ∈ (0,1). (6)

Definition 3.Coordinately, the integral is defined, as follows:
∫

D
ℓ f (t)dℓt = f (t)+ ke0(t, t0), (7)

where k ∈ R, dℓt =
dt

k0(t)
,ν 6= 0 and

e0(t,κ) = exp

(

−
∫ t

κ

k1(ℓ,ς)

k0(ℓ,ς))
dς

)

. (8)
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In the sequel, we formulate the connections, as follows:

k1(ℓ, t) = (1− ℓ)tℓ, k0(ℓ, t) = ℓt1−ℓ, t ∈ (0,∞), (9)

k1(ℓ, t) = (1− ℓ)|t|ℓ, k0(ℓ, t) = ℓ|t|1−ℓ, (10)

k1(ℓ, t) = cos(
ℓπ

2
)tℓ, k0(ℓ, t) = sin(

ℓπ

2
)t1−ℓ, t ∈ (0,∞) (11)

k1(ℓ, t) = cos(
ℓπ

2
)|t|ℓ, k0(ℓ, t) = sin(

ℓπ

2
)|t|1−ℓ t ∈ R\{0}. (12)

2.2 EOQ

The construction of EOQ is formulated by Ford W. Harris [5], as follows:

Q =

√

2ℵ♭

∁
, (13)

where ℵ is the annual demand quantity, ♭ is the cost for each item and ∁ is the annual holding cost for each item. This
formula is generated, as follows [6]:

Q′(t) =Θ
(

Q(ℵt),Q(♭t),Q(∁t)
)

. (14)

While the fractal of EnOQ was investigated in [10]. In the recent work, we aim to use CC to generalize (14), as follows:

D
β Q(t) = k1(ℓ, t)Q(t)+k0(ℓ, t)Q

′(t) (15)

= k1(ℓ, t)Q(t)+k0(ℓ, t)Θ
(

Q(ℵt),Q(♭t),Q(∁t)
)

. (16)

Different studies are presented in [6,7]. Here, we generalize derivative of Tsallis entropy in view of the (4) (C-EOQ) and
show that the unique outcome of Eq.(15) is bounded by Tsallis conformable entropy under some hypotheses. It is well
known that the boundedness by entropy formula leads to the stability of the system.

2.3 Tsallis Conformable Entropy (TCE)

Tsallis [13] designed an entropy, which is described by an index τ and denoted by Tτ . Tsallis formula is utilized in
numerous scientific areas (theories and applications). The overall continuous arrangement of this entropy is formulated as
follows:

Tτ(σ) =

∫

t(σ(t))τ dt − 1

1− τ
, τ 6= 1, (17)

where σ(t) is a probability density function. Recently, Ibrahim and Darus [14] have extended the Tsallis entropy into the
complex plane by suggesting the complex probability density function

Tτ(z) := (τ − 1)Tτ [Pc]U = 1−
∫ z

0

(

Pc(w)
)τ

dw, z ∈U, (18)

where Pc (complex probability density function) is analytic in U defined in the open unit disk U owning the formula

Pc(z) =
∞

∑
n=0

pnzn, z ∈U. (19)

Using the CC in Eq.(4), Tsallis entropy (17) becomes

D
β
Tτ(σ)(t) = ν1(β , t)Tτ (σ)(t)+ν0(β , t)T

′
τ (σ)(t) (20)

where T′
τ represents the first derivative of Tsallis entropy. Thus, using (7), we obtain

∫

D
β
Tτ(σ)(t)dβ t = Tτ(σ)(t)+Ke0(t, t0), (21)
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where e0(t, t0) is given in (8).

By the thermodynamical idea, the system in (20) organizes a connection between irrevocable and revocable domains. On
one hand, the equation is time reverse invariant, and on the other it is not. Note that the Tsallis entropies are not extensive
( unequal to the Shannon type), so the time derivative of them cannot mainly be recognized as a production rate. Some
investigators indicated that the entropy production rate increases rather than decreases within the Shannon type if the
entropy time derivative is considered to be the amount of deviation from equilibrium. Formula (20) might not indicate the
above properties because of the definitions of ν0 and ν1. We shall use (20) as an upper bound of the unique solution of
(15) in the next section.

2.4 Fixed Point Theorem

A class of fixed-point theorems is one of the significant and motivating subjects of nonlinear functional analysis that
mergers geometry, analysis and applied mathematics. It is a solid tool to recognize the outcomes of many problems in
physics, economics and computer science. In this effort, we shall apply a special type of fixed-point theorem called weakly
contractually fixed point theorem. We need the following information.

Definition 4.([15]) Let X be a nonempty set and S : X3 → [0,∞) be a function satisfying the following conditions for all

x, y, z, w ∈ X:

(H1) S(x,y,z) = 0 if and only if x = y = z;

(H2) S(x,y,z) ≤S(x,x,w)+S(y,y,w)+S(z,z,w).
Then the function S is called an S-metric on X and the pair (X ,S) is called an S-metric space.

This space achieves the property S(x,x,y) =S(y,y,x) for all x,y ∈ X .

Lemma 1.Let (X; S) be a complete S-metric space and P : X →X be a contraction. Then P admits a unique fixed point

in X.

Next section addresses the main study in this paper. We present the results in two subsections: conformable calculus
outcomes and classical fractional calculus to compare the calculus.

3 Results

Our main results are, as follows:

3.1 Conformable Calculus Results

Define an operator P;X → X , as follows:

(PQ)(t) =

∫

(

k1(ℓ, t)Q(t)+k0(ℓ, t)Θ
(

Q(ℵt),Q(♭t),Q(∁t)
))

dℓt +Ke0(t, t0), X := R. (22)

Since Q ∈ X , then P is a self-mapping. Also, let a function S : X3 →R
+ by

S(χ1,χ2,χ3) = max{|χt − χ| : t = 1,2,3, t 6=},

where χ1(t)=Q(t), χ2(t)=Q(Q(t)) and χ3(t) :=Θ
(

Q(at),Q(bt),Q(ct)
)

. Obviously,S(χ1,χ2,χ3) = 0 for χ1 = χ2 = χ3.
Also, we have

S(χ1,χ1,χi)+S(χ2,χ2,χ j)+S(χ3,χ3,χk) (23)

= max
i=2,3

{|χ1 − χi|}+max
j=1,3

{|χ2 − χ j|}+ max
k=1,2

{|χ3 − χk|} (24)

= max{|χ1 − χ2|, |χ1 − χ3}+max{|χ2 − χ1|, |χ2 − χ3} (25)

+max{|χ3 − χ1|, |χ3 − χ2|} (26)

= 2max{|χ1 − χ2|, |χ2 − χ3|, |χ3 − χ1|} (27)

> max{|χ1 − χ2|, |χ2 − χ3|, |χ3 − χ1|} (28)

= max{|χt − χ| : t = 1,2,3, t 6=} (29)

=S(χ1,χ2,χ3). (30)

Hence, the metric S(χ1,χ2,χ3) is an S-metric on the set X .
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Theorem 1.In (15), if

|Θ
(

Q1(ℵt),Q1(♭t),Q1(∁t)
)

−Θ
(

Q2(ℵt),Q2(♭t),Q2(∁t)
)

|< h̄|Q1(t)−Q2(t)| (31)

for some positive constant

h̄ <
1− (1− ℓ)Tℓ

βT1−ℓ
, T< ∞. (32)

Then, P admits a unique fixed point in X.

Proof.Let

Θ
(

Q(ℵt),Q(♭t),Q(∁t)
)

:=Θ
(

Q(t)
)

.

Let the functions k0 and k1 be given by

k1(ℓ, t) = (1− ℓ)tβ , k0(ℓ, t) = ℓt1−ℓ, t ∈ (0,T),T< ∞. (33)

Then, we have

S(PQ1(t),PQ2(t),PQ3(t)) = max{|PQ(t)−PQ(t)| : t = 1,2,3, t 6=}

≤ max
{

|k1(β , t)Qı(t)+k0(ℓ, t)Θ(Q(t))−
(

k1(ℓ, t)Q(t)+k0(ℓ, t)Θ(Q(t))
)

|T
ℓ

ℓ2
: t = 1,2,3, t 6=

}

≤ max
{(

k1(ℓ, t)|Qt −Q|+k0(ℓ, t)h̄|Qt −Q|
)

Tℓ

ℓ2
: t = 1,2,3, t 6=

}

≤ max
{

Tℓ

ℓ2
[(1− ℓ)Tℓ+ ℓT1−ℓh̄]|Qt −Q| : t = 1,2,3, t 6=

}

:= rS(Q1,Q2,Q3).

Hence, P admits an optimal value in the unit ball Br of radius r ∈ (0,1). Let t,ς ∈ (0,T) with t > ς so Q(t) > Q(ς)
(increasing function). A calculation implies that

S
(

PQ1(t),PQ2(t),PQ3(t)− (PQ1(ς),PQ2(ς),PQ3(ς)
)

=S
(

P
(

Q1(t)−Q1(τ)
)

,P
(

Q2(t)−Q2(ς)
)

,P
(

Q3(t)−Q3(ς)
))

=S
(

PQ1(t − ς),PQ2(t − ς),PQ3(t − ς)
)

≤S
(

PQ1(t),PQ2(t),PQ3(t)
)

≤ rS(Q1,Q2,Q3).

Thus, P is equicontinuous inside the ball Br. Also, assuming Ql(t)−ηl(t) = ξl(t), l = 1,2,3, we attain that

S
(

P
(

Q1(t)−η1(t)
)

,P
(

Q2(t)−η2(t)
)

,P
(

Q3(t)−η3(t)
))

=S
(

Q
(

ξ1(t)
)

,Q
(

ξ2(t)
)

,Q
(

ξ3(t)
))

≤ max
{

Tℓ

ℓ2
|k1(ℓ, t)ξ(t)+k0(ℓ, t)Θ(ξ((t))−

(

k1(ℓ, t)ξ(t)+k0(ℓ, t)Θ(ξ(t))
)

| : t = 1,2,3, t 6=
}

≤ max
{(

(1− ℓ)Tℓ|ξt − ξ|+ ℓT1−ℓℓ
)

Tℓ

ℓ2
|ξt − ξ | : t = 1,2,3, t 6=

}

= max
{

[(1− ℓ)Tℓ+ ℓT1−ℓℓ]
Tℓ

ℓ2
|ξt − ξ| : t = 1,2,3, t 6=

}

=
Tℓ

ℓ2
[(1− ℓ)Tℓ+βT1−β h̄]max

{

|ξt − ξ| : t = 1,2,3, t 6=
}

= rS(ξ1,ξ2,ξ3)≤ rS(Q1,Q2,Q3).

Hence, P is continuous in Br. Consequently, P admits a fixed point PQ = Q. Thus, according to Lemma 1, we have that P

admits a unique fixed point in Br, r ∈ (0,1).
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Theorem 2.Consider the Eq. (15) such that 0 < τ < 1, 0 < β < 1. If the solution Q is a quasi-norm that is achieving the

inequality

Nτ(Q) =
∫

Br

|Q|τ dµ < ∞,

for some measure, Ke > 1/τ, and

h̄ <

∣

∣

∣

∣

(

1

1− τ
−k1(ℓ, t)

)

/k0(ℓ, t)

∣

∣

∣

∣

, t ∈ (0,T].

Then every solution of Eq. (15) is bounded by conformable entropy satisfying (20)-(21).

Proof.Assume that Q is a solution taking the following formula

Q(t) =
∫

(

k1(ℓ, t)Q(t)+k0(ℓ, t)Θ
(

Q(ℵt),Q(♭t),Q(∁t)
))

dℓt +Ke0(t, t0).

Let Ke := Ke0(t, t0). A calculation gives the following illustration:

Q(t) =
∫

(

k1(ℓ, t)Q(t)+k0(ℓ, t)Θ
(

Q(ℵt),Q(♭t),Q(∁t)
))

dℓt +Ke0(t, t0)

≤ Ke +k1(ℓ,T)Nτ(Q)+k0(ℓ,T) h̄Nτ (Q)

= Ke +(ν1(β ,T)+ν0(β ,T)ℓ)Nτ (Q)

= Ke +(k1(ℓ,T)+k0(ℓ,T) h̄)
∫

Br

|Q|τ dµ

≤ Ke −Ke τ

1− τ
+

∫

Br
|Q|τ dµ

1− τ

≤ Ke

1− τ
+

∫

T

0 Qτ (t)dt −Ke τ

1− τ
.

Since Ke τ > 1, then we obtain the following inequality:

Q(t)≤ Ke

1− τ
+

∫

T

0 |Q|τ(t)dt − 1

1− τ
(34)

=
τKe

1− τ
+

∫

T

0 |Q|τ(t)dt − 1

1− τ
+Ke (35)

=
τKe0(t, t0)

1− τ
+Tτ(Q)(t)+Ke0(t, t0) (36)

Hence, the unique outcome of Eq. (15) has a bound based on the conformable entropy satisfying (20)-(21).

Remark.

–We note that the value of the upper bound of h̄ in Theorem 1 is different from that in Theorem 2. This because we
assume that the functions k0 and k1 are of the formula

k1(ℓ, t) = (1− ℓ)tℓ, k0(ℓ, t) = ℓt1−ℓ, t ∈ (0,T),T< ∞. (37)

If we change the above definition, we get another upper bound depending on the selection of Eq.s (9)-(??). While the
upper bound in Theorem 2 is the general formula including the fractional power of the Tsallis entropy. Therefore, by
using (37), we have the limit

lim
τ→0,t→T

∣

∣

∣

∣

(

1

1− τ
−k1(ℓ, t)

)

/k0(ℓ, t)

∣

∣

∣

∣

=
1− (1− ℓ)Tℓ

ℓT1−ℓ
.

Moreover, the other types of k0 and k1 are useful depending on the applications. For example, if one is looking for a
periodic solution, the best selection is achieved using sin and cos functions.

–The entropy solution in Eq.(34) is finite (Q(t)< ∞) and analytic in 0 < τ < 1.
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Fig. 1: The solution Q(t) and 3D plot of the entropy solution in Eq. (34) with respect to τ in Example 1.

Fig. 2: The iteration of the fixed point of Example 1.

3.2 Numerical Examples

In this place, we aim to introduce an example to satisfy the conditions of Theorem 2.

Example 1.Adopt that a current state-run of the market satisfies the following data:

–T= 1, ℓ= 0.5 and h̄ = 0.5;
–Θ(Q)(t) = 0.3Q(t);
–0 < τ < 1.

Since |Θ(Q1)(t)−Θ(Q2)(t)| < 0.3|Q1 −Q2| then in view of Theorem 1, Eq. (15) has a unique solution in a unit ball.
Considering the formula of e0(t,0) we have

e0(t,0) = exp

(

−
∫ t

0

k1(ℓ,ς)

k0(ℓ,ς))
dς

)

= 0.367;

and since 0 < τ < 1, we can approach to e0(t,0)τ < 1 for all τ and 0 < K < 1. Hence, all the conditions of Theorem 2 are
fulfilled, we conclude that the unique solution of Eq. (15) is bounded by a TCE. It is clear that the conditions of Theorem
2 are not difficult to satisfy. We proceed to compute the formula of the solution Q(t). From Eq. (15), we get the solution
(see Fig.1),

Q(t)≈ 0.367

1− 0.35
√

t
, t ∈ (0,1].

Moreover, with the help of Mathematica 11.2, the exact value of the fixed point is p = 0.48534 after five iteration with
error e = 0.00230 (see Fig.2)

Example 2.Consider the following data
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Fig. 3: The solution Q(t) and 3D plot of the entropy solution in Example 2.

Fig. 4: The iteration of the fixed point of Example 2.

–T= 1,β = 0.75;

–Θ(Q)(t) = 1
2

√

Q2 + 5;
–0 < τ < 1.

It is clear that Θ is is Lipschitz continuous with the Lipschitz constant ℓ = 0.5 < 1−(1−0.75)
0.75

. Then in view of Theorem 1,
Eq. (15) has a unique solution in a unit ball. The formula of e0(t,0) can be calculated as follows:

e0(t,0) = exp

(

−
∫ t

0

ν1(0.75,ς)

ν0(0.75,ς))
dς

)

= 0.8007;

and since 0 < τ < 1, we have e0(t,0)τ < 1 with 0 < K < 1. Therefore, in virtue of Theorem 2, we attain that the unique
solution of Eq. 15 is bounded by a TCE such that (see Fig 3)

Q(t)≈ 0.8

1− 0.5t0.25
, t ∈ (0,1].

The exact value of the fixed point is p = 0.46898 after five iteration with error e = 0.006

Moreover, with the help of Mathematica 11.2, the exact value of the fixed point is p = 0.48534 after five iteration with

error e = 0.00230 . It is clear that Θ is is Lipschitz continuous with the Lipschitz constant h̄ = 0.5 < 1−(1−0.75)
0.75

. Then in
view of Theorem 1, Eq. (15) has a unique solution in a unit ball. Th formula of e0(t,0) can be calculated as follows:

e0(t,0) = exp

(

−
∫ t

0

ν1(0.75,ς)

k0(0.75,ς))
dς

)

= 0.8007;
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and since 0 < τ < 1, we have e0(t,0)τ < 1 with 0 < K < 1. Therefore, in virtue of Theorem 2, we attain that the unique
solution of Eq. 15 is bounded by a TCE such that (see Fig 3)

Q(t)≈ 0.8

1− 0.5t0.25
, t ∈ (0,1].

The exact value of the fixed point is p = 0.46898 after five iteration with error e = 0.006

3.3 Comparison

Recently, CCs have been studied and modified by many researchers , one can see for example [16]-[18]. Our comparison
is based on the new development given by Baleanu et al. [16]. They presented a hybrid integral and differential operators
found by the well known Caputo fractional derivative and integral as follows:

C
D

β Q(t) =
1

Γ (1−β )

∫ t

0

(

ν1(β ,τ)Q(τ)+ν0(β ,τ)Q
′(τ)
)

(t − τ)−β dτ (38)

=

(

t−β

Γ (1−β )

)

∗
(

ν1(β , t)Q(t)+ν0(β , t)Q
′(t)
)

, (39)

where

lim
β→0

C
D

β Q(t) =

∫ t

0
Q(τ)dτ, lim

β→1

C
D

β Q(t) = Q′(t).

Clearly, (38) implies that

C
D

β Q(t) =
1

Γ (1−β )

∫ t

0
(ν1(β ,τ)χ(τ)+ν0(β ,τ)Θ(Q(τ))) (t − τ)−β dτ (40)

=

(

1

tβ Γ (1−β )

)

∗ (ν1(β , t)Q(t)+ν0(β , t)Θ(Q(t))) , (41)

which is corresponding to the hybrid conformable integral

C
I

β Q(t) =

∫ t

0
e0(t,τ)

RLD1−β Q(τ)

ν0(β ,τ)
dτ,

where the operator RLD1−β indicated the the Riemann-Liouville differ-integrals operator. Moreover, by Proposition 2 in
[16], the corresponding integral satisfies the relation

C
I

β C
D

β Q(t) = Q(t)− e0(t,τ)Q(0). (42)

Note that the initial solution of (40) is Q(0) = 0.
Define an operator Z : X → X by the following construction

(ZQ)(t) :=

∫ t

0

(

1

τβ Γ (1−β )

)

∗ (ν1(β ,τ)Q(τ)+ν0(β ,τ)Θ(τ,Q))dτ.

We have the following existence result:

Theorem 3.Consider the hybrid conformable equation (40). If

|Θ(Q(t))−Θ(η(t))|< ℓ|Q(t)−η(t)|

for some positive constant ℓ <
Γ (1−β )−(1−β )Tβ

βT1−β , T ∈ (0,∞). Then Z has a unique fixed point in X.

Proof

In the same manner of Theorem 1, we let ν0 and ν1 to be as follows:

ν1(β , t) = (1−β )tβ , ν0(β , t) = β t1−β , t ∈ (0,T),T< ∞.
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S(ZQ1(t),ZQ2(t),ZQ3(t)) = max{|ZQt(t)−ZQ(t)| : t = 1,2,3, t 6=}
≤ max{|ν1(β , t)Qt(t)+ν0(β , t)Θ(Qt(Q(t))

−
(

ν1(β , t)Q(t)+ν0(β , t)Θ(Q(Q(t))
)

| T

β 2Γ (1−β )
: t = 1,2,3, t 6=}

≤ max{
(

ν1(β , t)|Qt − χ|+ν0(β , t)ℓ|Qt − χ |
)

T

β 2Γ (1−β )
: t = 1,2,3, t 6=}

≤ max{
(

(1−β )Tβ |Qt −Q|+βT1−βℓ|Qt −Q|
)

T

β 2Γ (1−β )
: t = 1,2,3, t 6=}

= max{[(1−β )Tβ +βT1−βℓ]

(

T

β 2Γ (1−β )

)

|Qt −Q| : t = 1,2,3, t 6=}

:= rS(Q1,Q2,Q3).

Since [(1−β )Tβ +βT1−βℓ]
(

T

β 2Γ (1−β )

)

< 1 ⇒ [(1−β )Tβ+βT1−β ℓ]
Γ (1−β )

< β 2

T
≤ 1. Hence, Z is bounded in the unit ball Br of

radius 0 < r < 1. In the similar manner of Theorem 1, we confirm that the operator Z has a unique fixed point according
to Lemma 1.

Remark
As a comparison, we indict that the upper bound of ℓ in Theorem 1 is equal to 1 for all β ∈ (0,1). However, in Theorem
3, the maximum value appears at β = 0.9, which approaches 12.

4 Conclusion

Generally, the economic system can be achieved by considering a collection of fixed points. Therefore, fixed-point
proposals can afford the equilibrium of economic composed with the conformable fractional entropy (Theorem 2). The
setting of this effort established a new procedure of EnOQ system. We presented a method of decreasing it utilizing the
notion of fixed-point philosophy. We industrialized this technique to be appropriate for the typical (Theorem 1)
applications. Applications are illustrated for a linear system. For future work, one can employ the complex conformable
derivative operator that is given in [12] to extend the study conformable Tsallis’ entropy into a complex domain to
generalize the results in [14].
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