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Abstract: The present paper investigates the behavior of nonoscillatory solutions of the higher order fractional differential equation

C,H
D

r
ay(t) = e(t)+ f (t,x(t)), a > 1,

where C,HD r
a is a Caputo-type Hadamard derivative. The authors address the two cases y(t) = x(k)(t) with k a positive integer, and

y(t) =
(

c(t)(x′(t))µ)′
with µ ≥ 1 being the ratio of odd positive integers. Here, r = n+α −1, α ∈ (0,1), and n ∈ Z

+.
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1 Introduction

We handle the fractional initial value problem (IVP)
{

C,H
D

r
ay(t) = e(t)+ f (t,x(t)), a > 1,

δ Ny(a) = bN ,
(1)

where bN with N = 0,1, ...,n−1 are constants, y(t) = x(k)(t) with k a positive integer, or y(t) =
(

c(t)(x′(t))µ)′
with µ ≥ 1

the ratio of odd positive integers, r = n+α − 1, α ∈ (0,1), and n ∈ Z
+. Here δ = t d

dt
, and C,HD r

ay(t) is a Caputo-type
Hadamard fractional derivative of y on the interval [a,∞).

In what follows, we assume:

(i)c : [a,∞)→ (0,∞) is continuous;
(ii)e : [a,∞)→R is continuous;

(iii) f : [a,∞)×R→ R is continuous and there is a continuous function h : [a,∞) → (0,∞) and constants γ , λ ∈ R with
0 < λ < 1 such that

0 ≤ x f (t,x)≤
(

ln
t

a

)γ−1

h(t) |x|λ+1
for x 6= 0 and t > a.

Only the solutions of equation (1) that are continuable and nontrivial in any neighborhood of ∞ are addressed. Moreover,
this solution is called oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise.

Fractional differential equations have grabbed the attention of numerous researchers because they provide excellent
models for the problems involving memory or hereditary properties. They play important roles in several research areas,
such as physics, chemical technology, population dynamics, biotechnology, and economics. Examples of applications and
new developments in the area are illustrated, for example, in [1,2,3,4,5,6,7,8,9,10,11,12,13].
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Much work on problems involving fractional differential equations centered on either the Riemann-Liouville or the
Caputo fractional derivative. Hadamard introduced the Hadamard fractional derivative in 1892 (see [14]). It differs from
other ones in that the kernel of the integral in the definition contains a logarithmic function with an arbitrary exponent.
Background material on Hadamard fractional derivatives and integrals are involved in [15,16,17,18,19,20].

Results on the asymptotic behavior of solutions of fractional differential equations with Caputo-type Hadamard
derivatives are relatively scarce in the literature. Moreover, few examples involve equations of the form (1). In [21], we
obtained some new results on the oscillatory and asymptotic behavior of the solutions of equation (1) in the case where
y(t) = x(t). The present paper aims to establish some new criteria for the asymptotic behavior of all nonoscillatory

solutions of equation (1) with y(t) = x(k)(t), where k is a positive integer, and for y(t) =
(

c(t)(x′(t))µ)′
where µ ≥ 1 is

the ratio of odd positive integers.
We begin with some basic notations and definitions from the fractional calculus; see, for example, [8,11].

Definition 1.The Hadamard fractional integral of order α ∈R
+ of a function f (t) is defined as follows:

Jα
a f (t) =

1

Γ (α)

∫ t

a

(

ln
t

s

)α−1

f (s)
ds

s
, t > a > 0,

where Γ is the Euler-Gamma function.

Definition 2.The Hadamard derivative of order α ∈ [n− 1,n), n ∈ Z
+, of a function f (t) is given by

H
D

α
a f (t) = δ n(Jn−α

a f )(t)

=
1

Γ (n−α)

(

t
d

dt

)n ∫ t

a

(

ln
t

s

)n−α−1

f (s)
ds

s
, t > a > 0,

where δ := t d
dt

, δ 0 f (t) = f (t), and n = [α]+ 1 where [α] denotes the integer part of the real number α .

Definition 3.[23] For an n-times differentiable function f : [a,∞)→R, the Caputo-type Hadamard derivative of fractional
order α is defined as follows:

C,H
D

α
a f (t) =

1

Γ (n−α)

∫ t

a

(

ln
t

s

)n−α−1

δ n f (s)
ds

s

= Jn−α
a δ n f (t), n− 1 < α < n,

where t > a > 0, δ = t d
dt

, and n = [α]+ 1.

Based on what can be obtained from Lemma 2.5 in [23], a Volterra type equation corresponding to the IVP (1) has the
form

y(t) =
n−1

∑
N=0

bN

N!

(

ln
t

a

)N

+
1

Γ (r)

∫ t

a

(

ln
t

s

)r−1

[e(s)+ f (s,x(s))]
ds

s
. (2)

2 Asymptotic behavior of equation (1.1) with y(t) = x(k)(t)

We begin this section with two lemmas required to prove our results in this case.

Lemma 1.[21] Let β , γ , and p be positive constants such that

p(β − 1)+ 1> 0 and p(γ − 1)+ 1> 0.

Then
∫ t

a

(

ln
t

s

)p(β−1)(

ln
s

a

)p(γ−1) ds

s
= B

(

ln
t

a

)θ

, t > a > 0, (3)

where

B := B [p(γ − 1)+ 1, p(β − 1)+ 1], B[ξ ,η ] =

∫ 1

0
sξ−1(1− s)η−1ds,

ξ > 0, η > 0, and θ = p(β + γ − 2)+ 1.
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Lemma 2.[22] If X and Y are nonnegative and 0 < λ < 1, then

Xλ − (1−λ )Yλ −λ XYλ−1 ≤ 0, (4)

with equality holding if and only if X = Y .

We now give sufficient conditions whereby which any nonoscillatory solution x of (1) satisfies

|x(t)|

tk
= O

(

(

ln
t

a

)n−1
)

as t → ∞,

where k is a positive integer.

Theorem 1.Let conditions (ii) and (iii) hold and assume that there exist p > 1, r > 0, q = p
p−1

and γ = (n− r)+ 1
q

such

that

p(r− 1)+ 1 > 0 and p(γ − 1)+ 1> 0. (5)

In addition, assume that there is a continuous function m : [a,∞)→ (0,∞) such that

lim
t→∞

(

ln
t

a

)1−n ∫ t

a

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
ds

s
< ∞, (6)

∫ ∞

a

(

ln
s

a

)(n−1)q
skqmq(s)ds < ∞, (7)

and

lim
t→∞

(

ln
t

a

)1−n∫ t

a

(

ln
t

s

)r−1

|e(s)|
ds

s
< ∞. (8)

If x(t) is a nonoscillatory solution of (1), then

limsup
t→∞

(

ln
t

a

)1−n |x(t)|

tk
< ∞,

where k is a positive integer.

Proof.Let x(t) be a nonoscillatory solution of equation (1); say x(t) > 0 for t ≥ t1 for some t1 ≥ a. Since equation (1) is
equivalent to equation (2), we see from (2) that there exists a constant M1 > 0 such that

x(k)(t)≤ M1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t

a

(

ln
t

s

)r−1

[e(s)+ f (s,x(s))]
ds

s
. (9)

Letting F(t) = e(t)+ f (t,x(t)), in view of (ii) and (iii), equation (9) can be written as

x(k)(t) ≤ M1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t1

a

(

ln
t

s

)r−1

|F(s)|
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1

|e(s)|
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1 [

h(s)xλ (s)−m(s)x(s)
] ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
. (10)

Applying Lemma 2 with

X = h1/λ (s)x(s) and Y =

(

1

λ
m(s)h−1/λ (s)

)1/(λ−1)

,

we obtain

h(s)xλ (s)−m(s)x(s)≤ (1−λ )λ λ/(1−λ )mλ/(λ−1)(s)h1/(1−λ )(s). (11)
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Using (11) in (10) yields

x(k)(t) ≤ M1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t1

a

(

ln
t

s

)r−1

|F(s)|
ds

s

+
1

Γ (r)

t
∫

t1

(

ln
t

s

)r−1

|e(s)|
ds

s

+
(1−λ )λ λ/(1−λ )

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
. (12)

In view of (6) and (8), inequality (12) takes the form

x(k)(t)≤ M2

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
:= w(t), (13)

for some constant M2 > 0 and all t ≥ t2 for t2 ≥ t1 sufficiently large. Integrating (13) from t1 to t consecutively k-times
and noting that w(t) is an increasing function, we see that

x(t)≤ M3tk−1 + tkw(t), (14)

for some constant M3 > 0 and t ≥ t3 for some t3 ≥ t2. From the definition of w(t), inequality (14) yields

x(t)

tk
≤

M3

t
+w(t)

=
M3

t
+M2

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s

or
(

ln
t

a

)1−n x(t)

tk
:= z(t)

≤ 1+M+

(

ln t
a

)1−n

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
, (15)

for some constant M > 0 and t ≥ t4 for some t4 ≥ t3.
If we apply Lemma 3 and Hölder’s inequality, we obtain

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s

≤

(

∫ t

t1

(

ln
t

s

)p(r−1)(

ln
s

a

)p(γ−1) ds

s

)1/p(∫ t

t1

mq(s)xq(s)ds

)1/q

≤

(

∫ t

a

(

ln
t

s

)p(r−1)(

ln
s

a

)p(γ−1) ds

s

)1/p(∫ t

t1

mq(s)xq(s)ds

)1/q

=

(

B
(

ln
t

a

)θ
)1/p(∫ t

t1

mq(s)xq(s)ds

)1/q

, (16)

where B := B [p(γ − 1)+ 1, p(r− 1)+ 1] and θ = p(r+ γ − 2)+ 1. Since γ = (n− r)+ 1
q
, inequality (16) becomes

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
≤ B1/p

(

ln
t

a

)n−1
(

∫ t

t1

mq(s)xq(s)ds

)1/q

. (17)

From (15) and (17) we observe that

z(t)≤ 1+M+
B1/p

Γ (r)

(

∫ t

t1

(

ln
s

a

)(n−1)q
skqmq(s)zq(s)ds

)1/q

. (18)
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Applying the inequality

(x+ y)q ≤ 2q−1(xq + yq), for x, y ≥ 0 and q ≥ 1, (19)

to (18) gives

zq(t)≤ 2q−1(1+M)q + 2q−1

(

B1/p

Γ (r)

)q
∫ t

t1

(

ln
s

a

)(n−1)q
skqmq(s)zq(s)ds.

If we set P = 2q−1(1+M)q, Q = 2q−1
(

B1/p/Γ (r)
)q

, and u(t) = zq(t), i.e, z(t) = u1/q(t), the above-mentioned inequality
becomes

u(t)≤ P+Q

∫ t

t1

(

ln
s

a

)(n−1)q
skqmq(s)u(s)ds

for t ≥ t4. Now condition (7) and Gronwall’s inequality imply that u(t) is bounded. Thus, z(t) is bounded and

limsup
t→∞

(

ln
t

a

)1−n x(t)

tk
< ∞.

The proof in the case where x(t) is eventually negative is similar.

Similar to the sublinear case, we present the following interesting result in which we do not need condition (6) in
Theorem 1.

Theorem 2.Let λ = 1 and the hypotheses of Theorem 1 except for (6) hold with m(t) = h(t). Then the conclusion of
Theorem 1 holds.

Proof.Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0 for t ≥ t1 for some t1 ≥ a. Since equation (1) is
equivalent to equation (2), we likewise attain (9) as in the proof of Theorem 1. Letting F(t) = e(t)+ f (t,x(t)), in view of
(iii) with h(t) = m(t), equation (9) can be written as

x(k)(t) ≤ M1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t1

a

(

ln
t

s

)r−1

|F(s)|
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1

|e(s)|
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
. (20)

In view of (8), inequality (20) takes the form

x(k)(t)≤ D
(

ln
t

a

)n−1

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)x(s)
ds

s
:= w1(t), (21)

for some constant D > 0 and t ≥ t2 for some t2 ≥ t1. The rest of the proof is similar to that of Theorem 1 and is omitted.

3 Asymptotic behavior of equation (1.1) with y(t) =
(

c(t)(x′(t))µ)′

In this case, we give sufficient conditions whereby any nonoscillatory solution x of equation (1) satisfies

(

|x(t)|

R(t)

)µ

= O

(

(

ln
t

a

)n−1
)

as t → ∞,

where

R(t) =

∫ t

a

(

s

c(s)

)1/µ

ds,

and we assume that

R(t)→ ∞ as t → ∞. (22)

To obtain our results in this section, we adopt the following lemma.
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Lemma 3.[Young’s inequality] Let X and Y be nonnegative, u > 1, and 1
u
+ 1

v
= 1. Then

XY ≤
1

u
Xu +

1

v
Y v, (23)

where equality holds if and only if Y = Xu−1.

Theorem 3.Let conditions (i)–(iii) and (22) hold and assume that there exist p > 1, r > 0, q = p
p−1

, and γ = (n− r)+ 1
q

such that (5) holds. In addition, assume there is a continuous function m : [a,∞)→ (0,∞) with

lim
t→∞

(

ln
t

a

)1−n ∫ t

a

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m
λ/(λ−µ)

(s)h
µ/(µ−λ)

(s)
ds

s
< ∞, (24)

∫ ∞

a

(

ln
s

a

)(n−1)q
Rµq(s)mq(s)ds < ∞, (25)

and condition (8) holds. If x(t) is a nonoscillatory solution of equation (1),

limsup
t→∞

(

ln
t

a

)1−n
(

|x(t)|

R(t)

)µ

< ∞.

Proof.Let x(t) be a nonoscillatory solution of (1), say x(t) > 0 for t ≥ t1 for some t1 ≥ a. Since (1) is equivalent to (2),
from (2) we see that there exists N1 > 0 such that

(

c(t)
(

x′(t)
)µ
)′

≤ N1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t

a

(

ln
t

s

)r−1

[e(s)+ f (s,x(s))]
ds

s
. (26)

Once more let F(t) = e(t)+ f (t,x(t)). In view of (i)–(iii), similar to (10), inequality (26) can be written as

(

c(t)
(

x′(t)
)µ
)′

≤ N1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t1

a

(

ln
t

s

)r−1

|F(s)|
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1

|e(s)|
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1 [

h(s)xλ (s)−m(s)xµ(s)
] ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s
. (27)

Applying Lemma 3 with

u =
µ

λ
> 1, X = xλ (t), Y =

λ

µ

h(t)

m(t)
, v =

µ

µ −λ
,

we see that

h(t)xλ (t)−m(t)xµ(t)≤
µ −λ

λ

(

λ

µ

)µ/(µ−λ)

hµ/(µ−λ )(t)mλ/(λ−µ)(t). (28)

Using (28) in (27) gives

(

c(t)
(

x′(t)
)µ
)′

≤ N1

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t1

a

(

ln
t

s

)r−1

|F(s)|
ds

s

+
1

Γ (r)

t
∫

t1

(

ln
t

s

)r−1

|e(s)|
ds

s

+
µ −λ

λ

(

λ

µ

)µ/(µ−λ)

1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

hµ/(µ−λ )(s)mλ/(λ−µ)(s)
ds

s

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s
. (29)
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In view of (8) and (24), inequality (29) has the form

(

c(t)
(

x′(t)
)µ
)′

≤ N2

(

ln
t

a

)n−1

+
1

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s
:= ψ(t), (30)

for some constant N2 > 0 and t ≥ t2 for some t2 ≥ t1. Integrating (30) from t1 to t ≥ t2 and adopting the fact that ψ(t) is
an increasing function, we obtain

c(t)
(

x′(t)
)µ

≤ c(t1)
(

x′(t1)
)µ

+
∫ t

t1

ψ(s)ds ≤ N3 + tψ(t), (31)

where N3 = c(t1) |x
′(t1)|

µ
.

Thus, there exist a constant N4 > 1 and t3 ≥ t2 such that

c(t)
(

x′(t)
)µ

≤ N4tψ(t). (32)

for t ≥ t3. From (32), we have

x′(t)≤ N
1/µ
4

(

t

c(t)

)1/µ

ψ1/µ(t).

Integrating the last inequality from t1 to t ≥ t3 and adopting the fact that ψ(t) is an increasing function, we see that

x(t) ≤ x(t1)+N
1/µ
4 R(t)ψ1/µ(t)

≤

[

x(t1)

R(t)
+N

1/µ
4 ψ1/µ(t)

]

R(t)

≤

[

x(t1)

R(t1)
+N

1/µ
4 ψ1/µ(t)

]

R(t),

or
x(t)

R(t)
≤ N5 +N6ψ1/µ(t), (33)

for some positive constants N5 and N6.

Applying inequality (19) to (33), we obtain

(

x(t)

R(t)

)µ

≤ 2µ−1N
µ
5 + 2µ−1N

µ
6 ψ(t) = d1 + d2ψ(t), (34)

where d1 = 2µ−1N
µ
5 and d2 = 2µ−1N

µ
6 . From (30) and (34), we obtain

(

x(t)

R(t)

)µ

≤ d1 + d2ψ(t)

= d1 + d2N2

(

ln
t

a

)n−1

+
d2

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s
,

or

(

ln
t

a

)1−n
(

x(t)

R(t)

)µ

:= z(t)≤

1+N+
d2

(

ln t
a

)1−n

Γ (r)

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s
(35)

for some constant N > 0 and t ≥ t3.
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An application of Hölder’s inequality and Lemma 3 shows that
∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s

≤

(

∫ t

t1

(

ln
t

s

)p(r−1)(

ln
s

a

)p(γ−1) ds

s

)1/p(∫ t

t1

mq(s)xµq(s)ds

)1/q

≤

(

∫ t

a

(

ln
t

s

)p(r−1)(

ln
s

a

)p(γ−1) ds

s

)1/p(∫ t

t1

mq(s)xµq(s)ds

)1/q

=

(

B
(

ln
t

a

)θ
)1/p(∫ t

t1

mq(s)xµq(s)ds

)1/q

, (36)

where B := B [p(γ − 1)+ 1, p(r− 1)+ 1] and θ = p(r+ γ −2)+1. Presently, γ = (n− r)+ 1
q
, so inequality (36) becomes

∫ t

t1

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m(s)xµ(s)
ds

s
≤ B1/p

(

ln
t

a

)n−1
(

∫ t

t1

mq(s)xµq(s)ds

)1/q

. (37)

It follows from (35) and (37) that

z(t)≤ 1+N+
d2B1/p

Γ (r)

(

∫ t

t1

(

ln
s

a

)(n−1)q
Rµqmq(s)zq(s)ds

)1/q

. (38)

Applying inequality (19) to (38), we see that

zq(t)≤ 2q−1(1+N)q + 2q−1

(

d2B1/p

Γ (r)

)q
∫ t

t1

(

ln
s

a

)(n−1)q
Rµq(s)mq(s)zq(s)ds.

With P= 2q−1(1+N)q, Q= 2q−1
(

d2B1/p

Γ (r)

)q

, and u(t)= zq(t), i.e., z(t) = u1/q(t), the above-mentioned inequality becomes

u(t)≤ P+Q





t
∫

t1

(

ln
s

a

)(n−1)q
Rµq(s)mq(s)u(s)ds



 .

According to Gronwall’s inequality and (25), we see that u(t) is bounded. Thus,

limsup
t→∞

(

ln
t

a

)1−n
(

x(t)

R(t)

)µ

< ∞.

The proof in case x(t) is eventually negative is similar.

Similar to the sublinear case, we can obtain the following result in which we do not need condition (24).

Theorem 4.Let λ = µ = 1 and the conditions of Theorem 3 except for (24) hold with m(t) = h(t). Then the conclusion of
Theorem 3 holds.

Proof.The proof is similar to that of Theorem 2. Thus, we omit the details.

Finally, we give an example illustrating Theorem 1.

Example 1.Consider the equation

C,H
D

1/2
e y(t) =

1

t

(

ln
t

e

)γ−1

+
(

ln
t

e

)γ−1

h(t) |x(t)|λ−1
x(t), (39)

with 0 < λ < 1. Here we have a = e, f (t,x(t)) =
(

ln t
e

)γ−1
h(t) |x(t)|λ−1

x(t), e(t) = 1
t

(

ln t
e

)γ−1
, and r = 1/2. Since

r = n+α − 1, α ∈ (0,1) and n ∈ Z
+, we have α = 1/2 and n = 1. Since n = 1, equation (39) with the initial value

δ Ny(a) = δ 0y(e) = y(e) = b0
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is equivalent to the equation (see (2))

y(t) = b0 +
1

Γ (r)

∫ t

e

(

ln
t

s

)r−1
[

1

s

(

ln
s

e

)γ−1

+
(

ln
s

e

)γ−1

h(s) |x(s)|λ−1
x(s)

]

ds

s
. (40)

Letting p = 3/2 > 1, we see that q = p/(p− 1) = 3, γ = n− r+ 1/q = 5/6, p(r− 1)+ 1 = 1/4 > 0, p(γ − 1)+ 1 =
3/4 > 0, and θ = p(r+ γ − 2)+ 1= 0.

With h(t) = m(t) = 1/t3, we have

∫ t

a

(

ln
t

s

)r−1(

ln
s

a

)γ−1

m
λ/(λ−1)

(s)h
1/(1−λ)

(s)
ds

s
=

∫ t

e

(

ln
t

s

)r−1(

ln
s

e

)γ−1

h(s)
ds

s

≤

(

∫ t

e

(

ln
t

s

)p(r−1)(

ln
s

e

)p(γ−1) ds

s

)1/p(∫ t

e
hq(s)ds

)1/q

=

(

B
(

ln
t

e

)θ
)2/3(∫ t

e

1

s9
ds

)1/3

= B2/3

(

∫ t

e

1

s9
ds

)1/3

< ∞ as t → ∞.

So condition (6) holds.
Since

(

ln
t

a

)1−n ∫ t

a

(

ln
t

s

)r−1

|e(s)|
ds

s
=
∫ t

e

(

ln
t

s

)r−1(

ln
s

e

)γ−1 1

s

ds

s

≤

(

∫ t

e

(

ln
t

s

)p(r−1)(

ln
s

e

)p(γ−1) ds

s

)1/p(∫ t

e

1

sq
ds

)1/q

=

(

B
(

ln
t

e

)θ
)2/3(∫ t

e

1

s3
ds

)1/3

= B2/3

(

∫ t

e

1

s3
ds

)1/3

< ∞ as t → ∞,

(8) is satisfied.
Finally, letting y(t) = x(k)(t) = x′′(t), we have k = 2. Thus, and so condition (7) becomes

∫ ∞

a

(

ln
s

a

)(n−1)q
skqmq(s)ds =

∫ ∞

e

s6

s9
ds =

∫ ∞

e

1

s3
ds < ∞.

That is, condition (7) holds. All conditions of Theorem 1 are satisfied, so every nonoscillatory solution x of equation (39)
satisfies

|x(t)|

t2
= O(1) as t → ∞.

To conclude, the results are presented in a high degree of generality. Accordingly, this approach can be used to obtain
analogous results for different choices of the form of the function y(t). It would also be of interest to study equation (1)
for f satisfying condition (iii) with λ > 1.
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