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Abstract: The main purpose of the paper is to investigate the classical and Bayesian estimation for the unknown parameters of the

Weibull-exponential distribution (WED) based on Adaptive Type-II progressive censoring (A-II-PRO-C). Maximum likelihood (ML),

percentile bootstrap and Bayes methods are used to estimate the unknown parameters of WED. Moreover, the approximate confidence

intervals (ACIs) and asymptotic variance-covariance matrix have been obtained. Markov Chain Monte Carlo (MCMC) technique is

applied to estimate the unknown parameters of WED. The Metropolis–Hastings algorithm is the MCMC method that’s to generate

samples from the posterior density functions. An example is applied to different estimation methods. Finally, a Monte Carlo simulation

study is carried out to compare the performance of the different methods.
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1 Introduction

The WED is a distribution generated from the Weibull G-family of distributions by considering baseline distribution is
the exponential distribution. For more details about WED and its properties see Bourguignon et al. [2] and Oguntunde et
al. [13]. If a random variable X has a WED, with probability density function (pdf) and cumulative distribution function
(cdf), respectively given by

f (x) = αγβ eγx (eγx − 1)β−1
e−α(eγx−1)β

,x > 0;α,γ,β > 0, (1)

and

F (x) = 1− e−α(eγx−1)β

,x > 0;α,γ,β > 0, (2)

where β is the shape parameter , α and γ are the scale parameters. Also, according to Oguntunde et al. [13], the WED is
useful as a life-testing model for data indicating unimodal failure rates and it is more flexible than the exponential
distribution. The most common censoring schemes are the conventional Type-I censoring, where the experiment is
terminated at a prefixed time T , and the conventional Type- II censoring, where the experiment is terminated after the
prefixed failure r occurs. But, failure may not occur until time T or the experiment alot of time after failure r occurs. So,
Balakrishnan and Sandhu [1] introduced a more general type of censoring scheme called a progressive Type-II censoring
(PRO-II-C). It can be described as follows: suppose that n independent and identical units are put on the life test. When
the first and second failure occur at time x1,R1 and/or x2,R2 , respectively, the surviving units are randomly selected and
withdrawn from the test. The test is continued until the (m− 1)th failure occurs at time xm−1,Rm−1, and the surviving
units are randomly selected and withdrawn from the test. This test is terminated when the m th failure occurs at time xm

and the remaining surviving units Rm = n−m− (R1 +R2 + ...+Rm−1) are all withdrawn from the test. The disadvantage
of PRO-II-C scheme is that the effective sample size m is random and it may be a very small number (even equal to
zero), so that usual statistical inference procedures may not be applicable or may be have low efficiency. Therefore, Ng et
al.[12] suggested an A-II-PRO-C scheme in which the effective sample size m is fixed in advance and the progressive
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censoring scheme (R1,R2, ...,Rm) is allow to depend on the failure times. For more details about A-II-PRO-C scheme,
readers may refer to Ng et al. [12] and Cramer and Iliopoulos [3]. Many authors have discussed inference under an
A-II-PRO-C for different lifetime distributions, see, for example, Mahmoud et al. [10] who estimated the generalized
Pareto under an A-II-PRO-C, EL-Sagheer et al. [6] discussed statistical inferences for new Weibull-Pareto distribution
under an A-II-PRO-C data and Sobhi and Soliman [14] discussed the problem of estimating parameters of the
exponentiated Weibull distribution with A-II-PRO-C schemes. The rest of this paper is organized as follow: Section 2
gives a description of an A-II-PRO-C scheme. Section 3 presents the likelihood inference and information matrix used to
estimate the unknown parameters under consideration and the confidence intervals for each parameter. Section 4
introduces a parametric percentile bootstrap procedures to construct the boot CIs for the unknown parameters. Section 5
deals with the Bayesian estimation computed by using MCMC technique. A numerical example is developed to explain
the theoretical results in Section 6. Monte Carlo simulation results of different estimation methods are presented in
Section 7. The conclusion is reported in Section 8.

2 Adaptive Type-II Progressive Censoring

A mixture of Type-I censoring and Type-II progressive censoring schemes, called an A-II-PRO-C scheme. It can be
described as follows: Suppose that n independent units are placed in the life test simultaneously at the initial time t0 = 0
and let X1,X2, ...,Xn be their corresponding lifetimes. suppose a time T , which is an ideal total test time, but we may allow
the experiment to run over time T . If the mth progressively censored observed failure occurs before time T (i.e. Xm:m:n < T ),
we will have a usual PRO-II-C with the prefixed progressive censoring scheme (R1,R2, ...,Rm) and the experiment stops at
the time Xm:m:n. Otherwise, once the experimental time passes time T but the number of observed failures has not reached
m, then we adopt the number of units progressively and they are removed from the experiment upon failure by setting
RJ+1,RJ+2, ...,Rm−1 = 0 and Rm = n−m−∑J

i=1 Ri. Suppose J is the number of failures observed before time T , i.e.

XJ:m:n < T < XJ+1:m:n, J = 0,1, ...,m,

Thus the effectively applied scheme is R1,R2, ...,RJ,0,0, ...,0,Rm. This formula leads to terminate the experiment as soon
as possible if the (J + 1)th failure time is greater than T for J + 1 < m. An A-II-PRO-C can be reduced to well-known
types of censoring scheme as the following extreme cases:

1.If T −→ ∞, then A-II-PRO-C reduces to the PRO-II-C.
2.If T = 0, then A-II-PRO-C reduces to the Type-II censoring.

3 Maximum Likelihood Estimation

Let x1:m:n,x2:m:n, ...,xm:m:n be an A-II-PRO-C sample from WED(α,γ,β ), with censoring scheme R. Then the likelihood
function based on the A-II-PRO-C for given J = j is given by:

L(α,γ,β |J = j) = d j

m

∏
i=1

[ f (xi;m,n)]
j

∏
i=1

[1−F (xi;m,n)]
Ri × [1−F (xm;m,n)]

n−m−∑
j
i=1 Ri ,

where

d j =
m

∏
i=1

[

n− i+ 1−
max{i−1, j}

∑
k=1

Rk

]

.

From Equations (1)-(2), L(α,γ,β ) can be written as

L(α,γ,β |J = j) = d j

[

m

∏
i=1

αγβ eγxi (eγxi − 1)β−1
e−α(eγxi−1)β

]

×

[

j

∏
i=1

[

e−α(eγxi−1)β
]Ri

]

×
[

e−α(eγxm−1)β
]n−m−

j

∑
i=1

Ri

, (3)

where xi is used instead of xi:m:n.Then the log-likelihood function ℓ(α,γ,β ) can be written as

ℓ(α,γ,β ) ∝ m(logα + logγ + logβ )+ γ
m

∑
i=1

xi +(β − 1)
m

∑
i=1

log(eγxi − 1)

−α
m

∑
i=1

(eγxi − 1)β −α
j

∑
i=1

Ri(e
γxi − 1)β −α(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β , (4)
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Equating the partial derivatives of the log-likelihood function with respect to α,γ and β ,respectively, by zero, gives:

∂ℓ

∂α
=

m

α
−

m

∑
i=1

(eγxi − 1)β −
j

∑
i=1

Ri(e
γxi − 1)β − (n−m−

j

∑
i=1

Ri)(e
γxm − 1)β = 0, (5)

∂ℓ

∂γ
=

m

γ
+

m

∑
i=1

xi +(β − 1)
m

∑
i=1

xie
γxi

(eγxi − 1)
−αβ

m

∑
i=1

xie
γxi (eγxi − 1)β−1

−αβ
j

∑
i=1

Rixie
γxi(eγxi − 1)β−1−αβ xmeγxm(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β−1 = 0, (6)

and

∂ℓ

∂β
=

m

β
+

m

∑
i=1

log(eγxi − 1)−α
m

∑
i=1

(eγxi − 1)β
log(eγxi − 1)

−α
j

∑
i=1

Ri(e
γxi − 1)β log(eγxi − 1)−α(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β log(eγxm − 1) = 0. (7)

A system of equations in three unknowns variables α , γ and β is a system of nonlinear equations. The exact solution of
these nonlinear equations cannot be obtained in closed form. So, the Newton-Raphson iteration method must be used to
get approximate solution of the system of these nonlinear equations see, EL-Sagheer [5].

3.1 Approximate confidence intervals

In this section, the ACIs of the parameters α , γ and β are constructed based on the asymptotic variance–covariance
matrix for the MLE. The asymptotic variance–covariance matrix for the MLE can be obtained by using the inverse of the
asymptotic Fisher information matrix, as follows:

F−1 =









− ∂ 2ℓ
∂α2 − ∂ 2ℓ

∂α∂γ − ∂ 2ℓ
∂α∂β

− ∂ 2ℓ
∂γ∂α − ∂ 2ℓ

∂γ2 − ∂ 2ℓ
∂γ∂β

− ∂ 2ℓ
∂β ∂α − ∂ 2ℓ

∂β ∂γ − ∂ 2ℓ
∂β 2









−1

↓(α̂,γ̂,β̂ )

=





var(α̂) Cov(α̂, γ̂) Cov(α̂, β̂ )

Cov(γ̂, α̂) var(γ̂) Cov(γ̂, β̂ )

Cov(β̂ , α̂) Cov(β̂ , γ̂) var(β̂)



 , (8)

where the second partial derivatives of the log-likelihood function with respect to α,γ and β respectively, are obtained as

∂ 2ℓ

∂α2
=−

m

α2
, (9)

∂ 2ℓ

∂α∂γ
= −β

m

∑
i=1

xie
γxi
(eγxi − 1)β−1 −β

j

∑
i=1

Rixie
γxi(eγxi − 1)β−1

−β xmeγxm(n−m−
j

∑
i=1

Ri)(e
γxm − 1)β−1, (10)

∂ 2ℓ

∂α∂β
= −

m

∑
i=1

(eγxi − 1)β log(eγxi − 1)−
j

∑
i=1

Ri(e
γxi − 1)β log(eγxi − 1)

−(n−m−
j

∑
i=1

Ri)(e
γxm − 1)β log(eγxm − 1), (11)

∂ 2ℓ

∂γ2
= −

m

γ2
− (β − 1)

n1

∑
i=1

x2
i eγxi

(eγxi − 1)2
−αβ

m

∑
i=1

x2
i e

γxi
(eγxi − 1)β−2 ((eγxi − 1)+ (β − 1)e

γxi
)

−αβ
j

∑
i=1

Rix
2
i eγxi(eγxi − 1)β−2((eγxi − 1)+ (β − 1)e

γxi
)

−αβ x2
meγxm(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β−2((eγxm − 1)+ (β − 1)e

γxm
), (12)
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∂ 2ℓ

∂γ∂β
=

m

∑
i=1

xie
γxi

(eγxi − 1)
−α

m

∑
i=1

xie
γxi (eγxi − 1)β−1 (1+β log(eγxi − 1))

−α
j

∑
i=1

Rixie
γxi(eγxi − 1)β−1(1+β log(eγxi − 1))

−αxmeγxm(n−m−
j

∑
i=1

Ri)(e
γxm − 1)β−1(1+β log(eγxm − 1)). (13)

and

∂ 2ℓ

∂β 2
= −

m

β 2
−α

m

∑
i=1

(eγxi − 1)β
log(eγxi − 1)2 −α

j

∑
i=1

Ri(e
γxi − 1)β log(eγxi − 1)2

−α(n−m−
j

∑
i=1

Ri)(e
γxm − 1)β log(eγxm − 1)2

. (14)

Thus, (1− ζ )100% ACIs for the parameters α,γ and β , can be obtained by

(α̂L, α̂U ) = α̂ ± z ζ
2

√

var(α̂),

(γ̂L, γ̂U) = γ̂ ± z ζ
2

√

var(γ̂),

(β̂L, β̂U) = β̂ ± z ζ
2

√

var(β̂ ),

(15)

where z ζ
2

is the percentile of the standard normal distribution with right-tail probability
ζ
2

and var(α̂),var(γ̂),and var(β̂)

represent asymptotic variances of maximum likelihood estimates.

4 Bootstrap Confidence Intervals

In this section, we propose the confidence intervals of the parameters α , γ and β based on percentile bootstrap method
(Bootp) using the idea of Efron [4]. The algorithm for constructing the CIs using Bootp method is illustrated as follow:

(1)Based on A-II-PRO-C sample x = x1:m:n ≤ x2:m:n ≤ ·· · ≤ xm:m:n, compute the MLEs of the parameters α, γ and β say,

α̂ , γ̂ and β̂ .

(2)Use the point estimate α̂, γ̂ and β̂ to generate a bootstrap sample x∗ with the same values of Rm, i = 1,2, ...,m using
Balakrishnan and Sandhu [1] algorithm.

(3)Based on ordered bootstrap sample x∗, compute the bootstrap sample estimates α̂∗ ,γ∗ and β̂ ∗.

(4)Repeat the steps (2) and (3) B = 200 times and arrange all α̂∗ , γ̂∗ and β̂ ∗ in ascending order to obtain the bootstrap

sample
(

Ω
[1]
j ,Ω

[2]
j , ...,Ω

[B]
j

)

, j = 1,2,3. where Ω1 = α̂∗, Ω2 =, γ̂∗, Ω3 = β̂ ∗.

Let Φ(z) = P(Ω j ≤ z) be the cumulative distribution function of Ω j , j = 1,2,3. Then Ω jBootp = Φ−1(z) for given z.

The approximate bootstrap-p 100(1− ζ )% confidence interval of Ω j is given by

[

Ω jBootp(
ζ
2
) , Ω jBootp(1−

ζ
2
)
]

. (16)

5 Bayesian Estimation Using MCMC Technique

In this section, Bayesian estimates and their corresponding credible intervals of the unknown parameters α,γ and β are
obtained. An important sup-class of MCMC techniques are the Gibbs sampler which was introduced by Geman and
Geman [7], and the M-H algorithm developed by Metropolis et al.[11] and later extended by Hastings [9]. Gibbs sampler
is used to generate a sequence of samples from the full conditional probability distributions of two or more random
variables. Gibbs sampler requires decomposing the joint posterior distribution into full conditional distributions for each
parameter and then sampling from them. Let us assume the parameters α, γ and β , are independent and follow the gamma
prior distributions as

π (α) ∝ αa1−1e−αb1 , α > 0,

π (γ) ∝ γa2−1 e−γb2 , γ > 0,

π (β ) ∝ β a3−1 e−β b3 , β > 0,

(17)
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where a1,a2,a3,b1,b2 and b3 are the hyperparameters and they are non negative. Then, the joint prior of α, γ and β can
be written as

π (α,γ,β ) ∝ αa1−1 γa2−1 β a3−1 e−αb1−γb2−β b3 ,α > 0,γ > 0, β > 0. (18)

The joint posterior density function of α,γ and β denoted by π∗(α,γ,β |x) can be written as

π∗(α,γ,β |x) =
L(α,γ,β )×π (α,γ,β )

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,γ,β )×π (α,γ,β )dαdγdβ

. (19)

Using Equations (3) and (18) to substitute in Equation (19), then the joint posterior density function of α,γ and β is given
by

π∗(α,γ,β |x) = K−1αm+a1−1 γm+a2−1 β m+a3−1 e−αb1−γb2−β b3

×

[

m

∏
i=1

eγxi (eγxi − 1)β−1
e−α(eγxi−1)β

]

×

[

j

∏
i=1

[

e−α(eγxi−1)β
]Ri

]

×
[

e−α(eγxm−1)β
]n−m−

j

∑
i=1

Ri

, (20)

where K−1 is the normalizing constant, which is equal to

K−1 =

∫ ∞

0

∫ ∞

0

∫ ∞

0
αm+a1−1 γm+a2−1 β m+a3−1 e−αb1−γb2−β b3

×

[

m

∏
i=1

eγxi (eγxi − 1)β−1
e−α(eγxi−1)β

]

×

[

j

∏
i=1

[

e−α(eγxi−1)β
]Ri

]

×
[

e−α(eγxm−1)β
]n−m−

j

∑
i=1

Ri

dαdγdβ . (21)

Therefore, the Bayes estimate of any function of the parameters α,γ and β such as g(α,γ,β ) under squared error loss
function should be the posterior mean, i.e.

g(α,γ,β ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0 g(α,γ,β )×L(α,γ,β )×π (α,γ,β )dαdγdβ

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,γ,β )×π (α,γ,β )dαdγdβ

. (22)

The integrals given by Equation (22) cannot be obtained in explicit form, so the MCMC technique applied to obtain an
approximate value of this integrals and then the Bayes estimates of the parameters α,γ and β are computed, also their
credible intervals. From Equation (20) the conditional posterior densities of α,γ and β can be given respectively, as

π∗
1 (α|γ,β ,x) ∝ αm+a1−1

× exp[−α(b1 +
m

∑
i=1

(eγxi − 1)β +
j

∑
i=1

(eγxi − 1)β
Ri +(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β ], (23)

π∗
2 (γ|α,β ,x) ∝ γm+a2−1

m

∏
i=1

(eγxi − 1)β−1 × exp(γ
m

∑
i=1

xi)× exp(−γb2)

×exp[−α(
m

∑
i=1

(eγxi − 1)β +
j

∑
i=1

(eγxi − 1)β
Ri +(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β )], (24)

and

π∗
3 (β |α,γ,x) ∝ β m+a3−1 ×

m

∏
i=1

(eγxi − 1)β−1 × exp(−β b3)

×exp[−α(
m

∑
i=1

(eγxi − 1)β +
j

∑
i=1

(eγxi − 1)β
Ri +(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β )]. (25)
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It can be seen that, in Equation (23) there is a gamma density function with shape and scale parameters as m+ a1and

(b1 +∑m
i=1 (e

γxi − 1)β +∑
j
i=1 (e

γxi − 1)β
Ri +(n−m−∑

j
i=1 Ri)(e

γxm − 1)β ), respectively. Therefore, it is easy to generate
the samples of α by using gamma-generating routine. Furthermore, both of the full conditional posterior distributions for
γ and β can’t be reduced analytically to well-known distributions and it is difficult to sample directly by standard methods.
To solve this problem we apply a Metropolis – Hastings algorithm with Gibbs sampling scheme.

Now, the following steps illustrate the method of the Metropolis – Hastings algorithm with Gibbs sampling see [8] to
generate the posterior samples as suggested by Tierney [15] and in turn obtain the Bayes estimates and the corresponding
credible intervals

(1)Start with an
(

α(0) = α̂ , γ(0) = γ̂ and β (0) = β̂
)

.

(2)Put i = 1.
(3)Generate α(i) from

Gamma

[

m+ a1,b1 +
m

∑
i=1

(eγxi − 1)β +
j

∑
i=1

(eγxi − 1)β
Ri +(n−m−

j

∑
i=1

Ri)(e
γxm − 1)β

]

(4)Using the following Metropolis-Hastings method, generate γ(ι)and β (ι) from Equations (24) and (25) with the normal
suggested distribution

N(γ(ι−1),var (γ))and N(β (ι−1),var (β )), respectively,

Where var (γ) and var (β ) can be obtained from the main diagonal in asymptotic inverse Fisher information matrix
(8) .

i-Generate a proposal γ∗ from N(γ(ι−1),var (γ)) and β ∗ from N(β (ι−1),var (β )).
ii-Evaluate the acceptance probabilities fo γ and β

ργ = min

[

1,
π∗

2 (γ
∗|α(i),β (i−1),x)

π∗
2 (γ

(i−1)|α(i),β (i−1),x)

]

,

ρβ = min

[

1,
π∗

3 (β
∗|α(i),γ(i),x)

π∗
3 (β

(i−1)|α(i),γ(i),x)

]

,

iii-Generate u1and u2 from a Uniform (0,1) distribution.
iv-If u1 ≤ ργ accept the proposal and set γ(i) = γ∗,else set γ(i) = γ(i−1).

v-If u2 ≤ ρβ accept the proposal and set β (i) = β ∗,else set β (i) = β (i−1).

(5)Compute γ(ι) and β (ι).

(6)Put i = i+ 1.
(7)Repeat Steps (3− 6 )Q = 12000 times.

(8)Disregard the first M simulated varieties. Then the selected samples are α(i),β (i) and γ(i), ι = M + 1, ...,Q, for
sufficiently large Q forming an approximate posterior samples which can be used to obtain the Bayes MCMC point
estimates of α,γ and β as

α
MCMC

=
1

N −M

N

∑
i=M+1

α(i),

γ
MCMC

=
1

N −M

N

∑
i=M+1

γ(i),

β
MCMC

=
1

N −M

N

∑
i=M+1

β (i).

(9)To calculate the credible intervals (CRIs) of Ωk where Ω1 =α, Ω2 = γ and Ω3 = β ,we take the quantiles of the sample

as the endpoints of the intervals. Sort
{

Ω M+1
k ,Ω M+2

k , ...,Ω N
k

}

as
{

Ω
(1)
k ,Ω

(2)
k , ...,Ω

(N−M)
k

}

. Hence the 100 (1− ζ )%

credible interval (CRI) of Ωk is

[

Ω
k
(

(N−M)( ζ
2 )

) , Ω
k
(

(N−M)
(

1− ζ
2

))

]

.
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6 Illustrative Example

In this section, a simulation example is illustrated to evaluate the estimation procedures. In this example, by using the
algorithm described in Ng et al. [12]. It generates an A-II-PRO-C sample from the WED with parameters (α,γ,β )
= (0.1,1.5,2.5) and T = 0.7 by using censored scheme n = 30, m = 20 and
R = (1,0,0,1,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0,2). An A-II-PRO-C sample is

0.31414 0.39798 0.47821 0.51557 0.52206 0.68564 0.71601
0.72081 0.73082 0.77218 0.89375 0.89638 0.99134 0.77635
0.80277 0.81326 0.83696 0.86216 0.87204 0.88994

Based on an A-II-PRO-C sample, the point estimates of the parameters using ML, Bootp are presented in Table 1.
Based on the MCMC samples of size 25000 with 5000 as burn-in, the Bayes estimates relative to the informative prior
gamma functions of α,γ and β with hyperparameters ai = 0.2 and bi= 0.01 where i = 1,2,3 are presented in Table 1. The
corresponding 95% ACIs and PBCIs and also the 95% credible intervals (CRIs) of α,γ and β are reported in Table 2.

Table (1). Different point estimates for α,γ and β
Parameter (.)ML (.)Bootp

(.)MCMC

α 0.0782 0.0746 0.0702
γ 1.7547 2.0253 1.7792
β 2.2776 2.3503 2.2977

Table (2). 95% confidence intervals for α,γ and β
Parameter ACI PBCI CRI

α [-0.3434,0.4998] [0.0150,0.4586] [0.0431,0.1036]
Length 0.8432 0.4435 0.0604

γ [-1.2878,4.7972] [1.1681,2.9226] [1.7609,1.8094]
Length 6.0849 1.7544 0.0485

β [0.2616,4.2937] [1.4932,2.9458] [2.2870,2.3119]
Length 4.0321 1.4526 0.0249

7 Monte Carlo Simulation Study

In order to compare the different estimators of the parameters, we have simulated 1000 an A-II-PRO-C samples from
WED with the values of parameters (α,γ,β ) = (0.1,1.5,2.5) and different censoring schemes R for T = 0.8 and 0.9.
The samples are simulated by using the algorithm described in Ng et al. [12]. All computations are performed using
MATHEMATICA ver. 9. The performance of ML, Bootp and Bayes estimates with respect to the SEL function has been
considered in terms of their Average Estimates (AVG) and the Mean Squared Errors (MSEs), computed for θk , k = 1,2,3
and (θ1 = α,θ2 = γ,θ3 = β ), as

AVG(θ ) =
1

N

N

∑
i=1

θ̂
(i)
k and MSE(θ ) =

1

N

N

∑
i=1

(θ̂
(i)
k −θk)

2

where N = 1000 is the number of simulated samples. Also, the comparison between different estimation methods are
made in terms of the average CI Lengths (ACL) and Coverage Percentages (CP). For each simulated sample, we compute
95% CIs and check whether the true value lies within the interval and we record the length of the CI. The estimated
coverage percentage is computed as the number of CIs that covering the true values is divided by 1000. Three types of
Censoring Scheme (CS) are applied as following:

CS A :R1 = n−m, Ri = 0 for i 6= 1

CS B : R m
2
= R m

2 +1 =
n−m

2
, Ri = 0 for i 6= m

2
and i 6= m

2
+ 1

CS C : Rm = n−m, Ri = 0 for i 6= m.

Based on 1000 replications, the results of the AVG estimates and the MSEs are reported in Tables 3 and 4, while the
results of ACL and CP for all parameters are reported in Tables 5 and 6.
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Table (3). AVG and MSE of ML and Bayes estimates for the parameters with (α ,γ ,β ) = (0.1,1.5,2.5)
MLE Bootp MCMC

T (n,m) CS α γ β α γ β α γ β

0.8 (30,10) A
0.0916

(0.0062)
1.7027

(0.1909)
2.5969

(0.3297)
0.1233

(0.0078)
1.8556

(0.1770)
2.8740

(0.3111)
0.0937

(0.0065)
1.7042

(0.1915)
2.5939

(0.3320)

B
0.0992

(0.0066)
1.6435

(0.1406)
2.6790

(0.3691)
0.1310

(0.0080)
1.7445

(0.1276)
2.9200

(0.3342)
0.1010

(0.0068)
1.6440

(0.1409)
2.6774

(0.3697)

C
0.0965

(0.0055)
1.6297

(0.1192)
2.6998

(0.4497)
0.1568

(0.0078)
1.6511

(0.0827)
2.7930

(0.2201)
0.0985

(0.0057)
1.6297

(0.1194)
2.6987

(0.4500)

(50,10) A
0.0933

(0.0067)
1.7105

(0.1967)
2.5668

(0.3037)
0.1256

(0.0086)
1.8655

(0.1858)
2.8401

(0.2987)
0.0954

(0.0070)
1.7108

(0.1970)
2.5660

(0.3047)

B
0.0951

(0.0051)
1.6604

(0.1346)
2.6514

(0.3012)
0.1283

(0.0064)
1.7495

(0.1197)
2.9090

(0.3155)
0.0972

(0.0054)
1.6607

(0.1347)
2.6514

(0.3014)

C
0.1037

(0.0055)
1.6096

(0.1050)
2.6854

(0.4599)
0.1655

(0.0090)
1.6185

(0.0761)
2.7857

(0.2326)
0.1060

(0.0057)
1.6097

(0.1054)
2.6851

(0.4597)

(60,15) A
0.0993

(0.0087)
1.6742

(0.1810)
2.5863

(0.2877)
0.1262

(0.0096)
1.8517

(0.1756)
2.8950

(0.3467)
0.1008

(0.0081)
1.6750

(0.1814)
2.5854

(0.2878)

B
0.1077

(0.0082)
1.6159

(0.1281)
2.6313

(0.2661)
0.1298

(0.0090)
1.7302

(0.1180)
2.9692

(0.3969)
0.1095

(0.0085)
1.6159

(0.1283)
2.6313

(0.2664)

C
0.1126

(0.0078)
1.5687

(0.0901)
2.7048

(0.3932)
0.1762

(0.0122)
1.5643

(0.0605)
2.8051

(0.2435)
0.1144

(0.0081)
1.5690

(0.0903)
2.7046

(0.3933)

(60,20) A
0.0981

(0.0087)
1.6961

(0.1926)
2.5411

(0.2570)
0.1240

(0.0099)
1.8576

(0.1815)
2.903

(0.3536)
0.0992

(0.0089)
1.6962

(0.1927)
2.5412

(0.2573)

B
0.1051

(0.0079)
1.6182

(0.1260)
2.6115

(0.2278)
0.1171

(0.0079)
1.7496

(0.1284)
3.0026

(0.4246)
0.1064

(0.0082)
1.6185

(0.1263)
2.6112

(0.2280)

C
0.1142

(0.0096)
1.5719

(0.0916)
2.6682

(0.3318)
0.1782

(0.0136)
1.5644

(0.0631)
2.7809

(0.2382)
0.1156

(0.0099)
1.5720

(0.0917)
2.6679

(0.3314)

Table (4). AVG and MSE of ML and Bayes estimates for the parameters with (α ,γ ,β ) = (0.1,1.5,2.5)
MLE Bootp MCMC

T (n,m) CS α γ β α γ β α γ β

0.9 (30,10) A
0.0939

(0.0056)
1.6893

(0.1901)
2.5352

(0.3503)
0.1325

(0.0068)
1.7710

(0.1313)
2.7311

(0.2520)
0.0959

(0.0059)
1.6895

(0.1906)
2.5348

(0.3508)

B
0.0989

(0.0064)
1.6440

(0.1398)
2.6774

(0.3760)
0.1428

(0.0080)
1.7041

(0.1083)
2.8396

(0.2767)
0.1011

(0.0067)
1.6440

(0.1396)
2.6775

(0.3762)

C
0.0952

(0.0051)
1.6355

(0.1216)
2.7345

(0.4653)
0.1549

(0.0075)
1.6547

(0.0848)
2.8039

(0.2261)
0.0974

(0.0053)
1.6347

(0.1214)
2.7345

(0.4647)

(50,10) A
0.1018

(0.0073)
1.6622

(0.1853)
2.5583

(0.3175)
0.1398

(0.0087)
1.7575

(0.1306)
2.7399

(0.2410)
0.1041

(0.0077)
1.6631

(0.1861)
2.5571

(0.3182)

B
0.0992

(0.0056)
1.6488

(0.1401)
2.6462

(0.3260)
0.1440

(0.0076)
1.6992

(0.1028)
2.8277

(0.2685)
0.1014

(0.0059)
1.6488

(0.1403)
2.6456

(0.3265)

C
0.1081

(0.0062)
1.5806

(0.0860)
2.7445

(0.4751)
0.1695

(0.0103)
1.5952

(0.0657)
2.8204

(0.2393)
0.1104

(0.0065)
1.5801

(0.0861)
2.7445

(0.4747)

(60,15) A
0.1201

(0.0108)
1.6166

(0.1746)
2.4985

(0.2768)
0.1524

(0.0119)
1.7196

(0.1165)
2.7211

(0.2610)
0.1220

(0.0113)
1.6165

(0.1745)
2.4980

(0.2769)

B
0.1097

(0.0084)
1.6063

(0.1167)
2.5839

(0.2375)
0.1494

(0.0099)
1.6620

(0.0851)
2.8034

(0.2566)
0.1115

(0.0087)
1.6066

(0.1169)
2.5825

(0.2382)

C
0.1120

(0.0080)
1.5790

(0.0943)
2.7051

(0.3899)
0.1744

(0.0122)
1.5751

(0.0650)
2.8056

(0.2466)
0.1137

(0.0083)
1.5794

(0.0942)
2.7044

(0.3894)

(60,20) A
0.1214

(0.0114)
1.5962

(0.1571)
2.4845

(0.2242)
0.1473

(0.0111)
1.7032

(0.1057)
2.7562

(0.2700)
0.1229

(0.0118)
15970

(0.1572)
2.4829

(0.2251)

B
0.1185

(0.0106)
1.5871

(0.1224)
2.5599

(0.2300)
0.1523

(0.0114)
1.6474

(0.0864)
2.8047

(0.2781)
0.1198

(0.0110)
1.5874

(0.1225)
2.5596

(0.2303)

C
0.1240

(0.0120)
1.5476

(0.1025)
2.6743

(0.3333)
0.1858

(0.0163)
1.5397

(0.0678)
2.7836

(0.2366)
0.1255

(0.0124)
1.5476

(0.1024)
2.6742

(0.3327)
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Table (5). Comparisons of ACL and CP of 95% CIs for the parameters with (α ,γ ,β ) = (0.1,1.5,2.5)
MLE Bootp MCMC

T (n,m) CS α γ β α γ β α γ β

0.8 (30,10) A
2.4925

(0.9462)
12.4468

(0.9541)
11.0308

(0.9300)
0.6517

(0.9628)
1.7030

(0.9425)
2.0218

(0.9401)
0.1136

(0.9412)
0.0183

(0.9501)
0.0189

(0.9408)

B
2.5753

(0.9425)
11.6176

(0.9315)
9.7114

(0.9233)
0.6505

(0.9442)
1.5485

(0.9351)
2.0135

(0.9523)
0.1226

(0.9422)
0.0172

(0.9378)
0.0182

(0.9287)

C
3.5009

(0.9252)
15.3351

(0.9465)
10.4122

(0.9104)
0.7709

(0.9574)
1.6560

(0.9458)
2.2261

(0.9115)
0.1196

(0.9224)
0.0234

(0.9460)
0.0198

(0.9325)

(50,10) A
2.0406

(0.9465)
9.7570

(0.9507)
7.4489

(0.9501)
0.6480

(0.9458)
1.7105

(0.9600)
1.9890

(0.9625)
0.1158

(0.9524)
0.0151

(0.9500)
0.0140

(0.9201)

B
2.0482

(0.9431)
9.2230

(0.9452)
6.6203

(0.9635)
0.6421

(0.9462)
1.5159

(0.9302)
1.9360

(0.9135)
0.1180

(0.9201)
0.0156

(0.9120)
0.0144

(0.9410)

C
3.3664

(0.9250)
14.6134

(0.9461)
8.2852

(0.9601)
0.7659

(0.9204)
1.5572

(0.9225)
2.2225

(0.9462)
0.1285

(0.9465)
0.0240

(0.9431)
0.0180

(0.9250)

(60,15) A
1.8686

(0.9352)
8.1270

(0.9240)
6.4119

(0.9642)
0.6203

(0.9102)
1.6392

(0.9452)
1.8782

(0.9625)
0.1006

(0.9548)
0.0128

(0.9421)
0.0137

(0.9456)

B
1.8583

(0.9302)
7.2812

(0.9258)
5.3908

(0.9425)
0.5873

(0.9421)
1.3941

(0.9245)
1.7902

(0.9611)
0.1091

(0.9324)
0.0118

(0.9421)
0.0115

(0.9541)

C
2.8662

(0.9625)
11.2472

(0.9325)
6.8116

(0.9121)
0.7682

(0.9611)
1.4573

(0.9325)
2.0819

(0.9625)
0.1141

(0.9521)
0.0181

(0.9544)
0.0144

(0.9425)

(60,20) A
1.5166

(0.9201)
6.6671

(0.9452)
4.9896

(0.9201)
0.6189

(0.9214)
1.6173

(0.9421)
1.8279

(0.9452)
0.0858

(0.9201)
0.0107

(0.9511)
0.0107

(0.9584)

B
1.7230

(0.9312)
7.0832

(0.9254)
5.3442

(0.9401)
0.5272

(0.9542)
1.3393

(0.9625)
1.7337

(0.9542)
0.0925

(0.9461)
0.0115

(0.9025)
0.0114

(0.9102)

C
2.4635

(0.9421)
9.5514

(0.9485)
6.0873

(0.9120)
0.7655

(0.9314)
1.4705

(0.9435)
1.9814

(0.9121)
0.1001

(0.9524)
0.0152

(0.9485)
0.0129

(0.9640)

Table (6). Comparisons of ACL and CP of 95% CIs for the parameters with (α ,γ ,β ) = (0.1,1.5,2.5)
MLE Bootp MCMC

T (n,m) CS α γ β α γ β α γ β

0.9 (30,10) A
2.1999

(0.9447)
10.6267

(0.9304)
8.7352

(0.9542)
0.7006

(0.9325)
1.7278

(0.9115)
2.0699

(0.9356)
0.1162

(0.9423)
0.0173

(0.9354)
0.0169

(0.9425)

B
2.3617

(0.9625)
10.0343

(0.9402)
7.6759

(0.9410)
0.7087

(0.9628)
1.6112

(0.9420)
2.0446

(0.9241)
0.1226

(0.9245)
0.0163

(0.9425)
0.0163

(0.9314)

C
3.0092

(0.9431)
13.4749

(0.9411)
8.8810

(0.9208)
0.7614

(0.9470)
1.6546

(0.9421)
2.2006

(0.9462)
0.1179

(0.9144)
0.0219

(0.9256)
0.0187

(0.9324)

(50,10) A
2.1652

(0.9621)
9.5724

(0.9654)
7.1258

(0.9482)
0.6986

(0.9472)
1.7096

(0.9425)
2.0249

(0.9431)
0.1261

(0.9255)
0.0155

(0.9425)
0.0154

(0.9414)

B
2.2524

(0.9402)
9.7740

(0.9547)
7.6133

(0.9622)
0.7027

(0.9142)
1.5583

(0.9632)
1.9585

(0.9325)
0.1234

(0.9147)
0.0159

(0.9425)
0.0157

(0.9365)

C
3.5613

(0.9465)
14.4537

(0.9408)
8.4505

(0.9485)
0.7667

(0.9465)
1.5250

(0.9503)
2.2161

(0.9452)
0.1341

(0.9402)
0.0234

(0.9142)
0.0180

(0.9425)

(60,15) A
1.9534

(0.9425)
7.2655

(0.9285)
5.4047

(0.9430)
0.7025

(0.9257)
1.6427

(0.9645)
1.9314

(0.9400)
0.1217

(0.9425)
0.0114

(0.9647)
0.0116

(0.9103)

B
2.1180

(0.9617)
9.2248

(0.9408)
7.1143

(0.9574)
0.6966

(0.9257)
1.4983

(0.9447)
1.8610

(0.9421)
0.1110

(0.9521)
0.0146

(0.9257)
0.0148

(0.9450)

C
2.9082

(0.9146)
11.5716

(0.9406)
6.9645

(0.9130)
0.7658

(0.9348)
1.4635

(0.9201)
2.0759

(0.9420)
0.1135

(0.9214)
0.0185

(0.9414)
0.0147

(0.9420)

(60,20) A
2.3386

(0.9214)
9.5359

(0.9254)
8.0624

(0.9104)
0.6839

(0.9364)
1.5936

(0.9136)
1.8959

(0.9205)
0.1067

(0.9432)
0.0136

(0.9205)
0.0145

(0.9421)

B
1.7841

(0.9105)
6.7589

(0.9417)
5.1026

(0.9154)
0.6732

(0.9441)
1.4505

(0.9105)
1.8020

(0.9403)
0.1038

(0.9104)
0.0108

(0.9151)
0.0114

(0.9452)

C
2.5725

(0.9465)
9.2196

(0.9374)
5.9628

(0.9420)
0.7647

(0.9330)
1.4288

(0.9214)
1.9788

(0.9642)
0.1091

(0.9425)
0.0144

(0.9645)
0.0128

(0.9254)

8 Conclusion

In this paper, we have discussed the classical and Bayesian estimation for the unknown parameters of WED based on
A-II-PRO-C. The asymptotic normality of ML and parametric bootstrap methods have been used to construct the CIs for
the unknown parameters of WED. The MCMC is used to compute the approximate Bayes estimates and corresponding

credible intervals using Metropolis – Hastings algorithm with Gibbs sampling. A simulated data set is presented to show
how the MCMC methods work based on A-II-PRO-C. Monte Carlo simulation study has been used to compare the

performance of the proposed methods for different sample size (n, m) and different censoring scheme R. From Tables
(3-6), it is possible to conclude that:

1.As sample size n increases, the MSEs decrease and Bayes estimates have the smallest MSEs among all other estimates
proposed.

2.Percentile bootstrap method performs better than ML method in the sense of having smaller MSEs for α, γ and β .
3.The MSEs which is obtained at time T = 0.8 is smaller than MSEs which are obtained at time T = 0.9 for most

estimators.
4.The average length for all estimates at time T = 0.9 is smaller than at time T = 0.8.
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