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Abstract: Parameter estimation Based on Double Ranked Set Sampling (DRSS) designs was recently developed by Sabry
et al., (2019) and shows high efficiency and precision of the likelihood estimators when applied to the two-parameter
Weibull distribution. In this paper the likelihood function of the General Double Ranked Set Sampling (GDRSS) design
discussed by Taconeli & Cabral (2019) is derived and the two double ranked set sampling designs DRSS and GDRSS are
compared along with the usual Ranked Set Sampling (RSS) and Extreme Ranked Set Sampling (ERSS) designs for the
estimation of the parameters of the Power Generalized Weibull (PGW) distribution which is an extension of the two
parameter Weibull distribution. An intensive simulation has been made to compare the one- and the two- stages designs.
The results show that likelihood estimation based on DRSS and GDRSS designs provide more efficient estimators than the
usual RSS and ERSS designs. Moreover, the GDRSS is slightly more efficient that the DRSS designs in the case of
estimating the PGW distribution.

Keywords: Simple Random Sampling, Ranked Set Sampling, Extreme Ranked Set Sampling, Double Ranked Set
Sampling, Parameter Estimation, Maximum Likelihood Estimation.

1 Introduction

The Weibull distribution proposed by Waloddi Weibull (1951) is a very popular lifetime distribution that has been
extensively used over the past decades for modeling data in reliability, engineering and biological studies. Its simplified
density and cumulative distributions made it attractive for many authors to consider it in their different applications. It can
be approximately symmetric or skewed either positively or negatively. However, the Weibull distribution may not provide
a reasonable parametric fit in cases where the hazard rates are bathtub or unimodal shapes. To solve this problem, many
authors started to add more flexibility to it by developing new generalizations of the Weibull distribution by adding new
parameters. On the other hand, when increasing the number of parameters, the forms of the survival and hazard functions
may turn into complicated functions and the estimation problems may be challenging. [see for example Bebbington et al.
(2007), Mudholkar and Srivastava (1993), Ghitany et al. (2005), Wahed et al. (2009), Cordeiro et al. (2010), Silva et al.
(2010), Risti’c and Balakrishnan (2012)]. In this paper the power generalized Weibull (PGW) distribution which is another
generalization of the Weibull distribution proposed by Bagdonovacius and Nikulin in (2002). The hazard function of PGW
distribution can be constant, monotone (increasing and decreasing), bathtub shaped and upside down bathtub shaped. This
distribution is often used for constructing accelerated failures rate models. They also used the chi-square goodness-of-fit
test to illustrate that the PGW fits the randomly-censored survival time's data for patients at arm A of the head-and-neck
cancer clinical trial. Nikulin and Highlight (2009) have studied some of the statistical properties of PGW distribution. The
cumulative density function (cdf), probability density function (pdf) and quantile function of the power generalized Weibull
(PGW(4, a, B)) distribution are
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respectively, where f > 0 and a > 0 are two-shape parameters and A > 0 is a scale parameter andx >0, 0 <u < 1.

Ranked Set Sampling (RSS) was proposed by McIntyre (1952) to improve the estimation of the population mean while
sampling units are constituted in the RSS method, due to not doing certain measurements, the possibility of doing error in
ranking increases. In order to overcome this problem, various modifications of RSS have been suggested such as;
Samawi et al., (1996) introduced Extreme Ranked Set Sampling (ERSS), Muttlak, (1997) proposed median ranked set
sampling (MRSS), the two-stage RSS designs Double Ranked Set Sampling (DRSS), as developed by Al-Saleh and
AlKadiri, (2000), Muttlak, (2003) introduced Percentile Ranked Set Sampling (PRSS), L Ranked Set Sampling (LRSS)
was proposed by Al-Nasser (2007) and Neoteric Ranked Set Sampling, (NRSS) was introduced by Zamanzade and Al-
Omari (2016). Besides these studies, several authors have considered the estimation of the parameters of well-known
distributions using RSS or modifications of it. For example, estimation of P(X < Y) using Some Modifications of RSS for
Weibull Distribution was proposed by Akgiil and Senoglu (2017) , The estimation of unknown parameters of exponential,
extreme-value, logistic, Weibull and Pareto distributions was studied by Lam et al. (1994), and maximum likelihood
estimators of the parameters of a modified Weibull distribution using extreme ranked set sampling was introduced by Al-
Omari and Al-Hadrami (2011), Bhoj (1997), AbuDayyeh et al. (2004), Helu et al. (2010) and Abu-Dayyeh et al. (2013).and
a k-stage RSS design uses n¥*1 sample units from the target population to produce a sample of size n after k stages of
ranking developed by Taconeli & Cabral (2019).

The rest of the paper is organized as follows: In Section 2, theRSS and ERSS designs as examples of one-stage RSS designs
are described briefly. In Section 3, we describe briefly the DRSS and GDRSS designs as examples of two-stage RSS
designs. In Section 4, the maximum likelihood estimation of the PGW distribution parameters are considered when samples
are from the one-stage or two-stages RSS designs. Section 5 is devoted for the simulation for the numerical solutions of the
likelihood equations in each case. Finally, in Section 6, some concluding remarks are discussed.

2 The One-Stage RSS Designs

In this paper RSS and ERSS are used as an example of the one-stage ranked set samples. The following steps are employed
to obtain a RSS of size m:

Step 1: Randomly select m? units from the population; these units are randomly allocated into m sets, each of size m.
P y pop y

Step 2: The m units of each set are ranked either visually or by any inexpensive method with respect to the variable of
interest.

Step3: From the first set of m units, the smallest ranked unit is measured; from the second set of m units the second
smallest ranked unit is measured. The process continues until the m*® smallest unit (largest) is measured from the last set.

Step 4: The procedure can be repeated n times if needed to increase the sample size to nm units.
The Likelihood function corresponding to RSS scheme is as follows:
L(x;0) = [T}y T2 G f Crgoy s O)IF (x5 )11 = F sy 5 0)1" ©)

It should be noted that the error in ranking reduces the efficiency of the method. Samawi et al. (1996) proposed extreme
ranked set sampling as a useful modification of RSS. It requires identifying the extreme units only, as opposed to all ranks
as in the usual RSS. The method gives an unbiased estimate of the population mean in the case of symmetric distributions
and it is more efficient than simple random sampling (SRS).

ERSS introduced by Al-Omari and Ali-Hadrami (2011) method can be described as follows:
Step 1: Select m random samples each of size m units from the target population.

Step 2: Rank the units within each sample with respect to a variable of interest by visual inspection or any other
inexpensive method.
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Step 3: For actual measurement, if the sample size m is even, from the first m/2 sets select the lowest ranked unit of each
set and from the other m/2 m sets select the largest ranked unit. If the sample size is odd, from the first (m — 1)/2 sets
select the lowest ranked unit, from the other (m — 1) /2 sets select the largest ranked unit, and from the remaining set select

the median ranked unit.

Step 4: The procedure can be repeated r times if needed to increase the sample size to r Xm units.
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Fig. 1: ERSS design in case of even sample size.

The Likelihood function corresponding to ERSS scheme for even set sizes (m = 2p) and with r cycles is given as follows:
m-1
L) =h [H§=1 Iy m £ (xijs 0) [F(xaisi0) ] ]

X [[l=1 T2 p 1 m £ (Xnyi 3 0) (1= F(xemyi s 0) 177 )
where h is a constant and m = 2q + 1, The Likelihood function corresponding to ERSS scheme for m is odd and with r
cycles is given as follows:

L(8) = K [T [Ty m £ (e 0) [F(xaness0) 17|

m— m-1
X [Ty TG m £ (e 8) [1 = F (e 0) 1.

m—1

|1 ) (e ) (1= () )| ®

where ¢ = (m — 1)/2 and K is a constant and the variable X;); ; denotes the k" ranked unit (k = 1 or mor (m + 1)/2)
of the i*" sample at the j¢* cycle.

3 The two-Stages RSS Designs
As mentioned before the DRSS and General Double Ranked Set Sampling (GDRSS) are used as an example of the one-
stage ranked set samples. The following steps are employed to obtain a DRSS of size m.
DRSS is a two-stage design was proposed by Al-Saleh and Al-Kadiri (2000).
Step 1: Select m? elements from the target population and divide these elements randomly into n sets (of sizem?).
Step 2: Select a sample of size m in each set using RSS method.
Step 3: Apply the RSS procedure again to elements selected in step 2 to obtain a DRSS of size m.

Step 4: The cycle may be repeated m times.

Gy v Xam | [xGh v xam | [Xan v %Gm 4y Xam
: : , : : , : : and : :
X Kem) Ko 7 Xm] [Fon 7 X b " Xmm
Fig. 2: DRSS design in case of even sample size.
So, we have four judgment ranked sets of size m each:
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i (6))] (6)] ()] L
X, = mln{{x(]m,x(lzz), ....x(inm)},] =12, ...,r}, and

_ & & &) _
X = max {{x(n),x(zz), ....x(mm)}, k=r+1r+2, ...,m}.

The likelihood function for DRSS that is proposed by Sabry et al. (2019) is given as:

CaseI: m even (m = 2r)

1) = [ [mfine )11 - Flzm(xl,j)r”‘l‘ [ [T o) o Con )™ ©

k=r+1

Wherefl:m(xj) = mf(xl,j)[l - F(xl,j)]m_la F1:m(x1,j) =1-[1- F(xl,j)]m» frnm i) = mf (X i) [F (e )]™ " and
Fm:m(xm,k) = [F(xm,k)]
Casell: modd (m =2r+1)

L (9) = [H;j:l mfl:m(xl,j)[l - Fl:m(xl,j)]m_l] [H;cnzr+2 mfm:m(xm,k) [Fm:m(xm,k)]m_l]

2r +1)! r
X Wfr+1:m(x(r+1),(r+1)) (Fr+1:m(x(r+1),(r+1)) (1 - Fr+1:m(x(r+1),(r+1)))) ] ™

m-—t

t
where Fr+1:m(x(r+1),(r+1)) = Zﬁr+1 (T) (F(x(r+1),(r+1))) (1 - F(x(r+1),(r+1)))

GDRSS is a two-stage design discussed by Taconeli & Cabral (2019) in which the first stage is defined by RSS scheme,
followed by a second stage in which the RSS scheme must be performed

Step 1: Select m3 elements from the target population and divide these elements randomly into n sets (of size m?).
Step 2: Select a sample of size m in each set using RSS method.

Step 3: Ranked the units from the first stage into m sets, each of size m and apply the RSS procedure to obtain a DRSS of
sizem
Step 4: The cycle may be repeated m times.

Assume the elements are x, x2, ..., x 2@ x @ @ kI x I

After ranking the elements of each set (visually), we obtain

€) @ @ ©) ©) @ (m) (m)
Xay 7 *am) Yany 7 Xam | [*an 7 Xam) Yan 7 Xam)
Stage 1: : . : , : : , : : and : :
€ @ @) @) 3) @) (m) (m)
Xmy 7 XYaom] [Fey 7 Xam [Ymn 7 Xmm Xmy 7 Xmm)
The RSS sample is
W @ o @ @ 2) (m) _(m) (m)
x(ll) ) x(22) ) e ’x(mm) , x(ll) , x(zz), ’x(mm) ) e ,x(ll) ‘x(22)‘ ey x(mm)
S—— N — N—— N — N——— N N——
20 2 2 2P 23 2™ 25V
®»
21 Z(m)
Stage 2: H
m _(m)
2(1) X(m)

Fig. 3: GDRSS design.

and we apply the RSS procedure to obtain a DRSS of size m, then Z((ll)) , Z((Zz)) , Z((s)) ) ey Z((rrnn)) is GDRSS .

Since GDRSS is applied on existing order statistics variables, it can be easily shown that the likelihood function of a random
sample selected by the GDRSS is given as
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4 Maximum Likelihood Estimation

This section is devoted to the MLE for the wunknown parameters of PGW distribution based on
RSS, ERSS, DRSS and GDRSS designs.

4.1 Estimation Based on RSS

Let {Xij, i=12,..,n;j =1,2,..,r} be aranked set sample with cdf and pdf given in Egs. (1) and (2), where m is the set
size, 1 is the number of cycles and n = m r. According to Eq. (3) The Likelihood function of the RSS sample for PGW
distribution is given by,

L(x;0) = [T, 1321 G; (Aa[)’xfj_l(l + /lej)a_ (exp [1 -(1+ Ax ) D)

n—i

x(1- el—(1+lxﬁ)a)i_1 (el—(1+/1xﬁ)a)
where C; m and 8 = (4, 8, @). The log likelihood function can be derived directly as follows (£(8) = log L(8))
£(0) xmrlogdA+mrlogf+mrloga+ (B —1) Xi_; XiZilogxy),

+(l@ -1 X Xt log(l +/1x ) + Xjo1 iz [1 - (1 +/1x ) ]

+X X, (- 1)10g[ _ et-(axf)” ] + X 2 (m—0) [1 -(1+ /1x ) ]

The 1% derivatives becomes

m

a¢ _mr a-11 p
= 1)22 ZZ(X (1 +/1x X
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logxu <
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and
6£ N
_mr
ZZlog(1+/1x ) ZZ (1+/1xﬁ) ]log(1+/1x
j=1i= j=11i=1
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4.2 Estimation Based on ERSS

According to Eq. (4) The Likelihood function for even set sizes (m = 2p) and with r cycles based on ERSS is given by
a-1 a
LO)=h [H ,m Aaﬁx(l)u (1 + Ax(l)”) (exp [1 - (1 + Axfl)l.’j) ])]

B a-1 B ay\m
X [H = [[2pem /Iaﬁx(m)u (1 + Ax(m)i_j) (exp [1 - (1 + Ax(m)i'j) ]) ,
The log likelihood function is given as:

r
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and the first derivatives of the £ (9) are given by
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1+/1x(1)i,j) a (1 + Ax(l)i ]) Ax(l)ij log x(l)i,j
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_ Z log 1+ Ax(l)u ZZ 1 + Ax(l)” ]log (1 + Ax(l)u) + log( 1+ Axx(,p); ;
j=11i= j=1i=1 1i=p+1
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m
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When m is odd (m = 2q + 1) and based on ERSS, according to Eq. (5) the likelihood function L is given by
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Taking the natural logarithm of L(8) gets,
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and the first derivatives are given by
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r 49
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4.3 Estimation Based on DRSS

According to Eq. (6) the likelihood function for the DRSS design is derived as follows.
Case I: m even (m = 2r)

L(6) = [ m (m Aaﬁx T+ Axfj a_lel_(“’“‘fj)a (el_(l”"fj)a> ) ) (el_(l’f’“‘f.j)a)
m . mp(m-1)
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m(m—l)l

a-1 B \“ B\ m-1
1_[ m (m Aaﬁxﬁ}l(l + Axﬁ,k) el_(”’lxm,k) ) (1 - el_(““m,k) ) x
k=r+1
Then, the associated log-likelihood function is obtained as
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and

m T
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Casell: modd (m =2r+1)

According to Eq.(7) the likelihood function of the PGW distribution for odd set size is given by

r o m?
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Then, the associated log-likelihood function is obtained as
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and the first derivatives are given by
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Where F}L = 6Fr+1:m(x(r+1),(r+1))/a/1' F,B = aFr+1:m (x(r+1),(r+1))/aﬁ and Fa = aFr+1:m(x(r+1),(r+1))/6a'

4.4 Estimation Based on GDRSS
According to Eq. (7) the likelihood function of the PGW distribution for GDRSS design is given by
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the associated log-likelihood function is as follows
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and the first derivatives are given by
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5 Simulation Study

Sample units generated by the proposed sampling designs only become order statistics when the ranking process is done
without any error (perfect ranking). Because of this, the RSS-Based designs produce sample units that are neither
independent nor identically distributed which makes it difficult to analytically derive some of the properties of their
respective estimators [see Taconeli & Cabral (2019)]. Therefore, an extensive simulation study is conducted to evaluate the
derived likelihood function estimator's performance and compare their performance with other RSS-based designs
estimators' performance. The Monte Carlo simulation is made for the PGW distribution with different parameter values to
ensure a wide range of shapes of the PGW, namely PGW(1,1.3,1.5), PGW(0.4, 0.7, 4) and PGW(0.06,0.025,5). Figure 1
shows the density function for the PGW distribution for the initial parameter values used in the simulation. The simulation
is made for samples of sizes 5,6,9,10,14 and 15 and 50,000 replications. Let 8 -be the kth sample estimator generated
by a particular RSS-based sampling design k = 1,2,...,50,000. The comparison are made using two criteria: the
Relative Bias (RB) and Mean Square Errors (MSE), which are calculated as follows:

50,000 __ 1 50,000

RB = E o-9. MSE(8) = E (6-0)
- 0 ~ 50,000 e
im1 k=1
The Relative Efficiency (RE) to SRS estimators is calculated for each RSS-based design, by

MSEsgs(8)
MSEsgs(0)

RE(6) =

All simulations are performed using routines developed by the authors in the R environment for statistical computing.
Simulation results are shown in Tables 1 and 2. Also figure 4 shows the performance of the different RSS designs for the
different parameters.
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Fig. 4: The density function of the PGW distribution for different parameter values.
From figures and tables it can be noticed that:
1. As the sample size increases the relative bias decreases for 4, a, and 3.

2. As Aand a decreases and the sample sizes increase, the performance of the estimators of A, a, and £ for different
designs become higher.

3. GDRSS Design provides more efficient estimator than ERSS and RSS estimator and is slightly higher than the
DRSS design for all the distribution parameters.

4. The efficiency of both ERSS and DRSS for some sample sizes are nearly close but the overall performance of
DRSS is higher than the ERSS design.

5. Regarding the distribution shape, as the distribution becomes almost symmetric the RE is always higher than the
RE for the asymmetric shapes of the distribution.

6 Conclusions

In this paper, we have derived the likelihood function for the GDRSS design and compare it with the RSS, ERSS and DRSS
designs. Moreover, the MLE for PGW distribution based on SRS, RSS, ERSS, DRSS and GDRSS has been done.

An intensive numerical comparison between the SRS and different RSS deigns is done and it is shown than that the
GDRSS is more efficient for all values for the scale parameter and the two-shape parameters of the PGW distribution. we
have found that the likelihood estimation based on GDRSS proposed by Taconeli & Cabral (2019) provides slightly more
efficient estimators than the likelihood estimation based on the DRSS designs proposed by (Sabry et al., 2019).
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Table 1: Relative efficiency for RSS-based estimators compared to SRS based estimators under perfect ranking.

RSS ERSS DRSS GDRSS
PGW(4, a, ) m
A a B A a B A a B A a B
5 1.823 2.370 [2.570 |3.136 |1.550 |2.344 (2.344 2.652 [1.990 [2.312 |3.010 |3.258
6 1.992 12.590 [2.896 |3.496 |1.693 |2.398 [2.525 [2.915 (2.403 [2.723 |3.242 {3.960
9 2.226 |2.601 [3.360 (3.992 |1.892 [2.860 [3.266 |3.488 [2.430 (2.823 |3.279 |4.006
PGW(1,1.3,1.5)
10 2.514 |3.268 |3.382 |4.138 [2.137 [2.899 [2.852 |3.782 |3.032 [3.905 |3.662 |4.001
14 2.873 [3.735 (3.999 (4.440 2.442 [3.075 [3.539 |3.875 [3.136 |4.026 [4.544 |5.550
15 3.687 |3.998 |4.315 |4.732 (2.539 [3.301 [3.740 |3.999 |3.585 |4.062 |4.802 |5.682
5 2.188 |2.538 |2.854 (3.125 |1.859 (2.452 2.963 |3.296 [2.412 |2.894 |3.198 |3.535
6 2.390 |2.897 |3.132 [3.353 |2.186 [2.680 [3.265 |3.865 [2.635 (3.479 |3.482 |4.249
9 2.671 (3.371 |3.451 [3.762 [2.570 |2.994 [3.789 4.179 [2.945 |3.387 [3.939 |4.136
PGW(0.4,0.7,4)
10 3.017 |3.382 |3.758 |4.200 |2.813 |3.382 |4.207 [4.721 (3.326 [4.340 |4.384 |5.301
14 3.448 |4.145 3.992 |4.592 (3.076 |3.865 [4.526 |5.126 |3.801 |5.028 |6.855 |6.789
15 3.958 |4.584 |4.545 |4.945 (3.287 |4.018 [4.973 |5.397 |3.952 |5.837 |6.981 |7.130
5 1.788 |2.154 |2.354 |2.735 |1.385 |2.134 (2.302 [2.721 [1.838 [2.371 [2.533 |2.943
6 1.997 2.497 [2.513 |2.989 |1.759 |2.231 [2.599 [2.990 [2.008 [2.478 [2.858 (3.287
9 2.539 2.871 |3.157 [3.366 [1.892 [2.763 [3.066 [3.366 [2.244 |3.068 [3.373 |3.806
PGW(0.06,0.025,5)
10 2.631 (3.382 [3.758 (3.937 12.212 |3.190 [3.016 |3.532 (2.534 |3.543 [3.615 |3.705
14 3.128 |3.945 3.996 4.351 (2.744 |3.327 [3.739 |3.939 [2.896 (3.696 (3.998 |4.241
15 3.599 |4.284 |4.418 |4.738 |2.915 |3.864 (3.984 [4.131 [3.011 [3.983 |4.251 |4.647
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Table 2: Relative bias for RSS-based estimators under perfect ranking.
RSS ERSS DRSS GDRSS
PGW(4, a, 3)
A a B A a B A a B A a B
5 0.012510.0101 |0.0081 {0.0095 [0.0077 10.0062 |0.0093 [0.0075 |0.0060 |{0.0082 [0.0066 [0.0053
6 0.0097 10.0078 10.0063 0.0074 [0.0059 10.0047 {0.0072 [0.0058 (0.0046 |0.0063 {0.0051 [0.0041
9 0.0052 10.0042 10.0034 |0.0040 [0.0032 10.0025 0.0039 [0.0031 |0.0025 |0.0034 0.0027 (0.0022
PGW(1,1.3,1.5)
10 0.0026 0.0021 10.0017 0.0020 0.0016 |0.0013 {0.0019 [0.0015 (0.0012 |0.0017 {0.0014 [0.0011
14 0.0008 {0.0006 [0.0005 [0.0006 [0.0005 |0.0004 |0.0006 |0.0005 |0.0004 |0.0005 |0.0004 |0.0003
15 0.0005 0.0004 10.0003 |{0.0004 [0.0003 |0.0002 {0.0004 [0.0003 |0.0002 |0.0003 {0.0003 [0.0002
5 0.0100 {0.0081 [0.0065 [0.0008 [0.0007 |0.0005 |0.0007 |0.0006 |0.0005 |0.0006 {0.0005 {0.0004
6 0.0078 0.0062 10.0050 {0.0006 [0.0005 |0.0004 |0.0006 [0.0004 |0.0004 {0.0005 [0.0004 (0.0003
9 0.0042 10.0033 |0.0027 {0.0003 0.0003 |0.0002 {0.0003 0.0002 |0.0002 |0.0003 {0.0002 [0.0002
PGW(0.4,0.7,4)
10 0.0021 10.0017 10.0013 10.0002 [0.0001 |0.0001 {0.0001 {0.0001 (0.0001 |0.0001 {0.0001 [0.0001
14 0.0006 0.0005 |0.0004 |0.0001 [0.0000 |0.0000 {0.0000 {0.0000 (0.0000 |0.0000 {0.0000 [0.0000
15 0.0004 0.0003 |0.0003 {0.0000 [0.0000 |0.0000 {0.0000 {0.0000 (0.0000 |0.0000 {0.0000 [0.0000
5 0.0108 {0.0087 [0.0070 {0.0086 [0.0070 |0.0056 |0.0010 |0.0008 |0.0007 |0.0009 {0.0007 {0.0006
6 0.0084 {0.0067 [0.0054 [0.0067 [0.0054 |0.0043 |0.0008 |0.0007 |0.0005 {0.0007 {0.0006 {0.0005
9 0.0045 10.0036 |0.0029 {0.0036 [0.0029 |0.0023 0.0004 [0.0003 |0.0003 |0.0004 [0.0003 [0.0002
PGW(0.06,0.025,5)
10 0.0022 0.0018 |0.0014 10.0018 0.0014 10.0012 {0.0002 0.0002 (0.0001 |0.0002 {0.0002 [0.0001
14 0.0007 0.0006 |0.0004 {0.0006 [0.0004 |0.0004 {0.0001 {0.0001 |0.0000 |0.0001 0.0000 [0.0000
15 0.0004 0.0003 |0.0003 {0.0003 0.0003 |0.0002 {0.0000 {0.0000 (0.0000 |0.0000 {0.0000 [0.0000
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