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1 Introduction, motivation and preliminaries

The application of differential equations for modeling in sciences is well known, so they are studied in many areas. The
functions that verify the equation and establish its solutions (for example [1,2,3]) are of crucial interest. In recent years,
several fractional calculus operators have been investigated and applied in various fields. The Mittag-Leffler function,
and some of its generalizations, play a similar role in many differential equations involving fractional derivatives, (see, for
example [4,5,6]). Due to the interest in the study of the behavior of different generalizations of the Mittag-Leffler function
in the analysis of a broader field of fractional differential equations, different relations of recurrence involving fractional
operators have been studied recently. They allow to establish recurrence relationships between different generalizations
of the Mittag-Leffler function (see for example [7,8,9]).

The present work is motivated by the interest in the study of Mittag-Leffler-type functions as solutions of fractional
differential equations, and the recurrence relationships that involve them.

This paper is structured as follows: In Section 1 we have compiled some basic fact. In Section 2 we introduce the
notion of linear sequential fractional differential equations with recurrence relationships associated with
Riemann-Liouville operator, and we develop a general theory for this differential equation. Finally, a direct method is
also introduced to solve the homogeneous and non-homogeneous case with constant coefficients, and explicit
expressions are obtained for the solutions in both cases.

1.1 Fractional operators

For development of this work we need to remember basic elements of fractional calculus as derivatives and integrals of
arbitrary orders. It is well known that there are several definitions of fractional derivative, but we will consider the called
Riemann-Liouville fractional derivative (see, for example [10,11,12]). The Riemann-Liouville fractional integral of order
o > 0 of a function f is defined by

(Igﬁrf)(x):l_,(la) ./:(x_tt)liadt,x>a, (1.1)
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where f(x) € Ly (a,b). If n = [a] + 1, the Riemann-Liouville fractional derivative of the function f(x), x € [a,b], is defined
by

o _ i n—a _ 1 i " 1)
(Da+ )(x)* (dx) (IaJr )(x)i F(l’l—a) (dx) /a (x_t)a,,hth' (12)
To ensure the existence of (1.2), it will be enough that
*f@) o]
/a oyt € AC(ab), (13)

while the condition above is verified if f(x) € ACl™ ([a,b]) . Moreover, if &, €R, § >0, & >0, then

(Pt -a) ") () = %(xa)ﬁal. (1.4)

The following Lemma, presented in [10], gives a rule for parametric derivation under the integral sign.

Lemma 1. Let 0 < o <1, f(x) and k(x) defined in |a,b] such that

£0) € Cllab]) and 1(x) = /0 % (x—1)dT € C'a,b). (1.5)
Then, if x € [a,b], we have
De. [ [ k- r)f(u)du] () = [ DY Ikt~ @) fx +a— widuc+ () lim LKC ). (16)

1.2 Mittag-Leffler type functions

The well known Mittag-Leffler function E,, g(x) is defined (see, for instance [10]) by the following series:

oo xj
Eug(x) =) ——— (x € C;Re(x),Re(B) >0), 1.7)
a8 (%) Z?)F(aﬁﬁ)( (), Re(B) > 0)
where I'(x) is the classical Gamma function. The a-Exponential Function is defined by
e{}f = xo’*]Ea’a (Ax%), (1.8)

with x € C\ {0}, Re(er) > 0,y A € C; which satisfies the properties:

(—;) [egx} :xo‘*"*lEa’a,n(lx“), (1.9)
X

J " Ax 1yonto—1pn+tl o

5 {ea} =nlx Eg'ania(Ax*), neN, A €C. (1.10)

The following Mittag-Leffler type function will be considered
Ax 1 a \" Ax on+oa—1gpn+l o
¢an="1\ 37 [ea} =x Eg anta(AXY). (1.11)
where x € C\ {0}, Re(a) > 0,4 € C, and n € Ny. In particular, when n = 0, we obtain from (1.11): eg“fo = ¢A¥. We can
easily see from (1.11) that
2jo o 2j+ha

A i 2j X ~ A i 2j+1 %
Re [ea“fn} =Y (=1)/c¥ 27 e’;jfnm and Jm {ea’fn} Y (—1)Jc2H! WEZX,HZHL (1.12)
j=0 ' j=0 '

=
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withx >0y A =b+ic (b,c € R). In [13], Prabhakar introduces the Mittag-Leffler type function

o jx,
2:: Flaj+ BT (1.13)

with o, B, y € C; Re(a), Re(B) > 0, and x € C; where (7); is the Pochhammer symbol (see, for example [10]) and
verifies E&‘p = Ey . The following formula is obtained from (1.4):

(D2‘+ (t—a)P By p[Alt— a)”]) () = (=) PE, 4o A(x—a)¥] (1.14)
with A € C, a, 8, € R*. In particular, under certain restrictions, by mean (1.14), it can prove that
(Dg;eﬁ(’ “)) (x) = Aeht), (1.15)
when o > 0,y A € C (see, [10]). Moreover, the a-Exponential Function satisfies the property
lim, (11 aghli= “)) (x) =1, (a>0). (1.16)

1.3 Linear differential equation of fractional order
In [10, Chapter 7], the theory of the linear sequential fractional differential equation develops. In this section we highlight
only some necessary aspects of the theory.

Definition 1. Let N € N. We will call Linear Sequential Fractional Differential Equation (LFDE) of order No. the
equation of the type

N
Y iy () = f(x) (a<x<b), (1.17)
k=0
where by (x) y f(x) are known functions, y'©) (x) = y(x), and y** = (Z*¢y(x)) (x) (k= 1,2,...,N) represents a fractional

sequential derivative introduced by Miller and Ross in [5]:
Do =Dgy (0<a <),
gk = g% gk~ (1.18)

where DY is a fractional derivative, for example, the Riemann-Liouville fractional derivative: DY, = DZ,.
A Sequential Fractional Differential Equation of order No. is given by the following expression

F (x,y(),(2%) (x),(2°%) (x),.... (2¥%) (%)) = f (), (1.19)
with & >0, F(x,y1,y2,...,yn) and f(x) are known functions (see [10]).
Let by(x) # 0, Vx € [a,b]; the equation (1.17) can be written in the following normalized form:

Lia ()] (¥) = (Z2%) () + z o) (Z4%5) () = 1), (1.20)
Definition 2. A fundamental set of solution to the equation [Lyg(y)](x) = f(x) in some interval V C [a,b] is a set of N

linearly independent functions in V, which are solutions to the equation.

Proposition 1. If {u;(x) }IJY:1 is a fundamental set of solutions to the equation [Ly ()] (x) = 0 in some interval V C (a,b],
then the general solution to this differential equation is given by

N
= chuk(x), (1.21)
k=1

with {c }y_, arbitrary constants.
Proposition 2. The set of solutions to [Lyg(y)] (x) =0, in some V C (a,b), is a vector space of dimension N.
Proposition 3. Ify,(x) is a particular solution to [Lng (y)] (x) = f(x), then a general solution to this equation is

Ye(x) = yn(x) +yp(x), (1.22)

where yy(x) is the general solution to associated homogeneous equation, [Lyg ()] (x) = 0.
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1.3.1 Solution of linear sequential differential equations with constant coefficients

Now, we address at the following equation
[Laa()] (x) = (Z2) () + zaN i (Z27%) 0 =0, (1.23)

N—1 . . . .
where {a J'}j:o are real constants. Let us mention an important property of the a-Exponential Function:

[LNa (eﬁf’*“’)} (x) = Py(A)ert) (1.24)

where N
PN(A) = )yN—l— ZaN,jﬂ,Nij. (1.25)

j=1

is the characteristic polynomial associated with the equation [Ly¢ (y)](x) = 0.

Lemma 2. [fA € C is a root of the characteristic polynomial (1.25), then

a‘)l [Lna ()| () = [LNa (%eﬁf"”)] (). (1.26)
and Y e .
377¢ eq” (x—a)mea% 9, (1.27)
Proposition 4. If A, is a root of multiplicity £ of the caracteristic polinomial (1.25), then the functions {y17 i(x) }?:701:
() = (x—a)/ e, (1.28)
whit ell (x—a) , defined by (1.11), are solutions of the equation [Lyg(y)](x) =0.

Corollary 1. Let {),j}]y:] be M different roots of multiplicity {fj}jyzl of the characteristic polynomial (1.25). Then, the
functions

M (-1
U{ a)yi et a)} / (1.29)

j=0
are linearly independent solutions of the equations (1.23).

Proposition 5. [f A; and A (M =b+ic ¢ # 0) are two solutions of multiplicity ¢y of the characteristic polynomial
(1.25), then the functions

. -1 . l1—1
hnd o2 . bl nd .2l b
{.Zo(l)j &) (xia)(21+k)aea(;c+§)j and 2*6(71)] T (x — ) ith+Da, a()lcc+§)j+l (1.30)
= ' k=0 j= ' k=0
determine 2/ real linearly independent solutions of the equation [Lyq(y)](x) = 0.

Remark. Taking into account (1.12), (1.30) can be written, as follows:

- e i b(x—a A (x—a
Y (—1)Jm(x—a)(zﬁk)aea(ykﬂ)j = Re {(x— a)kaea{,(( )} , (1.31)
J=0 )
and .
- ;o b(x—a ~ A (x—a
Zo(fl)lm(xia)(ZPrkJrl)a a(k+2)j+l Jm [(xfa)kae‘Ogl’]E )i| . (1.32)
j=
© 2021 NSP
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Corollary 2. Let {lm,lm} , A = by +icy (¢ # 0), be all different pairs of complex conjugate solutions of

m=1
multiplicity {Gm},’;:l of the characteristic polynomial (1.25) for the fractional differential equation (1.23). Then, the

functions
p p

U {9% [(x— a)kaeé”"éka)} }6’"71 and U {jm {(x— a)kaeé"”k(xfa)} }Gmil (1.33)

m=1 k=0 m=1 k=0

form a linearly independent set of solutions to the equations (1.23).

Theorem 1. Let {lj}ljc.:l be all real different roots of the characteristic polynomial (1.25) of multiplicity {Kj}l;zl, and
let {rj,r_j}f:] (rj=Dbj+icj ) be the set of all distinct pairs of complex conjugate roots of (1.25) of multiplicity {Gj}f:l
such that Zl;':l i+ 225’:1 0 = N. Then, the functions

LkJ {(x— a)fo‘ei’f‘j(xfa)}jm*l ; LPJ {9% {(x— a)kae;’c'f,gxia)} }Gmil and LPJ {3m {(x—a)kaeg’flgxia)} }::;l (1.34)

m=1 =1 m=1 k=1 m=1

form a fundamental set of solutions of the differential equation (1.23).

1.3.2 Solution of Linear Sequential Differential Equations in the Non-Homogeneous Case.

Proposition 6. Let f(x) € Li(a,b) NC[(a,b)]. Then, the LFDE

(22y) (x) = Ay(x) = f(x) (x > a), (1.35)
has the general solution
Ye(®) = ceb ™ 4y, (), (1.36)
where
yplx) = (63’ *“f) (x) (1.37)

is a particular solution to (1.35), being ' the convolution:
X
(g%°f) () :/ g(x— )£ (1)dr. (1.38)
a
In addition, if f(x) is continuous in [a,b), then y,(a+) = 0; while if f(x) € €1-q([a,b]), then (I;J:ay,,) (a+)=0.
Theorem 2. Let {lj}ljc.:l be the k different complex roots of multiplicity {Gj}l;:1 of the characteristic polynomial (1.25)
for the following non-homogeneous LFDE:
k o
Lva(W))) = ( [T (D& —2)7y | () = f(x) (x> a). (1.39)
j=1
Then the particular solution to (1.39) is given by:
yp(x) = (Ga** fo) (x) (1.40)

where
k oj
Ga(x) =" (H*“ea""“’) (x). (1.41)

Furthermore, if f(x) € €1_q([a,b)), then (I, %)) (a+) =0, while y,(a+) = 0 when f(x) is continuous [a,b]. Moreover;
(I):%Gg) (a+) =0.
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2 General theory for sequential linear fractional differential equations with recurrence
relationship

In this section our main results are proved.

Definition 3. Let N € Nand 0 < o < 1. We will call Linear Sequential Fractional Differential Equations with Recurrence
Relationship (LFDERR) of order No. to an equation of the type:

Ruve (i (1)) (¥) = (2 m) (x +ZaN] (287 %) () = fule) (n€No,x>a) @)

where DX is defined by (1.18), {aj(x)}y;ol are real functions defined in (a,b] C R, a9 # 0, and fy(x) € C((a,b)), for
each n € Ny. When f,, = 0 the equation (2.1) we will call Homogeneous LFDERR (LFDERRH) asociated with (2.1):

%nyn + Z aN— j ( Nia )’rz+j) ( ) =0. (2.2)
If ag,ay,...,an—1 are constants, the equation (2.1) will be called equation to constant coefficients:

(Z02) (x +ZaN (28 %1) @) = £l @3)

and its corresponding homogeneous equation will be:
(2V%,) (x) + ZaN ,( y,,ﬂ) (x) = 0. (2.4)

A Sequential Fractional Differential Equation with recurrence relationship of order N is given by the following

expression
F [n,x,l—ENy,,(x)7 (@O‘EN*'yn) (x), (@ZO‘ENfzy”) (x), .., (@N“yn) (x)] = fulx), 2.5)
with & >0, F(x,y1,y2,...,yn) and f(x) are known functions, and EX is the Shift Operator (See, for example, [14]).

The equation (2.1) represents a recurrence relationship between the sequential derivative up to order N and the
consecutive terms of the sequence of functions (y,(x));_,. Thus, solve the equation is to find y,(x).

In the development of this paper we will limit ourselves to work with sequential derivative (1.18), considering the
Riemann-Liouville fractional derivative.

It will be denoted with AN%(a, b) the set of functions that admit sequential derivatives ZX%, 1 <k <N, in (a,b).

Definition 4. The solution of the LEDERR will be given by the sequence of functions (y,(x))y_, which verified (2.1).
Now, we define Initial Values Problem (IVP).
Definition 5.
Ry (yn(1))5ol () = falx) (n € No, x> a)

y1(x) = c1(x) (2.6)

where ¢i(x), ... ,cn(x) are known function.

Theorem 3. The IVP (2.6), with co(x),c1(x), ...cy—1(x) € A%*(a,b), and (fu(x))5_, € [A=%(a,b)]N, admits unique
solution. Also, the solution to (2.6) will be given by the sequence (y,(x))y_,, such that

yo(x) = co(x)
yi(x) = ci(x)
: @2.7)
yN-1(x) = en—1(x)
) = H{=2Y% @) —an 1 2 e vy (@) = — a1 Dy 1 () + fa0)} if n >N

@© 2021 NSP
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Proof. To obtain the solution, a forward iteration is performed from the known functions. From (2.3) we obtain:

1 _
Inen(®) = (=70 n(x) - ay—1 281 (0) = = @ DE vt () + () (2.8)

The functions y,(x), wiht p > N, can be obtained by recurrence using the initial conditions:

3230
yi(x)=c1(x
2.9)
yN-1(x) = en—1(x)
in (2.8). The uniqueness of the solution results from the construction. In addition, from (2.8), we obtain:
1 _
y(x) = a—o{—.@évfco(x) —aN,].@éli l)acl (x) = . —a1 D en—1(x) + fo(x)}
1 _
() = A=) —ay 1 70 e l) - —a 2o + i)
1 “1
wim(x) = 2= Dm0 —an 1 2 st () = @ D e v () + )},
(2.10)
where m € N. Therefore, if we call n = N +m, for n > N results:
1 _
3n(3) = A= Tl ynen(x) — ay- I 1 () = = a1 D yua (x) + fuw (@)} @.11)

Definition 6. We will call fundamental set of solutions of the equation (2.3) to a set of N linearly independent functions,
in some interval V C (a,b), which are solutions to this equation.

Theorem 4. Let { (v (x))rr_o, (A (%) )55 -, (VN (X)) } € [~ (a,b)]" be, a fundamental set of solutions to equation
(2.4), then for each x € (a,b), the Casoratian' |Wq(yh(x),%(x), ..., ¥} (x))| # 0.

Proof. 1f there exist some xg € (a,b) such that

[Wo(yh(x0),¥%(x0), -, ¥ (x0))| = 05 (2.12)

then the following system, with variables cy, c»,..., cN:

c1yy(xo) +  c2yp(xo)

ciyj(x0) + cayilxo) + -

2.13)
c1yy_1(x0) + cayy_y (x0) + -+ + enyy_; (x0) = 0.

It has infinite solutions: In particular, there exist c(l), cg,..., c,?, real constants, not all zero, that solve the system (2.13), and
with these values we can define a sequence of functions: (z,(x));_,, where x € (a,b), such that

N
Zn(x) = Z K (). (2.14)
k=1

I Where [Wo i (x), 7 (%), e, N (2))] = [Wiy (01 (), 2 (%), ..., ¥4 (x))| with ng = O (see, for exaple [14]).

@© 2021 NSP
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By definition z,(x) is a solution of (2.3):

(@,’;’f (chy,, ))@Hiw ]< (chynﬂ )) (x) (2.15)
j=1
+

(@nyﬁ( )) (x icg i an—j (@ﬂij)aylfwj(t)) (x)
(

[Ryva(2n(1))n=0] (%)

I
["Jz
?v‘O

~
Il
—_

k j=1

I
M=
Ky

)
(Z55550) )+ L av-s (20775%,,0) <x>]

j=1

=~
Il

=

Il
M=

o [Rva (3%(0) | (x) =0, (2.16)

n=0

~
Il
—_

since ( }l(x)):;o sy (ynN(x)):ZO verify (2.4).
Rewriting the system (2.13), and taking into account (2.14) such that:

z0(x0) = z1(x0) = ... = zny—1(%0) =0, (2.17)

so from (2.16) and (2.17), we have to verify an initial values problem like the following:

z21(x) = di(x) (2.18)

where do(x), dy(x), ..., dy_1(x) € A**(a,b), such that:
d()(xO) =d (xo) =..= del(xO) =0. (2.19)

On the other hand, the sequence zero, i.e. (w,(x));_, such that w, (x) = 0 for all x € (a,b), verify trivially (2.18); but from
Theorem 3, the problem (2.18) admits a unique solution, i.e.:

(2n(x))nz0 = (Wa(x))n=0- (2.20)
Then, for which n € Ny:

Z VK (x) = za(x) = wa(x) = 0. (2.21)

Finally, we found a null combination, not trivial, of y} (x), y2(x), ..., ¥} (x). Hence, (y4(x))2_q, V2 (x))ogs - (V) (%))
are lineally dependent.

Theorem 5. Let G = {(yh(x))7_q, 03 (X))igs -, ON (X))5r_g } C [4~%(a, b)Y be. If there exists xo € (a,b) such that the
Casoratian

[Wo(yh(x0),¥2(x0), -, ¥ (x0))[ # O, (2.22)

then the set G is linearly independent.

Proof. Let xg € (a,b) be such that:
[Wo (v (x0),¥7(x0), - v (x0))| # 0. (2.23)

Let x € (a,b). We propose the following linear combination:

cly,I, (x)+ czy,zl (x)+...+ chﬁ/ (x)=0, (2.24)

@© 2021 NSP
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where n € Ny. Also, we can obtain the following system of equations, where ¢y, ¢3,..., ¢y are unknown constants:

c1yp(x0) + cayplxo) + -+ enyy(x0) =0
ciyj(x0) + cayi(xo) + -+ enyi(x0) =0
. . _ . . (2.25)

c1yy_1(Xo) + cayy_; (x0) + -+ + enyy_ (x0) =0

Since the determinant of the matrix of this homogeneous system is nonzero, i.e. [Wo(y(x0),(x0), ...,y (x0))] # 0, it
admits a unique solution, the trivial: ¢; = ¢y = ... = ¢y = 0. Thus, the unique linear combination possible to (2.24) is the

trivial; then (y}(x))" ..., () (x)) _, are linear independent.

Now we consider the family of functions
A —
y(x) = 7'eq™ ", (neN, y#0). (2.26)

If we replace y"eﬁy(x’“) in the left hand of (2.3):

R (1) ] )= V’{[%Nf‘ ()] @+ Fane [t 2] <x>}
7/'{ ),x a) +ZGN kaN ]e (x— a)}
Jj=

— ylehm9) {AN n Z (an—jy') AN~ } . (2.27)

=

Definition 7. We called characteristic y-polynomial associated with (2.3) is the expression that is between brace (2.27),
and we will write:

N
Pyy(A) = Z an—jy') AN (2.28)

Remark. Since ag # 0 and y # 0, from the definition, the roots of (2.28) are nonzero.

Theorem 6. If A is a root of the characteristic polynomial (2.28), then the succession (}/’ezy(k@) o is solution to the
equation (2.4). "~

Proof. Taking into account (2.27), the proof is completed.

Lemma 3. Let {(y4 (x))::()}szl C [A=%(a,b)|" be a fundamental set of solutions to equation (2.4). Then, any solution
(Yn(x))5_ to the equation (2.4), in (a,b), can be written, as follows:

N
x) =) ahx) (2.29)
k=1

where cy, ¢y, ... ,cN are arbitrary constants.
Proof. Letx € (a,b). From Theorem 4, we have

[Wo (yh (x), 53 (x), . 3% (x)) ] # . (2.30)
On the other hand, let (y,(x));"_, be any solution to (2.4) and we suppose:

yo(x) = do(x)

yilx)  =di(x)
. 2.31)

o1 (x) = dy—1 (%),

@© 2021 NSP
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From (2.31) we have that the system

~—

f\f tcjyo(x) = d()(x
Z] 1C]yl(x) =d; (x

~—

(2.32)
27:,- CJ'Y{\L] (x) = dy-1(x),
admits a unique solution, where x € (a,b). Then, there is a unique (c{,c},...,c},) that verifies (2.32). Let’s define
N
Z Syn(x (2.33)
Therefore, by (2.32), the sequence (wx(x)):_, verifies the following initial conditions
wo Exg =dy Ex)
wi(x =d(x)
. (2.34)
wy—1(x) = dy_1(x).
where x € (a,b). Finally, taking into account Theorem 3, the result is, as follow:
yn = Wn Z Ckyn (2.35)

Definition 8. We will denote E?V (a,b) the set of solutions to equation (2.4), x € (a,b), with the operations vector addition,
“+7, and scalar multiplication “-”, defined as follows:

()0 + O ()0 = (i +32) ()50 (2.36)

d (v (¥))n=o0 = ((dyi)(x))i=o; (2.37)
whenever (yh(x))_, (vi(x)):_y € ES(a,b), and d is a scalar.

Theorem 7. Any linear combination of solutions to the homogeneous equation (2.2), is also solution of the equation (2.2).

Proof. If {(y,, (x))::o}kle are a set of M solutions to (2.2), and ¢y, ¢y, ..., ¢y are arbitrary constants, then

M )
RNO!( kyn ) ] chyn + ZaN j l@éi P chyrH»] )] (‘x)
k=1 n=0.

TRV 1) }<x>+;aN, ch[ 0] @)

~
Il
—_

I Il |
M= M~
o )
= =
,_/H r—|

(72t )] 0+ zaN] ) [0k 0) <x>}

=~
Il

I
Ms
o
:u

/\

) 0} (x) = 0. (2.38)

~
Il
—_

Corollary 3. For {(y’;,(x));"zo}iil C [A=%(a,b)], we have

Ry (f‘l ek (t)) wj f [RW (y,, )io] (x), (2.39)

where [Ryq (4 (t)):zo} (x) is given in Definition 3.
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Theorem 8. The set H = EY(a,b) N[A~%(a,b)]" is a vector space of N dimensions.

Proof. 1t is clear that (0)7_, € H, so H# 0. Let (yy(x))._. (yA(x)),_, € H, and . € C. From Corollary 3, we know
that:

Rvo [1 (7 ()50 + 1 (53(6))5—0] = MRwa [(Vh(x))5_o] + uRNa [V (x));—o] = 0. (2.40)

Finally, taking into account Lemma 3, the thesis is concluded.

Theorem 9. Let (yn(x));_ be a particular solution (2.3) and let (yi(x));_ be a solution to (2.4). Then, any solution
(yn(x));_ to (2.3) can be written as follows:

(X))o = (4 y1) (X)) g - (2.41)

Proof. The thesis results from applying Corollary 3.

Corollary 4. Let (y,(x));_ be a solution to the equation (2.1). Then, for all ny € N, (yng+n(X))5r_ is also a solution of
2.1).

Proof. The thesis is shown verifying (2.1).

In the following Lemma we will establish a relationship between the roots of the polynomial Py(A), defined in (1.25),
with the roots of the polynomial Py y(A) defined in (2.28).

Lemma 4. If A, is a root of the polynomial Py(A.), then YA is a root of the polynomial Py y(A). Moreover, if Ay is a root
of multiplicity £ of Py(A), then YA, is a root of multiplicity £ of Py y(A).

Proof. Taking into account (1.25) and (2.28) we can write:

N N
Pyy(YA) = Z an—;¥') (YA)N T = (yA)N Z an— Y ) AN =YV Py(2 (2.42)
=1 =1

Then Py y(yA1) = ¥V Py(A
From (2.42), we have that

d*P, dP,
e () =g (), 0<k<t. (2.43)

On the other hand, since A, is a root of multiplicity ¢ of Py(A), we know that

dPy _d"'py

d‘p
T ()vl) =T ()vl) 0 and Tl (3,1)7é (2.44)

Py(A) =

Finally, applying (2.43) and (2.44), we obtain:

dPy, d d'P
Puy(vh) = = (h) = ... = gy (ha) =0 and =5 (yAr) 0, (2.45)

i.e., YA is a root of multiplicity ¢ of Py 4(A).
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2.1 Solution of the homogeneous LFDERR via e’.}cx

Lemma 3 asserts that the problem to obtaining a general solution to the Homogeneous LFDERR can be reduced to finding
N linearly independent solutions. In what follows we will show how, in different cases, we can obtain N — 1 solutions
from the first and such that the N solutions form a fundamental set of solutions.

It is possible to find a fundamental set of solutions of the equation (2.4) using the well known function, a-Exponential,
(1.8). The solution will be given by the potential function y* multiplied by the function ef;x.

Proposition 7. If A is a root of the characteristic polynomial (1.25), with multiplicity £1; then

{647 (x)):zo}i;] C E(a,b)N[A"(a,b)]", (2.46)

with ‘ -
Y (x) = Y — a) e T, (2.47)

where eﬁ{ﬁxia) is given by (1.11), and y # 0.

Proof. Since A, is a root of multiplicity ¢; of Py(A); from Property 4, it results that YA, is a root of multiplicity ¢; of
Py y(A), i.e. (2.45) is valid.
Let 0 < j < /1 — 1. Therefore, taking into account Lemma 2 and proceeding as in (2.27), we obtain:

(o) Jo), -
~{[rae (v i) o} -
{[@évf <V?am > } g‘aN 6{ “ <W+6;}j’ “ “>) (X)”Am
) {Vl% <{@£’f( g ) } iama?’o [@ﬂ”)aeé(l%)} (x))} =
= | A=Ay
B { y % [PN!V(MEQ‘(X@}};LMY' (2.48)

Finally, applying the Leibniz rule in (2.48), we obtain:

(e (o) o, = B () (S w), o e

=0

since (2.45) is valid; i.e. (y”(x — a)j“eﬁ'}(xfa))w = EY (a,b). Moreover, proceeding as in(2.1):

n=

—a a] a ‘ .X {,Z X—a
(227 =@Vl ) (1) = 7 T (708 ) (1) = p AV T < AV —ap S, @0y

SO,

(y"(x—a)ja A “’) Jela=@p)". 2.51)
, e
Corollary 5. Let {lj}];i be M different roots of multiplicity {K } | respectively, of the characteristic polynomial

(1.25). Then, the sequence of functions
U )T V! 252
U {(y,, (x))nzo}j:O (2.52)

k=

—_

where

) = 7 (e e, 239
v # 0, they form a fundamental set of solutions to the equation (2.4).
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Proof. We will prove the M = 2 case. Let {A1,A,} be two distinct roots of Py(A), where A; has multiplicity ¢;, and A,
has multiplicity £,, with ¢1 4+ ¢, = N. Then, from Lemma 4, we know that yA; and YA, are roots of multiplicity £; y £5,
respectively, of Py y(A). By Proposition 7, we know that

{(rearear=) Y U{(re—aredy=)” 1) s

represents a set of solutions to the equation (2.4).
On the other hand, from Corollary 1, and Lemma 4, we know that the functions

. 01—1 lfH—1
{(xf a)meil}/(x*a)} ,1 U {(x— a)i%e 33’(16 a)} '2 (2.55)
’ Jj=0 j=0
are linearly independent. Hence the functions
Y £—1 Y l—1
{)/’(x—a)m alj/(x a)}j:() U{yn(xia)m a23’(x a)}j:() (2.56)

also form a linearly independent set, with n € Ny. Then, we can construct the £; 4+ ¢, sequences of (2.54), where their
general terms are the functions in (2.56). Then, it has been verified that (2.54) is a fundamental set of solutions of (2.4).

Corollary 6. If A and A(A=b+ic c = 0) are two complex solutions of multiplicity {, of the characteristic polynomial
(1.25), then the sequences of functions

((roefi-arme ) U (rm oY e

j=0 j=0
y # 0, form a subset of 2( sequences linearly independent belonging to ES(a,b) N [A~%(a, b)]N.
Proof. By Corollary 5, we know that
{(f}/’(xfa)jaelﬂJC*a))m }[]7] U {(;y"l(x a)](x M’(x a))oo }6171 (258)
. n=0J j=0 n=0J j=0

is a set of solution of (2.4).
On the other hand, for each n € Ny, we can write:

i AY(x—a 1 i Ay(x—a 1 Av(x—a
Re {y"(xfg)mga?/} )} :EW(xfa)meay} )JrE(yn(x a)jae 7( ))

-~ —)/'(x aye, = 4 - )/'(x a)ieelre=e), (2.59)

then, for each 0 < j < ¢; — 1, from Theorem 8, the sequence

()/’Eﬁe [(x - a)f“e%x*“)} )m € E(a,b) N[A~%(a,)]". (2.60)

n=0

Analogously, we can prove that

(V’Jm [(x—a)f“ A ‘”Dni € EY(a,0)N[A"%(a,b)]" 2.61)

Finally, from Proposition 5, we know that:

((roefi-arme U rmfeom )Y e

Jj=0 Jj=0

is a linearly independent set.
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Corollary 7. Let {rj;r_j}p be (rj = bj+icj) the set of conjugate complex roots of Py(A) with multiplicity {Gj}le,
respectively, such that 22” | 0j = N, then the sequences of functions
P . 0o o;—1 oo o —1
A NN VI (Ce AT W W
kL:Jl {(yoe |y @—ayeei™]) o U yam |y - ) F (2.63)
form a fundamental set of solution to equation (2.4).

Proof. The proof is similar to that of Corollary 6.

Theorem 10. Let {),j}]y:] be roots of Py(A), with multiplicity {fj}jyzl respectively, and let {rj;r_j}p be(ri=bj+icj)
the set of pairs conjugate complex roots of Py(A) with multiplicity {Gj }f , respectively, such that Z i 4+ 22 _10j=
N, then the sequence of functions

G {(y”(xfa)m Ary(x— a)) }Zj*‘ ) on
k=1 Cous n=0Jj=0 "’
rere—a)]\° 1 %!
kL:Jl { (7”9% [y” f )} )nzo}j:() (2.65)
and
rey(x—a) 1\ ox—1
kUI { (V’Jm [y" i )} )n:O}j:() (2.66)

v # 0, they form a fundamental set of solutions to (2.4).

Proof. The proof of Theorem follows immediately from the Corollaries 5 and 7.

Example 1. We will consider the following LFDERR:

(Z2%yn) (x) = ynia(x) =0. 2.67)
We have that P, (1) = (A —1)(A +1); from Corollary 5, the equation (2.67) has the following fundamental set of solutions:

{(V’ " ) (V’ea e ) 70} (2.68)

To verify that statement is sufficient to take y,(x) = }/”eﬁ *=4) ; and from (1.15), we obtain:
|:‘@240»C (,}/Iey'(t*a))} ()C) o ,}/H»Zeyv(x*a) — ,)/H»ZAZeyv(xfa) _ ,)/H»Zeyv(x*a) =0 (2 69)
a ) N

A(x—a)

if A =1or A =—1.From Corollary 1 (when ¢; = ¢, = 1 and M = 2), we know that the functions e —Aa—a)

and ey are
linearly independent. Hence, we obtain the sequences of functions (y"eé(x*a)) and (y"e;y(x*a)) o that are linearly
_ e

=0
independent. In addition, we can see in (2.69) that both sequences verify the eqﬁation (2.67).

Example 2. Now, we will consider the following LFDERR:

(@(ff%) (x) -2 (@ngYnJrl) (x) +Yn+2(x) =0. (2.70)
From Corollary 5, this equation has the following fundamental set of solutions
[ref=)" 5 (ra-ae™)" 1, @71)
n=0’ ’ n=0

since P»(1) = (A —1)?,i.e. A is aroot of multiplicity 2. Proceeding analogously to the previous example, it can be verified
that the sequences in (2.71) solve (2.70).
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Example 3. Given the following EDFLSRR:

(22%yn) (x) + VZyni2(x) =0, (v>0), 2.72)

we have that the characteristic polynomial associated with this equation P, y(4) = (2 —ivy)(A +ivy); while P,(1) =
(A —iv)(A +iv). Then, according to Corollary 6, we can obtain the fundamental set of solutions

{(V’fﬁe[ Vi )D (Wm[ VYl @D:ZO} 01

2.2 Solution to the nonhomogeneous LFDERR

For this section, we will consider the affirmation of Theorem 9.

Lemma 5. Let f,,(x) € A**(a,b) be, for each n € Ny. A solution to the LEDERR of order a.:

agynr1(x) = (28 yn) (x) = fu(x) (n>1) (2.74)

is given by the sequence (yn(x))_,, with

n=1’

Zaof"( gln—i-he f,)() (2.75)
Proof. It results by verification: merely replacing (2.75) in (2.74):

(2 yn) (x) — agyni1 (x) =
[9;1 (Zaof (7 @ )] —aozaof () W =
_ Zaoj n( f]) {Zaol n(@éz’r ) f/) (x)—l—f,,(x.)}:—f,,(x). (2.76)

Theorem 11. Let f,(x) € A*(a,b), n € Ny. A solution to the LFDERR of order o,

aoynr1(x) = (2 yn) (x) = fu(x) (n € No) 2.77)
is given by (yu(x))5_o, with
yn(x) _ { *Zn(x) +Z:l;é a()jin (‘@(1 =he f) ( ) lf n > 1 (278)
_ZO( ) lf n= 7
where (z,(x)),_ is a solution to the Homogeneous LFDERR of first order
(@ +Zn) ( ) Cl()Zn+1(X) =0. (2.79)
Proof. Letn=0be:
yi(x) = —z1(x) +ag ' fo(x) (2.80)

Since (zx(x)),_ is solution of (2.79), the result is

a1(x) = ay " (24 20) (). (2.81)
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Replacing (2.81) in (2.80), we have:

Y1) =—ay"' (2%20) (x) +ay ' folx) =ag" (28y0) (x) +ag ' fo(x),

i.e.

apy1(x) — (2% y0) (x) = fo(x).

Now, let n > 1 be:

V1 (¥) = ~Zg (x +Zao (o
Since (zx(x));._ is a solution of (2.79), we obtain the following:

1 (x) =a” 1-@+Zn( )-

Replacing (2.85 ) in (2.84), we have:
Y1 (1) = —ay " (D zn) (x) + Z ( )aff) (x) =

= _a(;l ( a+Z”

= aol [ a+Zn x)+ Z ao ( yj:j)afj) (x)

;) ().

Z (2 ) (x)+a0'fn(x)] _

Jraalfn(x) =

=a,' 2% [— +Zao ( aij Ve f/)()

Therefore, applying (2.78) in (2.86):

i1 (x) = ag " (Zgyn) (6) +ag ' fu(x),

ie.,

apyns1(x) — (-@ngYn) (x) = fulx)

is valid.

Corollary 8. Let f,(x) € A%*°(a,b), n € Ny, andlet y+# 0. A solution of (2.77) is given by

(yn (%)), With

o a()?’x a) n—1 _ j—n ,("*J‘*l)a . . >1
yn(x):{ FEp e (2 ) W =,

. ezo?’(x a)

Proof. From Proposition 7, we know that, (z,(x)),_,, where

2n(x) =710 (x) = 7' (x — a) 0% 7

is solution of
(9 +Zn)( ) — aoZny1(x) =

Then, from Theorem 11, the proof is completed.

if n=0.

— )/leaOY(x*a) ,

0.

(x) + aalfn (x).

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)
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Proposition 8. Let f,,(x) = Y fo(x), where fo € Li(a,b) NC(a,b), and y # 0. Then, the equation

(22 yn) (x) = Ayny1(x) = fu(x) (n € No, x> a) (2.92)
admits as a solution (y,(x)),_,, where
yn(x) = cj/’eﬁx + ¥ (x) (2.93)
with
) = Vee! 5 f(x) (2.94)
where (yﬁ (x)):;o is a particular solution of (2.92), c is an arbitrary constant, and x® represents the convolution:

(g4 ) = [ glx—1)f(e)dr. 2.95)

a

Proof. From Proposition 7, since A is a root of the characteristic polynomial associated with the equation

(2 yn) (%) = Aynya(x) =0, (2.96)

YA (x—a)

we know that (Y’e is a solution of (2.96). Then, from Theorem 9, it is enough to verify that (y; (x));_, solves

(2.92). To prove that (y,(x));_, is solution of (2.92), applying Lemma 1 and taking into account (1.16), we obtain:

(Z258) () = 28 |1'e" + £0)] (x) = &, [ /atwé““)ﬂr)dr] (x) =
7 [{ 287} @ Ty £ lim {17957} () =

=1
e /:egﬂf*@f(k T+a)dt+y f(x) = A [V’“eyr *“f(T)} () +7'flx) =
A0V, @97)

Theorem 12. Let fy € Li(a,b) NC(a,b), fu(x) = V' fo(x) and y # 0. Then, a particular solution of (2.3):
Ry (yn)n=ol(x) = fu(x) (n € No, x> a), (2.98)

is given by (Y, (x))5_, with
Yn(x) =7 (Ga,y ¥ fo) (x) (2.99)

with

Gas () V’H <H i “’) (2.100)

k=1
where {lj}]]lil are the M distinct roots of multiplicity {Ek}z/lzl of the characteristic polynomial (1.25), respectively, i.e.:
Py(A) = (A = A1) (A —A2) 2. (A — Ay)™, (2.101)
and i+l + ...+ Ly =N.

Proof. Assuming the existence of y(x) such that, for each n € Ny, we can write

Yn(x) = 7'y(x); (2.102)
and replacing (2.102) in (2.98), and taking into account that f,(x) = ¥ fo(x), it results

(Z27'y) () + Z a; (28777 0y) () = 7" fol): (2.103)
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Thus,
fo(X)=J/V{(9$’f7 y) +Zaj( Joyi-N )(x)}:
w{[< yige )"y +za][ (r19) "7y m}

=7 { (r o)+ Zl a; (v @a‘i)‘””}y(x) -
=
=V {By (v 28) }y(x) = YTy (Y 9 )y =
—_ ,)/1+€2+...+€M (’}/71@5?4» o )L])El (,}/71‘@;6+ o )LZ)ZZ (')/71.@;1 B AM)EMy()C) _
— (28 =) (P2 = Y22) " . (D2 — yA) ™ y(x) =

M Z
( (22, - y) (x). (2.104)
Jj=1

Then, from Theorem 2, we conclude:

_ M x4 < xa Ajy(t—a) a
y(x) H H o “fo | (x). (2.105)

From (2.102) and (2.105), the thesis is obtained.

The following result establishes a relationship between the LFDERR and the LFDE.

Theorem 13. Let y(x) be a solution to the Homogeneous LFDERR (1.23). Then, a solution of (2.2) is given by (y(x))r_,
with y,(x) = y(x), n € No. Moreover,
[Ruver(yn(1))nz0] (%) = [Lver(9)] (x)- (2.106)

Proof. The proof is evident.

3 Reduction of the LFDERR to a recurrence relationship
Let us consider the following sequence of functions:
(X))o = (Zne)&fa):zov 3.D

where (z,,);"zo is a numerical sequence. From (2.4) we obtain:
- v (N-j)a
[RNO! (Zne)(;gia)n:()] (x) (@évan . a )C) + Z an—j (@(hL / Zn+jel(;a) ()C) =
=1

N N
Not 1 — (N=j)a t— - -
(205 ) (x) + E aN— jZn+j (@H ey ) (x) =zl “ + E aN—jZn+j€y ¢ =
J=1 Jj=1

N
= (Z” + Z asz,,ﬂ') e)&ia. (3.2)
=1

Then, from (3.2), the succession of functions (3.1) solve (2.4) and must be (zn):zo a solution of the recurrence equation:

N
Zn+ Z an—jzntj = 0. (3.3)
=1
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If we call by = aal and by_; = aN,jaal, foreach 1 < j <N — 1, from (3.3), we obtain the following Linear Difference
Equation’:

Zn+N +D1ZpyN-1 + -+ DN 1Znp1 T DNZ =0 34
Accordingly, we show the following Lemma.

Lemma 6. If (z,)_ is a solution to (3.3), then (z,eg ), is a solution to (2.4).

On the other hand, we know that if {4, }
characteristic polynomial

are M different roots of multiplicity {¢; } respectively, of the

i—1° i—1°

N
Py(A)=2"+Y ay_;A", (3.5)

j=1

M n AN l—1
SV 6
k=1 J n=0J j=0

is a fundamental set of solutions of (3.3), and since e}, ¢ is independent of n, fromm Lemma 6, the following theorem is
proved.

Theorem 14.If { A; }

associated with (3.3), then,

are M different roots of multiplicity {E } respectively, of (3.5). Then,

i=1’

M " , N
OL(0) ),
k=1 J n=0/ j=0

j=r

is a fundamental set of solutions (2.4).

Example 4. We will compare the solutions of an LFDE and a linear difference equation of first order, in the following
sense

(22 yn) (x) + aoyns1(x) = 7" fo(x), (3.8)
with x € (a,b), and a xp € (a,b):
Yn(X0) + aoyn+1(x0) = 7" fo(xo).- (3.9)
The above mentioned example can be written, as follows:
(—ao)yns1(x) — (@ +yn)( ) =—7"fo(x) (3.10)
and
Yat1(x0) = (—ag )yalx0) = a~ "' fo(xo)- 3.11)
In (3.10) and (3.11), we will call y = —ay 'y fo(x) = €5
Y 1 (0) = (Ziivm) (1) = —¥'eg (3.12)
and
Yt1(%0) = Pyalxo) = =y le . (3.13)

The equation (3.12) is of the type stated in (2.77), while (3.13) is an Linear Difference Equation of first order (see, for
example [14]). From Corollary 8 we know that the solution to (3.12) is given by (y,(x));_, where

X—a n—1 J (v X—a
() = —Y'ey, Z}* }/” (ye ) if n>1, (3.14)
—el if n=0.
Then, if we fix x = xo and yo(x0) = —€¢ “ in (3.14), we obtain
o) = 4 730G T Ty (e ) =1, 6.15)
yo(X()) if n=0.

We know (see, for instance [14]) that (y,(xo));_, represents a solution to (3.13), under the initial condition

yo(xo) = —eg “.

2 Also called recurrence equation (see, for example [14])
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Example 5. We will analyze the following initial values problem:

(.@gfyn) (x) + (-@&L)’Hl) (X) = Vng2(x) =
yo(x) :g (3.16)
yl(x) = jv

where n € Ny, x € (0,400). The equation

(@gg))n) (x) + (@g+yn+l) (x) _yn+2(x) =0 (3.17)
is a LFDERRH of order 2, and its associated characteristic polynomial is P»(1) = A%+ 4 — 1, whose roots are
M= f% and A, = 7%. By Corollary 5 it is known that, if y # 0, the sequences

Aryx “ Aryx ®
(V’ea ) and (y"ea ) (3.18)
n=0 n=0
are two linearly independent solutions of the equation (3.17). In particular,
((—Az)”e;lllz)‘)w and ((_M)ne&mlx)“’ (3.19)
n= n=0
also form (see Theorem 14) a fundamental set of solutions of (3.17). Since A;A, = —1, the solutions in (3.19) can be
written as
((—22)"eq),—o and ((—A1)"eq),—o- (3.20)

In addition, according to Lemma 3, the solution (y,(x));_, of the equation (3.17) may be written as:
yn(x) =A(=A2)"eg, + B(—A1)"eg, = [A(—A)" + B(—A1)"] €, (3.21)

where x € (0,4), A and B arbitrary constants. By the initial conditions, we have

=(A+B)e, =0
{yo(x) (A+B)eg 3.22)

Vi (x) = [A(~A2)+B(—Ay)] el = %,

€

-1
ieeA=—-B= (\/5 e(lx) . Therefore, it follows that the solution to the IVP (3.16) is given by (y,(x));_, with

o 13\ (1=vE\"] .
y"(x)_l\@e}x< 3 ) _\@e}x< 5 )1% (3.23)
where x € (0, +o0).

Finally, it can be seen in (3.23) that the conditions yo(1) = 0 and y; (1) = 1 are verified, then we have

Fo=vya(1) = \% <#> —% <¥> (3.24)

that is the general expression of the well-known Fibonacci sequence :

Fipo=FK+F4 ,n>2
Fo=0 (3.25)
F=1.
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4 Conclusion

It was possible to define and prove a new type of equation. In different cases, it was shown that it was possible to solve
these equations by means of the a-Exponential Function. Moreover, it was possible to establish relationships between
LFDE and RE through this solution, rethink about the already known problems, and study them using LFDE or RE.
Furthermore, we obtained a “theoretical interpolation” between the theories already known, from the point of view of the
LFDERR.
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