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Abstract: The Hermite-Hadamard inequality and an identity for AB—fractional integrals are demonstrated in this study using
generalized ¢ —convex functions. Some Hermite—Hadamard type inequalities are also established using the stated identity and the
AB—fractional integral operator. A number of unique examples have been identified. The concept of generalized quasi ¢ —convex
functions is also introduced, as well as some fractional inequalities.
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1 Introduction

The following inequalities are classic in the study of convex functions, and play a very important role in its development,
due to its applications in different areas of mathematics such as optimization theory and mathematical economics. They
are well known as Hermite-Hadamard inequality.

Theorem 1. Let f: 1 CR — R be a convex function and &,m € I with & < 1. Then the following inequality holds:

F(E) < L [ o< LOLI0) "

This inequality (1) is also known as trapezium inequality.

The left side of this inequality was demonstrated by Jaques Hadamard in 1893 [1] and the right side by Charles Hermite in
1883 [2]. The mean value of a continuous and convex function f : [a,b] — R can be estimated using this basic inequality.
Because of its wide application in Mathematical Analysis, the trapezium inequality is of great interest to researchers in
this field.

In a variety of scientific fields, like as: Biology, Economics, Physics and optimization [3,4], among others, the
convexity of functions plays an important role. In the last decades the concept of convexity has been generalized in
several directions due to different problems and even to the theoretical development of research in pure mathematics,
especially in the area of inequalities. Interested readers can see the references [5,6,7,8,9,10,11,12,13,14,15,16].
Recently some studies related to quantum mathematics and fractal sets have been development [17,18,19,20,21,22].
Even works that relate integral inequalities to fractional calculus have been published. [23,24,25,26,27].

M. Noor [28] introduced and studied one of the concepts associated with generalized convexity. Let’s first establish
the following notations: we denote with .7~ a non-empty closed set in R”, and with J#° the interior of .. For the inner
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product and norm on R” we use (.,.) and ||.|| respectively. Two continuous functions will also be considered, f and ¢ as
real valued functions defined on JZ".

Definition 1. Let u € 7. If there exists a function ¢ such that
utte®(v—u)ye
forallu,v € % andt € [0,1] then & will be said a ¢ —convex set.
Definition 2. A function f defined on a ¢-convex set K  is said to be ¢-convex, if

FE 10 —E) < (1= fE)+1f(m), VEMEH, 1€[0,1]
If (—f) is @ —convex then the function f is said to be ¢ —concave.

It is easy to observe that any convex function with ¢ = 0 is ¢ — convex, but the converse is not true.
Using the following special function and their properties some researchers have presented more generalized concepts
related to the aforementioned ¢ —convex sets.

Definition 3./29] The special function

o Zk

E, _—2 — o €C, Re(at) >0, z€C, 2
(2) LT 3 e(a) Z 2)
where I is a Gammaﬁmction is called Mittag-Le}ﬂerﬁmction.

For a =0,1,2,3,4, we find the following expressions using the Mittag-Leffler function E¢(z) :
1. Eyg(z) = 1%, lz] < 1

2. Ei(z) =€

3. Ei(iz) = e”

4. Ey(z) =cosh(y/z),z€C

5. Ey(—z") =cosz, zeC

6. Bals) = L | o231 0p—1e Nl
. E3(z) =5 | +2e2 cos(7Z3)

7. Es(2) =1 {cos(z%) —i—cosh(z%)}
Recently, in [30], Ali et al. have introduce some of the notions of generalized convexity.

Definition 4. A non empty set X is said to be generalized ¢-convex set if
é+tE0t(n7§)€<%/a vévnEXa tE[O,l], (3)
where a. € C, Re(a) > 0.

Remark.If a = 1, then generalized ¢-convex set reduces to the ¢-convex set. The generalized @-convex sets are non-
convex.

Definition 5. The function f is said to be generalized ¢-convex, if

(6 +1Ea(n—=8)) <(1-0)f(§)+1f(n), VEned, t€[01] Q)

Remark. Obviously generalized ¢-convex function is ¢-convex function by replacing E, with E;, a special case of
Mittag-Leffler function. The generalized ¢-convex functions are non-convex.

In [31,32] the inequalities involving generalized fractional integral operators have been considered. This direction
has gained the attention of many researches. Among the objectives proposed in this work is that of establishing a general
formulation of inequalities of the Hermite—Hadamard type, so that the essential facts covered by the different fractional
integrals become clearer and also produce new inequalities. We are interested in the following fractional integral
operator.

Based on the Caputo and Riemann-Liouville definitions of fractional order derivatives, Atangana and Baleanu, in [33],
created two new fractional derivatives. As the antiderivative of their operators, they asserted that their fractional
derivative has a fractional integral. The kernel of the Atangana-Baleanu (AB) fractional order derivative, which uses the
generalized Mittag-Leffler function, is known to be nonsingular and nonlocal, see [34,35,36,37].

Now, we recall the following definition related to the AB-fractional operator.
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Definition 6. The fractional AB-integral of the function f € H* (€ ,q) is given by

0 = 5o O+ 5 o 0 1> 0

where & < 1,0 < 8 < 1 and the normalization function B (8) > 0 satisfies the property B(0) =B (1) = 1.
Similarly, the definition of the (5) opposite side is given by

PRI =5 O+ a0 S 1< ©

Here, the Gamma function is represented as I'(8). Because the normalizing function B(8) > 0 is positive, the
fractional AB-integral of a positive function must also be positive. It’s worth noting that when the order 6 — 1 is used,
the classical integral is recovered. When the fractional order & — 0, the starting function is also restored.

Motivated by the connection between fractional calculus, convex analysis and optimization theory [38,39], and all the
above literature cited, in this work we focus on establishing the Hermite-Hadamard inequalities for the AB—fractional
integral operator, for which there are important applications. At the end, a brief conclusion is given.

2 Fractional integral inequalities of Hermite-Hadamard type

The Hermite—Hadamard inequalities can be expressed using generalized ¢ —convex functions and AB—fractional
integrals as follows.

Theorem 2. Let f:[E,&E +Eq(n —&)] — R be a positive function for which E\Blt‘sf(t) < oo. If f is generalized ¢-convex
Sunction on [§,& +Eq(n — &), then we have the following double fractional integral inequality

_EYye - —
A (55 e e v

< [ pan- /€ +Ba(n =)+ gy 1(E) g

Ea(n &)’ -5
< S TT (5 &)+ A+ g5 (E) +7 (& +Ealn — &)

with0 < 6 < 1 and a > 0.
Proof. Since f is generalized ¢-convex function, takingx =& + (1 —1)Eq(n — &),y =& +1Eq(n — &), we get

2f<%> < FE+(—0)Eq(n &)+ f (& +1Eq(n —&)). ®)

If we multiply both sides of the inequality (8) by the factor B 5)‘3_ 6] 19

then we obtain

I"and then integrate with respect to t over [0, 1],

ZéﬂLEa(n*é)
B<6>r<5>f< 2 )

1) L S Lo
< E(S)F(S)/o t5 lf(‘:‘i‘(]_t)Ea(n_(:))dl—f—W‘/o l5 lf((:-i-tEa(T]—é))dt

S E+Ea(n-8)
" B(8)I () [Ea(n — &)1 /;

S E+Ea(n-8)
B(8)I (8) [Ea(n —&))° é

(E+Eq(n—&)—u)" f(u)du

- (u—&)°" flu)du.
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Therefore, it follows that

— 6 - -
2[;%%(?)] f (2?§+E;(n 5))+];(6‘§[f(5)+f(§+Ea(n—5))]

S a(n=35)
N R

1-0
<) CHEO -+ 55

- E+Ea(n-£)
SO s O
_EYS N B
Z[E?a(?r(i))] f<2(é+Eo;(n é))+1;(68)[f(§)+f(é+Ea(né))]

< |8 g0 fE +Ean =)+ (1 o2 1(E)],

so the first inequality is proved.
Using the generalized ¢ —convexity of f, we observe that

F(E+(1=1)Eq(n—28)) <tf(&)+(1—1)f(n)
and
fE+Ea( =&)< (1—1)f(&)+1f(n).

Adding these inequalities, we get
F(E+ (1 =1)Ea(n—=8))+/(§+1Ea(n—¢)) < f(S)+f(n)- ©

Now, in both sides of (9) we multiply by Wﬂs’l and integrate with respect to ¢ over [0, 1] to obtain

o Lo Fy L
B(5)F(6)/() t5 lf((éjL(l*t)Ea(n*é))dtJFW/‘o t5 lf(éthEa(nfé))dt

< s VIl [ ar

0
i.e.

AB S _ AB 5 [Eq(n—&)]° 1-4 _
(4912 o0&+ Bl =)+ g, 120()] < GE=E U@ + F)]+ 575 L(E)+ £ (6 +Baln =)

The proof has been completed.
Remark. Letting p — 1 in Theorem 2 we have

2§ +Eq(n—¢) 1 S+Ea(n=5) fE)+fm)
() s s

3 The AB-fractional integral inequalities and generalized ¢-convex functions

The following Lemma is necessary to establish some new results related to the right side of the Hermite—Hadamard
inequality with the AB—fractional integral operator and the use of generalized ¢ —convex functions.

Lemma 1. Let f:[E,E+Eq(n —&)] — R be a differentiable mapping on (& ,& +Eq(n —&)) for which /gBI,‘sf'(t) < oo,
Then the following equality for the AB-fractional integrals holds:

_EVS —
<[?B<Esn>r<és)§ + é;(a?) &)+ £(& +Ealn =) = | 1 g e f(E +Ba(n =)+ g,y 5 2F(E)

_ 5+1
%/ol (1= =] /(€ + (1 = )Ea(n — &))ar, (10)

with0 < 6 < 1 and o« > 0.
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Proof. Integrating by parts, we get
! S
h=[ (=0 ' E+(1-0Ealn—E)ar
0
L
Eq(n—§) “ 0
1
s (0 (= 0Ean B
_ f(E+Eq(n—§)) 5 $Ea(n-£) .
T Ean-8)  (Ba(n-£)°" é (=8 )
Thus, multiplying both sides by (E‘I’é((g;ﬁ()gj“ , it follows that
(Eq(n—£)°"!
TBETE) "
_EV9 E+Ea(n-8)
SR - g e
s - @)
__EY10 _
— Bl e Batn -6+ o 16 - By 20
Similarly,
b= [0 &+ -DEan—&)as
0
t9 :
= *mf(éJr(l*f)Ea(n*é)) )
gy 5 =g Ealn - )
o) E+Eq(n-8)
- s T (& +Ea(n &) )7 f(x)dx.
If we multiply both sides by the factor (E‘ﬁ((g)f()gfﬁ , it follows that
(Eq(n—£)°"!
TBETE) " "
— s ‘: Ea( *é)
S O sErE € Rl =8 -0 s
(1-98) (1-8)
+ 55y (6 Baln—8) 57 (6 +Ea(n —8))
[Ea(n &) (1-96)

Bo)rs) &) B S TEM—S))+ 12 e f(E+Ea(n—8)).
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Now, using (11) and (12), we obtain

B 0+1 B 5 B
 TE R (“;;grfg +113(5‘§> HE) + F(E +Ealn— &)

AB18 AB $
[5 12wy m-e)f(E+Ea(n—&))+ 5+Ea(n,5)1§f(§)} :
The proof has been completed.
With an application of Lemma 1, we can obtain the following result.

Theorem 3. Let f:[E,E +Eq(n —&)] — R be a differentiable mapping on (& ,& +Eq (N —&)) for which ?BIZSf'(t) <
If|f'|" is generalized ¢-convex function on [E,E +Eq(n — &)] for r > 1, then we have

_EYS —
|<[IIEB((5H)FE;£ +118(5‘§>[f<&>+f<5+m<n EN) = [ 477 -2 (& + Bl - 5>>+?5Ea<ns>’?f<5ﬂ|

(Ea(n—§))°"' <1 25”%]7 r=1
STRETE <3s2+1>1(1 263)|(lf(é)lrglf’(n)|’>17r>17%%1,

with0 < & < 1 and o0 > 0.

13)

Proof.  Firs, we suppose that r = 1. Using Lemma 1 and the generalized ¢-convexity of |f’|, we find

_E)8 -
|<[Ea<” L 6>[f(§)+f(§+Ea(n 0= [0 ke 6+ Ealn =)+ P, 51§f<5>}|

B(5)I(8) ' B(d)

<Ot oo

o+1
S(E%((g)ré)) (’f ’/t“_, )’ —lde+|f (n ‘/ (1=0)|(1=1) —t5|dt)

o+1
- BB lr @I+l (1-55) 55

’|f (E+(1—1)Eq(n —&))|dr

B(8)I (8 S+1
Here, it is noticeable seen that with simple integral calculation, we have
/lt|(1 1) — Ol = /'1(1 SO =) — Pl = (1 _i) . (14)
0 Jo 6+1 28

Second, we suppose that > 1. An application of Lemma 1, Holder’s inequality and the generalized ¢-convexity of |f’|",
we find

_EYS —
|<[IIEB((5H)FE;£ +118(5‘§>[f<&>+f<5+m<n EN) = [ 477 -2 (& + Bl - 5>>+?5Ea<ns>’?f<5ﬂ|

1

< (]E%((g—étm (/ ‘ l—t t‘s‘xdt)% (/O] \f’(.§+(1 —t)Ea(n—g))rd;)F

e S+ s i , r , N
< (EIE((Z‘)Fé()S)) (/ol’(l_’)s_’sl dt) (If (3] J;If (n)l ) _
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Using the inequality (A — B)* < AS — B*, withA > B >0 and s > 1, we get

/‘l—t —t‘dl /{l—t — 0 dt+/ dt
g/ol {(14 ‘“ dt+/ }dt

2 1
T Ss+1 (]_ﬁ)' ()

The proof has been completed.

Corollary 1.
With the same conditions given in the Theorem 3 and if we choose | f'| < K, we have

_E)S —
‘(EB(?)F% +I]B(56)>[f(€)+f(€+Ea(n = [P ownof <€+Ea<n—5>>+’2i’m5>'§f<5>}‘

< 1 (16)
B(8)I"(6) 2\ 1\ L1
K<5S+]) <1ﬁ> ,l">1,7+§—1,
with0 < 6 < 1 and ot > 0.

Theorem 4. Let f:[E,E +Eqg(n —&)] — R be a differentiable mapping on (§,& +Eq (N —&)) for which /gBI,‘sf'(t) <
If|f'|" is generalized ¢-convex function on [§,E +Eq(n — &)] for r > 1, then we have

_E)9 —
K[?B((an)r% +I;(6§>[f(é)+f(é+Ea(n )= [ 1 - (& + Baln - 5>>+2‘5Ea<n5>’?f<5>]‘

2K 1
(Bo(n &) ] 5+1 ( —%—5), !

<=

Eq(n— 5+1 o
< (5 ) e s

with0 < 8 <1 and o0 > 0.

Proof. Let r > 1. An application of Lemma 1, the power mean inequality and the generalized ¢-convexity of |f’|", we
find

_EVS —
<['IEB“((6") - (55)% 57 5‘?) F(E)+FE+Ea(n—EN - [ 1 g on-o fE+Ea(m— &)+ Ep, e B 1(E)] ‘

B (o) ([lo-r-lseo-mar-ors)
g8+l -1

(‘f’(é)’r/ol(lt)’(lt)at‘S‘dtJr‘f'(n)‘r/olt‘(lt)ﬁt‘S‘dt)]r. (17)

/01 ‘(1 1%t ‘dt /1/2((1 —1)° —t5)dt+/1;2(t5— (1—1)%)dt

_2(1-279)
T 8+1

Now we can observe that

(18)
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Using this value and (14) (in proof Theorem 3), we can make the replacement in (17) to obtain

_ &) —
‘ (%(g?) L ;) &)+ 7(E+ Ealn =)~ | P1,p,- (6 +Ba(n = E)+ L, £ /E0(8)] ‘

_ o+1 A5 \
B 2" (%) (r @l +Irml’.

The desired result has been obtained.

Corollary 2. With the same conditions given in Theorem 4, if we choose |f'| < K, we have

_E)9 —
‘ (%(%”)rfﬁi e 35>> 1)+ 16+ Baln &) — [ 1 o 2,6 +Ealn— 8D+ P g/21(6)] ‘

(Ea(n—6)°"" 4, (1-279
= B(8)I" () K2 < §+1 )

with0 < 6 < 1 and ot > 0.

Theorem 5. Let f, g be two real valued, non-negative and generalized ¢-convex functions defined on [, +Eq(n —&)],
where Eq(n — &) > 0. Then

(2818 e F (& + Ealn = )86+ Baln — &)+ 5, (1 o 2 1(E)8(E)]

1-8  (8°+6+2)[Ea(n—&)I° 26[Eq(n — £))9
: <E(5)+B(é)r(s)(5+1)(5+z)>M(’:’”)*B(g)p((;)(5+1)(5+2)N(€,n),

where 0 < 6 < 1, a >0, and

M(S.m) = f(S)e(S)+f(megn), N(G.n)=f(S)en)+f(n)e(S)
Proof. Using the generalized ¢ —convexity of f and g we have
F(e+(1=0Ea(n—¢)) <tf(&)+(1—1)f(n) (19)

and
86+ (1-1)Eq(n—¢)) <1g(8)+ (1—-1)g(n). (20)
Based in (19) and (20), we get

&+ (1 =1)Eq(n—8))g(5+ (1 -1)Ea(n—§))

< f(8)g(&)+ (1= f(m)g(n) +1(1=0)[£(§)g(n) + f(n)g(&)].

Similarly,

F(E+1Eq(n—E))g(&+1Eq(n—§))

< (L=1)’£(8)g(&) +r2f(m)g(m) +1(1 =1)[£(§)g(n) + £ (1m)g(E)]-

By means of the sum of the two previous inequalities we obtain that

&+ =1)Eq(n—8))g(6+ (1 —1)Ea(n—8§)) + f(§+1Ea(n —&))g(§ +1Ea(n—§))

< (22 =20+ 1)[f(§)8(&) +f()g(m)] +2:(1 = 1)[£(€)g(n) + £ ()8 (&)].
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If we multiply both sides of previous inequality by mt&l and integrating the resulting inequality with respect to ¢
over [0, 1], then we obtain
Oy | E (B~ )g(E + (1 )Ealn &)
B(8)I'(3) Jo alm 8 all

5
B(8)I (3)

N | A& 4 1B — £))g(E + 1Bl — £))di

= B<5>5r<3> /olt’s’l@rzfm DIFE)g(&) + £ (n)g(m))d

*W /l 7121 1)[£(§)g(n) + f(n)g(&)]dr.

Jo
With an appropriate choice of variables and a simple integration, we get

;B(;g?f@ FEo(n—£))g(E +Eq(n —&))

4] E+Eq(n-3) B
+W/§ (E+Eq(n—&)—w)’ " f(u)g(u)du
1-6 5 E+Eq(n—&) 5
50O 55 [; (1= &5 (g (u)d
1-9 82+8+2
= <1B%(5) OO é)]5> [£(8)g(&)+ f(m)g(n)]

_ )
+]B(5)21§$§C((2+ f))g5+2) [F(8)g(n) + f(m)g(S)]-

As a result, the next expression follows

12 e F(E + Bl — £)8(E +EBaln &)+ 225 0 o 1B F(E)g(E)]

1-8 82+8+42 5 28[Eq(n —&))°
< (5 5@ () 3 T2 B8 JME 5 5V T
The proof has been completed.
Corollary 3. With the same conditions given in Theorem 5, if we choose f = g, we have
H P Ea(n =)+ e 5 2P (E)]
1-8  (8°+8+2)[Ea(n—&)]° 26[Eq(n — £))°
: <B<5> BT G) <5+1><5+2>>M‘@’””B(&r(a)m DICEA

where 0 < 6 < 1,00 >0,

My(E,m) = f2(&)+2(m), Ni(&.n)=2f(&)f(m).

Corollary 4. With the same conditions given in Theorem 5, if we choose g : [&,& +Eq(n —&)] = Ras g(t) =1 for all
t€[€,E+Eq(n—E&)], we have

- _ S
[ a6 =80+ sy 1876)] < (i + S e 4 s

which is the right hand side of (7).
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Corollary 5.  With the same conditions given in Theorem 5, if we choose g : [£,& +Eq(n — &)] — R is integrable and
26+E -
g+ 05 (n-2) . then

(0918 0o FOE + Bl — E))g(E +Ealn — £)+ 2o 1B F(E)e(E)]

symmetric to

o _ 9
<1 (;B 5+ e ) [F(E)+ FIIe(E) + g @v

Proof.  Since g is symmetric to (2§ +Eq(n—E&))/2, we have g(2E+Eq(n—§&)—1) = g(¢) for all
te€[§,E+Eq(n—&)]. Hence

(4918 0 FOE + Bl — gl -+ Ealn — £)+ Mg o 1B F(E)e(E)]

— _ 9
: (1153(5 " [?B(?) F% ) [F(§)+F(m]g(&).

Similarly, we get

(0918 0 FOE + Bl — E)glE+ Ealn — £)+ Mg o 1B F(E)e(E)]

_ _ [
< @(5 + el ) (&) + F(m)] 5.

By adding these inequalities, the proof has been completed.

Remark. 1f in Corollary 5, we let 0 — 1, then the inequality (21) becomes

o /;+Ea<né> stans (HELEIW) (80015 o)

Theorem 6. Let f, g be two real valued, non-negative and generalized §-convex functions on [§,& +Eq(n — )], where
Eo(n—&)>0. Then

1-6 4Eq(n—&)]° (26 +Eq(n—¢&) 26 +Eq(n—&)
56T EG) T (5) f( 2 )g< 2 )

<[40 oy F(E + Ealn — )& +Ealn — E) + 5, o1 F(E)8(8)]

[Eo(n—&)]° [26M(E,n)+ (8% +5+2)N(E,n)]
B(8)I(8)(8+1)(6+2) ’

where 0 <8 <1, > 0,and M(§,m), N(&,n) are defined as in Theorem 5.

Proof. Using the generalized ¢ —convexity of f and g we have

f<w> f<€+(1t)Ea(n§)+é+tEa(n§))

2 2

FE+(—Baln ~§) + 5/ (6 +Ealn — &) 23)

NI*—*

and

g<2~§+Eaz(n —5)) g<€+(1 —1)Eq(n —i)+§+tEa(n—§))

< 58 (E+ (1= OEa(n - £) + 38 (€ +1Ea(1— &). 24
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From (23) and (24), we get

() (emp)

<

F(6+(1=1)Ea(n =)+ f(§+1Ea(n—&))][g(§+ (1 —1)Ea(n —&))+2g(§+1Ea(n —3))]

A= A=

{f(6+(1=1)Ea(n—=8))g(E+ (1 -1)Ea(n—8))+/(§+ (1 -1)Ea(n —&))g (S +1Ea(n—&))
+ (6 +1Ea(n—8))g(§+ (1 -1)Ea(n—&))+ £ (S +1Ea(n—&))g(§ +1Ea(n—¢))}

<

{6+ =0)Ea(n—¢))g(e+(1-1)Ea(n—6))+f(§+(1-1)Ea(n—8))g(§+1Ea(n—¢))

Bl—

H A =0)f (&) +1f (M]lrg (§) + (1 =n)g M)+ [(1 =) f (&) +1f (M1 —1)g () +rg (M)}

= %{f(é+(1*f)Ea(n*5))g(€+(1*t)Ea(n*§))+f(€+(1*t)Ea(n*§))g(€+tEa(n*5))

+2(1=0M(En)+ (1 -1 +2)N(E,n)}.

If we multiply both sides of previous inequality by mt‘s" and integrate with respect to ¢ over [0, 1], we obtain

s (B8 (B0 s,

< e E (OB~ e+ (1 )Ealn ~ E)a

*m./glf‘“f (& +1Ea(n —£))8(& +1Ba(n - &))dt

1) 1 Fy 1
+7ZBJE/[5()51’_%)/0 té(lt)dt+$%/o 27N ((1—1)> %) dr.

With a suitable choice of variables for a simple integral calculations, we get

QM@,"H%Ea(n5)]5f<2€+Ea(n€))g <2§+Ea(n§))

B(3) B(3)I () 2 >
_ E+Ea(n-8)
< L (B~ g Ealn—E)+ g [ 6+ Ealn—§) — Sl
B E+Eq(n-§)
+115%<—£f @“WW./@ T e pwglurdu
28[Eq(n —£)]°M(E,1) 82+8+2

Eq(n —&)°N :
BT (3)(3+1)(3+2)  BEIT (@) 0+ 1)(3+2) teT= IV M)
Then we obtain the following the AB-fractional integral inequality:

18 HEa(n—E)P (26 +Ea(n—E)\ (2E+Eq(n—E)
56T B 5 r(s) f< 2 >g< 2 )

<[22 o) f(E +Ealn = E)g(E+Ea(n— &)+ g o) 2 F(E)8(E)]

28[Eq(n —&)I°M(E. 1) 5°+6+2
BOI )3+ D6 r2)  BEOTE) 6o 1= SINEn.
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The proof of this theorem is complete.

Corollary 6. With the conditions given in Theorem 6, if we choose f = g, we have

1-6 4Ea(n—&)I° o (2§ +Ea(n—&)
EeMEn Eare S ()

< [P0 (E+Baln 8D+ i 5 27E)

[Ea(n —&)1° [26M(&,n) + (8% +8+2) NMi(§,n)]
B(6)I'(6)(0+1)(0+2) ’
where 0 <6 < 1, >0, and M;(&, 1), N1 (§,n) are defined as in Corollary 3.

Corollary 7.  With the conditions given in Theorem 6, if we choose g [E,& +Eq(n — &) — R as g(t) = 1 for all
€€, E+Eq(n—E&)], we have

1-8 4[Ea(n—8)1° (25 +Ea(n—§)
B @)+ s+ el (2R =2

+

o S
< (81 ey S &+ Bl =)+ B o200 + G 17E) + ()L

4 The AB-fractional inequalities for generalized quasi ¢-convex functions

In this section we introduce the following definition.

Definition 7. The function f is said to be generalized quasi ¢-convex, if

f(é‘i’tEa(n*é))Smax{f(é)af(n)})a véane‘%/v tE[O,l]. (25)

We establish some inequalities of Hermite-Hadamard type using generalized quasi ¢-convex functions.

Theorem 7. Let f:[E,&E +Eq(n —&)] — R be a differentiable mapping on (& ,& +Eq (N —&)) for which ’gBIISf'(t) <

If|f'|" is generalized quasi ¢-convex function on [E,E +Eq(n — &)] for r > 1, then the following inequality for the AB-
[fractional integrals holds:

_EVS —
‘(%é’gr% +I;(5‘j>[f<5>+f<5+lza<n EN = [ o) (6 + Baln - €>>+’2iEa<ne>'§f<5>}‘

1 [max{ £ E)L 1 ) o
- Baln 8" (1) [P | o
B(8)L (5) (5sz+1>‘ <12i5) “max{[f(E)]1F I} r>1, b+l =1,

with0 < & < 1 and o0 > 0.

Proof. Letr= 1. An application of Lemma 1 and the generalized quasi ¢-convexity of ||, we find

_EYS —
|<[IIEB((5H)FE;£ +118(5‘§>[f<&>+f<5+m<n EN) = [ 477 -2 (& + Bl - 5>>+?5Ea<ns>’?f<5ﬂ|

_(E%m £)) 5“/ -0

_ o+1
g%max{f }/ |(1=1)% —%|dt

Eq(n — 5+1 / / | |
- %max{f (&).1'(m)} (1 —2—5) st

’|f (E+(1—1)Eq(n —&))|dr
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here it was used (18).
Now, let » > 1. Making use of Lemma 1, Holder’s inequality and the generalized quasi ¢-convexity of |f/|", we find

_EV8 -
} (hIEBa((Sn)F(éS)% - 118(56)> [f(6)+ /(6 +Ea(n—¢))]— {EBlgma(n*é)ﬂé +Ea(n—&))+ giEa(nfé)Igf(é)}

< %55“ (/ } (1—1)° térdt)% (/01 If(E+(1 —t)Ea(n—é))‘rdt)%

S%(/ ‘ 171‘ ‘dt)l (max{|f"(&)|.|F ()|})-

As in the proof of Theorem 3 we use (15) to complete the proof.

Corollary 8. With the notations in Theorem 7, if we choose |f'| < K, we have

_E)9 —
|<[‘IEB(?)F(5£ +I;(6§>[f(é)+f(é+Ea(n = [ £ iy n-e) /(€ +Ealn 5>>+’25Ea<n5>’?f<5>]|

2K (] 1) :
—— |, =
(Ba(n—)°"" ] &+1\ 29 ]
= B(&)I 5 5
()I'(3) K<5S2+]) (1%) yr>1, 4=,

with0 < 8 <1 and o0 > 0.

Theorem 8. Let f:[E,&E +Eq(n —&)] — R be a differentiable mapping on (§,& +Eq(n —&)) for which ’gBlt‘sf’(t) <

If|f'" is generalized quasi ¢-convex function on [§,E +Eq (1 — &)] for r > 1, then the following inequality for the AB-
fractional integrals holds:

_E)9 —
K[?B(Esn)r% +I;(6§>[f(é)+f(é+Ea(n EN) = [ 81 i) P&+ Baln = )+ g é’sf@)}‘

27)

2(Eq(n—&))°H (1279 , ,
<20 <5+1 >max{\f<é>\,!f<n>}

with0 < 8 <1 and o0 > 0.

Proof.  As in the proof of Theorem 4, the expression in (17) will have the following form
1

(f Ja=07 =17 @+ - Batn - ar) " < maxtlr@] L)y ([ o —t>5—t6\dt)l

_s 1/r
= max{| ). | (]} <%])> ,

s0, by a corresponding replacement we attain the desired result.

Corollary 9. With the conditions given in Theorem 8, if we choose | f'| < K, we have

_EVS _
‘ @(gp% = ;j) FE) 4 F(E+Ealn )] — [ 2., o F(E + Baln — £ + Py, o 2F(E)] ‘

_2K(Eq(n &)t (127
= B(8)I(d) s+1 )

with0 < 6 < 1 and ot > 0.
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Theorem 9. Let f, g be two real valued, non-negative and generalized quasi ¢-convex functions on [§,& +Eq(n —&)],
where Eq(n — &) > 0. Then

(2818 e F (& + Bl = £)8(E +Baln — &)+ 2,1 o 1(E)8(E)]

_ 1= [Ea(n—&)°
(5) N(&,m)+ WZmax{f@)J(n)}maX{g(é),g(n)}-

where

N(En) =f(5+Ea(n—¢))g(E+Ea(n—8))+s(5)s(E)

Proof.  Since f and g are generalized ¢-convex functions on [£,& +Eq (1 — &)], then
f(&+(1—1)Eq(n—¢)) <max{f(§),f(n)} (28)

and

8(&+ (1 —1)Eq(n —&)) < max{g(&),g(n)}- 29
From (28) and (29), we get

&+ (1 =1)Eq(n—8))g(c+ (1 -1)Eq(n—§)) <max{f(§),f(n)}max{g(&),e(n)}.

Similarly,
F(E+1Eq(n —§))g(E +1Eq(n—&)) <max{f(&),f(n)}max{g(§),e(n)}.

Adding the above two inequalities, it follows that

&+ =1)Eq(n—8))g(c+ (1 —1)Ea(n —8§)) + f(§ +1Ea(n —&))g(§ +1Ea(n—§))
< 2max{f(&),f(n)}max{g(¢),g(n)}.

If we multiply both sides of the previous inequality by mt‘s" and integrate with respect to ¢ over [0, 1], we obtain

rw;(a) /o PUF(E + (1= DEa(n — €))8(E+ (1~ 1)Eq(n — &))dr

*W/olf“f(é +1Ea (1~ ))8(§ +Ea(n — §))dr

15} (51
<— " 27m m dt
With a suitable choose of variables for a simple integral calculations, we get

ﬁf@#—]ﬂa(n —&))g(E+Ea(n—&))
)

E+Eq(n-&) E 51 .
*W.@ (E+Ea(n—&)—u)’" fu)g(u)du

1-9 § E+Ea(n-¢) B
5/ OO+ 5577w . (=& Flu)g(u)du

_ PN
< V& + S dman (&), ) max{(2).s())

where
N(Gn) =f(§+Ea(n—8))g(E+Ea(n—&))+7(5)s(E)
Then we obtain the following the AB-fractional integral inequality:

(2818 e F (& + Ealn = £)8(E +Baln — &)+ 2,1 o 2 1(E)2(E)]

_1- [Ea(n —&)°
(5) N(Em)+ Wzmax{ﬂé),f(n)}max{g(é>,g<n>}.

The proof has been completed.
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Remark. If in Theorem 9 we have f = g then

B pan o E+Ea =)+ 2 0 18]
1 2[Ea(n — &))° (max{£(&),f()})*

Sw(g(fz(éﬂia(né)Hfz(é)H

B(8)I(3)
and if g = 1 then
gB[ngEa(nfé)f(‘: +Ea(n—¢))+ giEa(nfg)lgf(‘:)}
1-4 2[Ea(n — &))° max{f(&).f(n)}
< 55y V(€ +Ealn =8+ £(8) + ST .

5 Conclusion

The so-called generalized ¢-convex functions can be applied to obtain several results in convex analysis as well as related
optimization theory and may stimulate further research in different areas of pure and applied sciences. We have established
the Hermite-Hadamard type inequality for generalized ¢ —convex functions using the AB—fractional integral operator and
others related to the right side inequality of the aforementioned. The concept of generalized quasi ¢ —convex functions
was introduced and some fractional integral inequalities were also established for the type of functions under study.
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