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The author studies the inverse scattering problem for a boundary value problem of
a generalized one dimensional Schrödinger type with a discontinuous coefficient and
eigenparameter dependent boundary condition. The solutions of the considered eigen-
value equation is presented and its scattering function that satisfies some properties is
induced. The discrete spectrum is studied and the resolvent of the considered problem
is given. The scattering data are determined and hence the inverse scattering problem
is formulated and completely solved.
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1 Introduction

Consider the boundary value problem corresponding to the generalized form of the
one-dimensional Schrödinger equation

−y′′ + q(x)y = λρ(x)γ, x ∈ [0,∞), (1.1)

and the boundary condition:

(α1 + λβ1)y(0) = (α2 + λβ2)y
′(0), (1.2)

where λ is a complex number and δ = (α1β2−α2β1) > 0 is real number. We assume that
the function q is real and satisfies the condition.

∞∫

0

x |q(x)| dx < ∞, (1.3)

which is assumed to hold through out the paper. The function ρ is defined as:

ρ(x) =

{
γ2, .0 ≤ x ≤ a

I, .a < x < ∞ , γ 6= 1, γ ∈ R+

}
. (1.4)

∗Permanent Address: Mathematics Department, Faculty of Sciences, El-Mania University, El- Mania, Egypt.
Email: nofal ta@yahoo.com



212 T. A. Nofal

It is worthnoting that a differential equation is given in the direct problems and a par-
ticular solution is sought from certain functions. In the inverse problem a solution is given
and a particular differential equation is sought from a given class of equations.

The modern trend in quantum scattering theorems is to solve the inverse problem by
the so-called scattering data. These scattering data are defined as the collection of quanti-
ties {S(s); λ1, λ2, · · · , λn,M1,M2 , · · · ,Mn}. Here S(s) is the scattering function of the
problem and λ1, λ2, · · · , λn are eigenvalues and M1, M2, · · · ,Mn are called the normal-
ization coefficients.

It is well known (see [1], pp. 146-152) that the boundary value problems with spectral
parameter in the boundary condition have many interesting applications in mathematical
physics.

It may be pointed out that the direct and inverse problem is considered previously in dif-
ferent cases. In case ρ = 1 the direct and inverse problem of (1.1) with y′(0)− hy(0) = 0,

(see [2], [3]) has been solved earlier by the so called spectral distribution function while the
problem (1.1) with y(0) = 0 has been studied in the works [3], [4] by the inverse scattering
method. Furthermore, the inverse scattering problem of one-dimensional Schrödinger’s
eigenvalue problem with a discontinuous coefficient was studied when y(0) = 0 and
y′(0) = 0 [5], [6], [7]. It should be mentioned that the spectrum of the boundary value
problem (1.1)-(1.2) has been previously investigated in [8] when ρ(x) > 0 and the bound-
ary condition y(0) = 0 holds. The appearance of the eigenvalue in the boundary condition
also causes the Sturm-Liouville operator to lose its self-adjointness in L2[0, 1]. In fact, the
eigenfunctions do not form a basis in L2[0, 1] unless one of the eigenfunctions is removed
from the set. It is possible, however, to introduce an associated operator in L2[0, 1] that is
self-adjoint. The analysis of the applications, completeness, and expansion theory of the
regular direct problem is found in the work of Walter [9] and Fulton [10]. Andersent [11]
studied inverse eigenvalue problems with discontinuous cofficients. Glazman [12] investi-
gated direct methods for the qualitative spectral analysis of singular differential operator.
Binding et al. [13] presented asymptotic, oscillation, and comparison results.

Uniqueness results for the inverse spectral problem for Sturm-Liouville equations of
this type have been studied recently by Browne and Sleeman [14], [15], and by Binding et
al. [4]. Browne and Sleeman [15] discuss uniqueness for nodal spectral data. In Browne
and Sleeman [14], they establish uniqueness when p = r = 1, given one spectrum and
a sequence of norm constants. A more general result is that of Binding et al. [16], which
establishes uniqueness results for the cases when (i) two spectra are prescribed, (ii) one
spectrum and a sequence of norm constants are prescribed, and (iii) one spectrum with even
p, q, and r prescribed. Case (ii) is addressed again in Binding et al. [4], where Binding et
al. [4] construct a mapping from the eigenparameter dependent Sturm-Liouville problem
to the regulr Sturm-Liouville and apply the known results for the inverse Sturm-Liouville
problem. In this paper I have extended the previous results by considering (1.1) with (α1 +
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λβ1)y(0) = (α2 + λβ2)y′(0) and solve the inverse problem by the inverse scattering
method. The organization of this paper is as follows:

We collect in section 2 certain solutions of equation (1.1) from [2], [17] which we shall
use subsequently. Moreover, we defined the so called scattering function and we give its
asymptotic behavior. In section 3 we shall study of the discrete spectrum of the bound-
ary value problem (1.1)-(1.2) obtained, we obtain the resolvent of (1.1)-(1.2). As will
be seen in section 4, the collection of quantities

{
S(s) : −τ2

ni Mn, n = 1,m
}

is called
the scattering data of (1.1)-(1.2), where S(s) is the scattering function and the numbers
−τ2

1,−τ2
2, · · · ,−τ2

n are eigenvalues. The numbers M1,M2, · · · ,Mm are called the nor-
malization coefficients of (1.1-(1.2). Finally we will be aimed at solving the inverse scat-
tering problem of (1.1)-(1.2). The inverse scattering problem is being extended to a more
general case when ρ(x) = 1. In terms of the scattering data, the potential function q(x) and
weigh function ρ(x) and α1, α2, β1 and β2 are defined uniquely. This is a straightforward
consequence of Theorem 4.7.

2 Some Solutions of the Equation (1.1)

From condition (1.3) it is evident that equation (1.1) reduces asymptotically to the sim-
pler equation y′′ = λρy as x →∞ this permits us a complete investigation of the proper-
ties of solution to equation (1.1)

Let ϕ (x, s) and Ψ(x, s) denote the solutions to the equation (1.1) on the interval (0, a)
that satisfy the initial conditions:

ϕ(0, s) =∝2 +s2β2, ϕ′(0, s) = α1 + s2β1,

ψ(0, s) = β2, ψ′(0, s) = β1,
(2.1)

where λ
1
2 = s = σ + iτ such that 0 ≤ arg s > π.

Lemma 2.1. The solution ϕ (x, s) and Ψ(x, s) of the equation (1.1) on the interval [0, a]
may be expressed in the form

ϕ(x, s)=(α2+s2β2) cos γx+
α1+s2β1

sγ
sin sγx+

1
sγ

∫ x

0

sin sγ(x−t)q(t)ϕ(t, s)dt, (2.2)

and

ψ(x, s)=β2 cos sγx +
β1

sγ
sin sγx +

1
sγ

∫ x

0

sin sγ(x− t)q(t)ψ(t, s)dt,

For the proof, see [17].
On the interval (a,∞) equation (1.1) becomes −y′′ + q(x)y = s2y. Then, for any s

from the closed upper half plane, the above equation has solution F (x, s) of the form [2].

F (x, s) = eisx +
∫ ∞

s

k(x, t)eistdt a < x < ∞ (2.3)
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where the kernel K(x, t) satisfies the inequality

|K(x, t)| ≤ 1
2
σ

{
x + t

2

}
exp

{
σ1(x)− σ1(

x + t

2
)
}

,

and the condition
dk(x, x)

dx
= −1

2
q(x). (2.4)

Here
σ(x) =

∫ ∞

x

|q(t)| dt, and σ1(x) =
∫ ∞

x

σ(t)dt.

The solution F (x, s) is an analytic function of s in the upper half plane τ ≥ 0 and is
continuous on the real line. The following estimates hold.

|F (x, s)| ≤ exp [− Im sx + σ1] , (2.5)

and
|F ′x(x, s)− is exp(isx)| ≤ σ(x) exp {− Im sx + σ1(x)} . (2.6)

Theorem 2.2. The identity

2isϕ(x, s)
∆(s)

= F (x,−s)− S(s)F (x, s), (2.7)

holds for all real values s 6= 0, where

∆(s) = (α2 + s2β2)F
′(0, s)− (α1 + s2β1)F (0, s),

and

S(s) =
∆(−s)
∆(s)

= S(s) = [S(−s)]−1.

Proof. Since the functions F (x, s) and F (x,−s) form a fundamental system of solutions
to equation (1.1) for all real s 6= 0, thus

ϕ(x, s) = C1(s)F (x, s) + C2(s)F (x,−s).

Condition (2.1) yields

C1(s) =
∆(−s)

2is
and C2(s) =

∆(s)
2is

,

where
∆(s) = (α2 + s2β2)F

/(0, s)− (α1 + s2β1)F (0, s).

Hence ϕ(x, s) =
1

2is
[∆(s)F (x, s)−∆(−s)F (x, s)] . Since q(x) is real, ∆(−s) =

∆(s) and hence ∆(s) 6= 0 for all real s 6= 0. Therefore

2isϕ(x, s)
∆(s)

= F (x,−s)− S(s)F (x, s),
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with

S(s) =
∆(−s)
∆(s)

=

[
.

∆(s)
∆(−s)

]
=

[
∆(s)

∆(−s)

]−1

,

as claimed. ¤

Definition 2.3. The function S(s) is called the scattering function of equation (1.1) with
initial conditions (2.1).

Theorem 2.4. For large real s 6= 0, |s| → ∞ the following asymptotical formula

S(s)− S0(s) = 0(
1
S2

), (2.8)

holds, where

S0(s) = e−2isa[(β2 − isβ1)
sin sγa

γ
− (isβ1 + β2) cos sγa]

×
[
(β2 + isβ1)

sin sγa

γ
+ (isβ2 − β1) cos sγa

]−1

. (2.9)

Proof. It is clear that ϕ(x, s) and ψ(x, s) from a fundamental system of solutions of equa-
tion (1.1) on the interval [0, a], so

F (x, s) = d1(s)ϕ(x, s) + d2(s)ψ(x, s).

Now, condition (2.1) yields

d1(s) =
β2F

′(0, s)− β1F (0, s)
δ

, and d2 =
∆(s)

δ
.

Thus, we have

F (x, s) =
β2F

′(0, S)− β1F (0, S)
δ

ϕ(x, s) +
∆(s)

δ
ψ(x, s). (2.10)

Formula (10) gives

∆(s) = F ′(a, s)ϕ(a, s)− ϕ′(a, s)F (a, s).

Taking into account (2.2) and (2.4) we obtain

∆(s) = eisa

[
(β2 + isβ1)

sin vsa

a
+ (isβ1 − β2) cos vsa

]
+ O(

1
S2

).

Thus we conclude that

S(s) = ∆(−s)[∆(s)]−1

= e−2isa[(β2 − isβ1)
sin sγa

γ
− (isβ1 + β2) cos sγa]

×
[
(β2 + isβ1)

sin γas

γ
+ (isβ1 − β2) cos γsa

]−1

+ O (
1
s2

)

= S0(s) + O (
1
s2

)
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where S0 is derived by (2.9). ¤

3 The Discrete Spectrum and the Resolvent of (1.1)-(1.2)

This section is devoted to study the discrete spectrum and to obtained the resovent of
(1.1)-(1.2). We have the following lemma from [3]:

Lemma 3.1. The necessary and sufficient conditions that λ 6= 0 be an eigenvalue of (1.1)-
(1.2) are that

λ = s2, τ > 0 and ∆(s) = (α2 + s2β2)F
′(0, s)− (α1 + s2β1)F (0, s) = 0.

Theorem 3.2. The problem (1.1)- (1.2) does not have an eigenvalue on the positive semi-
axis. The set of eigenvalues is no more than countable, and its limit point can lie on the
half-axis λ ≥ 0, the eigenvalues are on the imaginary axis of s-plane and are all simple,
and bounded.

Proof. In the sequel, we show that the function ∆(s) 6= 0 for real values λ = s2 6= 0.

Suppose the contrary. Let s0 ∈ [0,∞), s0 6= 0 such that ∆(s0) = 0. Then, we have
(α2 + s2

0β2)F ′(0,−s0)− (α1 + s2
0β1)F (0, s0) = 0 . Since

2is0 = W [F (0,−s0), F (0,−S0)] = F (0,−s0)F ′(0, s0)− F ′(0,−s0)F (0, s0)

=
(α1 + s2

0β1)
α2 + s2

0β2

F (0,−s0)F (0, s0)− (α1 + s2
0β1)

(α2 + s2
0β2)

F (0,−s0)F (0, s0)

= 0,

the assumption leads to a contradiction s0 6= 0.
Therefore we conclude that equations (1.1)-(1.2) does not have positive eigenvalue and

this problem has not a singular spectrum. Since the function ∆(s) is an analytical function
in the upper half plane τ > 0, its zeros form an at most countable set having 0 as the
only possible limit point. Here, we show that the eigenvalues lie on the imaginary axis of
s-plane. Let s(s = 0 or lms > 0 be one of the zeros of ∆(s). Since.

W [ϕ(x, s), F (x, s)] = ∆(s) = 0,

we have
F (x, s) = c ϕ(x, s) and lim

x→0
F (x, s) = c,

and
F (x, s) =

β2F
′(0, s)− β1F (0, s)

δ
ϕ(x, s). (3.1)

Formula (3.1) leads to
lim
x→0

W.
[
F (x, s1), F (x, s2)

]
= 0, (3.2)
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for two arbitrary zeros s1 and s2 of ∆(s). Since q(x) is real function, we have.

W
[
F (x, s1), F (x, s2)

]−∞
0

= (s2
1 − s−2

2 )
∫ ∞

0

F (x, s1)F (x, s2)dx.

Using (3.1) and the estimate (2.5) and ( 2.6) we obtain.

(s2
1 − s−2

2 )
[
1
δ
|β2F

′(0, s1)− β1F (0, s1)|2 +
∫ ∞

0

F (x, s1)F (x, s2)
]

= 0.

Taking, in particular, s1 = s2 to have s1 + s2 = 0,i.e. s1 = i τ1. Then, the zero of the
function ∆(s) can lie only on the imaginary axis. Also, From [2] and the estimate equation
(2.5) and equation (3.2) we find that the zeros of ∆(s) are simple. Finally, since

∆(s) = e.isa

[
(β2 + isβ1)

sin sγa

γ
+ (isβ1 − β2) cos sγa

]
+ O (

1
s2

) 6= 0,

for sufficiently large s, the number λ = s2 cannot be an eigenvalue of equations (1.1)-(1.2)
and we conclude that these eigenvalues are a bounded set. The theorem is proved. ¤

Let H = L2(0, α; ρ(x))x C be the Hilbert space with scalar product

(F,G)H =
∫ ∞

0

{
f(x)g(x)

}
dx +

1
δ
f1g1,

where

F =

(
f(x)
f1

)
, G =

(
g(x)
g1

)
∈ H.

Let D(L) be the set of functions f(x) ∈ H , where f(x) is absolutely continuous on
every finite interval [0, a] .

−f//(x) + q(x)f(x) ∈ L2(0,∞, C2) and f1 = B2f
/(0)−B1f(0)

defines the operator

LF =

[
−F //(x) + q(x)f(x)
−(α2f

//(0)− α1f(0))

]
, F ∈ D(L).

Lemma 3.3. All numbers λ = s2 and τ > 0, and τ∆(s) 6= 0 belong to the resolvent set
of the problems (1.1)-(1.2). If ∆(s) 6= 0 then the resolvent for y′′ + g(x)y2 − λρy =
ρf, (α1 + s2β1)y(0) = (α2 + sβ2)y(0) + f1, x ∈ [0,∞) f(x) ∈ L2(0,∞; ρ(x) is an
integral operator

Gs(ρf) =
∫ ∞

0

G(x, t; s)ρ(t)f(t)dt +
f1

∆(λ)
F (x, λ),

where G(x, t, s) is defined by

G(x, t; s) =
−1

∆(s)

{
ϕ(x, s)F (t, s), t ≤ x

F (x, s)ϕ(t, s), t ≥ x
(3.3)

called the kernel resolvent for the problem (1.1)-(1.2).
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This lemma can be proved by using variation of parameter method and taking into
account the condition (1.2). It follows from variation of parameters that the general solution
of the nonhomogenous equation y′′ + q(x)y − λρy = ρf, x ∈ [0,∞) is

y(x, s) = C1F (x, s) + C2ϕ(x, s) +

∞∫

0

G(x, t; s)ρ(t)f/t)dt,

where G(x, t, s) is defined by (3.3). Since, for values of s in the upper half-plane, the
functions F (x, s) ∈ L2(0,∞, ρ(x)) and ϕ(x, s) /∈ L2(0,∞, ρ(x)) are the solutions of the
homogenous equation (1.1), c1F (x, s) + c2ϕ(x, s) is a solution of (1.1) that belongs to

L2(0,∞; ρ(x)) only for those values s in upper half plane when c2 = 0, c1 =
F1

∆(S)
. So,

y(x, s) is the unique solution that belongs to L2(0,∞, ρ(x))xc of equation (1.1). It can be
directly checked that the function y(x, s) satisfies condition (1.2).

4 Eigenfunction Expansion and Formulation of Inverse Scattering
Problem of (1.1)-(1.2)

In this section, we obtain the expansion of eigenfunctions of (1.1)-(1.2) by Titchmaris
methods [18] and the results of [19]. Moreover we give the inverse scattering problem
(1.1)-(1.2) for this purpose since the scattering data of (1.1)-(1.2) are known, thus we can
construct the fundamental equation for unique kernel k(x, t) of formula (2.3).

Lemma 4.1. Assume that the function f(t) is finite and has continuous derivative in
L2(0,∞, ρ(x)) and satisfies the boundary condition (1.2). Then

f1F (x, s)
∆(s)

+

∞∫

0

G(x, t ; s)ρ(t)f(t)dt

= −f(x)
s2

+
1
s2

∞∫

0

G(x, t.; s)h(t)dt +
F (x, s)(α2f

/(0)− α1f(0)}
s2∆(s)

where h(t) = −f ′′(t) + q(t)f(t). Furthermore, if τ > 0 and s →∞, then

∞∫

0

G(x, t ; s) ρ(t)f(t)dt +
f1F (x, s)

∆(s)
=
−f(x)

s2
+ 0(

1
s2

). (4.1)

Proof. Since ϕ(x, s) and F (x, s) satisfy equation (1.1), using equation (3.3) we find that
∫ ∞

0

G(x, t, s)ρ(t)f(t)dt =
−1

s2∆(s)
[F (x, s)

∫ x

0

[ϕ′′(t, s)− q(t)ϕ(t, s)] f(t)dt

+ϕ(x, s)
∫ ∞

0

[F ′′(t, s)− q(t)f(t, s)] f(t)dt].
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Integrating this identity by parts we get the first part of the lemma.
From equations (2.2), (2.5) and (3.3) we find that G(x, t, s)h(t) = O(1.1) as τ > 0

and |s| → ∞. Hence equation (4.1) follows directly. ¤

The following lemma is from [19]:

Lemma 4.2. G(x, t; s) = G(x, t; s).

In view of these lemmas we prove the following expansion theorem.

Theorem 4.3. If the function f(x) satisfies the conditions of lemma 4.1, then its expansion
by eigenfunctions of (1.1)-(1.2) can be written in the form

f(x) =
1
2π

∫ ∞

0

∫ ∞

0

U(x, s)U(t,−s)ρ(t)f(t)dtds+
m∑

n=1

∫ ∞

0

U(x, iτn)U(t, it)ρ(t)f(t)dt

+
1
π

∫
ϕ(x, s)
|∆(s)|2 f1ds +

∞∑
n=1

F (x, τn)
∆(iτn)

f1, (4.2)

where U(x, i τn) = MnF (x, i τn) and

M2
n =

2iτnδ

∆(iτn) [β2F
′(0, iτn)− β1F (0, iτn])

.

Proof. Suppose that f(x) satisfied the conditions of lemma 4.1, then equation (4.1)

holds. Multiplying both sides of equation (4.1) by
k

πi
and integrating over the semi-

circle |s| = r with respect to s in the upper half plane of s. Evidently, the integral,∫∞
0

G(x, t ; s)ρ(t)f(t)dt is a holomorphic function except at the zeroes {i τ1, · · · , i τn}
of the function ∆(s). Then use [19] to obtain

f(x) =
1
πi

∫ ∞

0

s

∫ ∞

0

[G(x, t; s + i 0)−G(x, t; s− i 0)] ρ(t)f(t)dtds

−
m∑

n=1

Re s

[
2s

∫ ∞

0

G(x, τ ; s)ρ(t)f(t)dt

]

s=iτn

−
m∑

n=1

Re s
f1F (x, λ)

∆(s)
]s=iτn

+
1
2π

∫ ∞

0

[
F (x, s + i 0)
∆(s + i 0)

− F (x, s− i 0)
∆(s− i 0)

]
f1ds. (4.3)

Let us compute the first term in the right hand side of equation (4.3). In order to
compute this term, we determine G(x, t; s − i 0) and then use Lemma 4.2 to obtain
G(x, t; s + i 0). Substituting from equation (2.10) into equation (3.3), we get

G(x, t; s) = − 1
∆(s)

(β2F
′(0, S)− β1F (0, S))

δ
ϕ(x, s)ϕ(t, s)−R(x, t, s), (4.4)
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where

R(x, t, s) =

{
ψ(x, s)ϕ(t, s) t ≤ x

ϕ(x, s)ψ(t, s) t ≥ x

In view of equation (4.4) we get

G(x, t; s + i 0)−G(x, t; s− i 0) =
2iϕ(x, s)ϕ(t, s)

∆(s)∆(−s)
. (4.5)

Taking into account formula (2.7) then equation (4.5) can be rewritten on the form

G(x, t; s + i 0)−G(x, t; s− i 0) =
U(x, s)U(t, s)

−2is
,

where

U(x, s) =
2isϕ(x, s)

∆(s)
= F (x1 − s)− S(s)F (x, s).

Therefore

1
2ni

∫ ∞

0

∫ ∞

0

s [G(x, t; s + io)−G(x, t; s− io)] ρ(t)f(t)dtds

=
1
2n

∫ ∞

0

∫ ∞

0

U(x, s)U(t,−s)ρ(t)f(t)dtds (4.6)

Here, we compute the second term in the right hand side of (4.3). Since

∫ ∞

0

G(x, t; s)ρ(t)f(t)dt =
−(β2F

′(0, s)− β1F (0, s))
∆(s)δ

ϕ(x, s)
∫ ∞

0

ϕ(t, s)ρ(t)f(t)dt

−ψ(x, s)
∫ x

0

ϕ(t, s)ρ(t)f(t)dt− ϕ(x, s)
∫ ∞

x

ψ(t, s)ρ(t)f(t)dt

Evidently, the function ϕ(x, s) and ψ(x, s) are analytic and hence

m∑
n=1

Re s


−

x∫

0

ψ(x, s)ϕ(t, s)ρ(t)f(t)dt−
∞∫

x

ϕ(x, s)ψ(t, s)ρ(t)f(t)dt




s=i τn=0

= 0

Therefore, we have

I = −
∞∑

n=1

Re s

[
2s

∫ ∞

0

G(x, t; s)ρ(t)f(t)dt

]

s=i τn

= −
∞∑

n=1

−Re s

[
[
2s(β2F

′(0, s)− β2F (0, s))
∆(s)δ

]ϕ(x, s)
∫ ∞

0

ϕ(t, s)ρ(t)f(t)dt

]

s=iτn

= −
m∑

n=1

2i τn [β2F
′(0, i τn)− β1F (0, i τn)]

δ∆(iτn)
ϕ(x, i τn)

∫ ∞

0

ϕ(t, i τn)ρ(t)f(t)dt.
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Setting

M2
n =

2iτnδ

∆(iτn) [β2F
′(0, iτn)− β1F (0, i τn)]

and using (3.1) we find that:

I = −
∞∑

n=1

M2
n

∫ ∞

0

F (x, iτn)F (t, iτn)ρ(t)f(t)dt

= −
m∑

n=1

∫ ∞

0

U(x, iτn)U(t, iτn)ρ(t)f(t)dt, (4.7)

where U(x, iτn) = MnF (x, iτn) is the normalization eigenfunctions and the numbers
Mn, n = 1,m are called normalization coefficients. Hence, we obtain from equations (4.3)
,(4.6) and (4.7) the following expansion of f(x) by eigenfunctions of equations (1.1)-(1.2)

f(x) =
1
2π

∫ ∞

0

∫ ∞

0

U(x, s)U(t,−s)ρ(t)f(t)dtds

+
∞∑

n=1

∫ ∞

0

U(x, iτn)U(t, iτn)ρ(τ)f(t)dt +
1
π

∫
ϕ(x, s)
|∆(s)|2 f1ds +

∞∑
0

f(x, iτn)
∆(iτn)

f1,

and

f1 =
δ

π

∫ ∞

0

∫ ∞

0

ϕ(t, s)
|∆(s)|2 ρ(t)f(t)dtds +

δ

π

∫
f1

|∆(s)|2 ds

+
ρ∑

z=1

M2

∫ ∞

0

F (t, s)f(t) [β2F
′(0, iτn)− β1F (0, iτn)] dt

+
ρ∑

z=1

β2F
′(0, iτn)− β1F (0, iτn)

∆(izn)
f1.

This is the required result and thus the theorem is proved. ¤

Definition 4.4. The collection of quantities
{
S(s),−τ2

n,Mn, n = 1,m
}

is called the scat-
tering data of the problem (1.1)-(1.2).

Here the inverse scattering problem of the problem (1.1)-(1.2) can be stated as follows:
Knowing the scattering data of the problem (1.1)-(1.2), can we reconstruct equation (1.1)
and (1.2), that is, can we find the potential function q, the density function ρ(x), α1, α2, β1

and β2?
In this section we give an answer to this question for solving the inverse problem (1.1)-

(1.2). For this purpose, since scattering data of the problem (1.1)-(1.2) are known, we can
construct the fundamental equation for unique kernel k(x, t) of formula (2.3). Using the
methods of the [5] and [14] we can prove the following theorem:
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Theorem 4.5. The kernel of formula (2.3) satisfies the fundamental equation.

F (x, t) + k(x, t) +

∞∫

0

k(x, y)f(y + t)dy = 0, 0 < x < y < ∞, (4.7)

where

F (x) =
1
2π

∫ ∞

0

[S0(s)− S(s)] exp(isx)ds +
∞∑

n=1

M2
n exp(−τnx), (4.8)

and S0(s) is defined by (2.9).

It should be mentioned that for construction, the fundamental equation, it is sufficient to
know the function F (x) in its turn, to find F (x) it is sufficient to know the scattering data.
Equation (4.8) plays an important role in the solution of the inverse scattering problem of
(1.1)-(1.2) on (a, ∞). If equation (4.8) has a unique solution K(x, t) then the potential
q(x) can be found from (2.4). As we have just mentioned previously, we prove that the
fundamental (4.8) has a unique solution K(x, t) as a < x < ∞

Theorem 4.6. For every fixed a < x < ∞ the fundamental equation (4.8) has a unique
solution in L2(x,∞)

To prove this theorem, it is sufficient to show that the homogenous equations

f(t) +
∫ ∞

s

f(y)F (y + t)dy = 0

has only the zero solution in L2(x,∞) [5].
Furthermore, in this section we have constructed the fundamental equation for the ker-

nel k(x, t) of (2.3) and showed that it has a unique solution at once. Finally, we establish
the uniqueness theorem.

Theorem 4.7. Assume that the condition (1.3) and the formula (1.4) holds. If the scattering
data

{
S(s); −τ2

n,Mn,n = 1, m
}

are known then the function q an ρ are defined uniquely.

Proof. Consider S0(s, a, ν, α1, α2, β1, β2) as the scattering function of the problem y′′ =
s2ν2y, (α1 + sβ1)y′(0) − (α2 + sβ2)y(0) = 0, then S0(s, a, α1, α2, β1, β2) can be
defined by formula (2.9). Taking ν = ν′, α1 = α′1, α2 = α′2 β1 = β′1, and β2 = β′2,
thus it is easily seen that lim

s→∞
S0(s, a1, α1, α2, β1, β2)S

−1
0 (s, a, α′1, α

′
2, β

′
1, β

′
2) does not

exist and therefore by S0(s, a, αi, βi). The numbers a, ν and αi, βi are defined uniquely.
Upon using theorem 2.4 we find that lim

s→∞
S(s)S−1

0 (s, a, ν, αi, βi) = 1, where S(s0)

is the scattering function of (1.1)-(1.2). Hence , by using S(s) the numbers a, αi, βi are
defined uniquely and then the density function ρ is reconstructed uniquely. Now, we have
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already obtained fundamental equation (4.8) in theorem 4.6 and proved that this equation
has a unique solution K(x, t) such that

q(x) = −2
d

dx
K(x, x)

holds as a ≺ x ≺ ∞.

Thus the potential function q is defined uniquely as a < x < ∞ and hence equation
(1.1) can be reconstructed on this interval. Since the functions F (a, s) and F ′(a, s) are
already defined thus we have the collection of quantities

{
S(s);−τ2

n, Mn; F (a, s); F ′(a, s), n = 1,m
}

.

The problem now is using these data to define q when 0 ≤ x ≤ a. For this purpose, we
construct Weyl’s Function [3], [16], [20] for equation on [0, a] by two spectra. Thus taking
the following boundary value problems

−y′′ + q(x)y = y2γ2y (4.9)

y′(0)− θy(0) = 0; y′(a) + HY (a) = 0, (4.10)

and
−y′′ + q(x)y = s2γ2y (4.11)

y′(0)− θ′y(0) = 0; y′(a) + Hy(a) = 0, (4.12)

where θ =
α1 + λβ11

α2 + λβ2

, θ′ =
α′1 + λβ′1
α′2 + λβ′2

and H are real numbers such that θ 6= θ′.

Denote by ϕ(x, s) and Z(x, s) the solutions of equation (4.9) with the initial conditions
ϕ(0, s) = 1, ϕ′(0, s) = θ and Z(0, s) = 1, and Z ′(0, S) = θ′respectively. Then

M(s) = −Z ′(a, s) + HZ(a, s)
ϕ′(a, s) + Hϕ(a, s)

,

which is called Weyl’s function of the problems (4.9)-(4.10) and (4.11)-(4.12).
Since

ϕ(x, s) =
1

2is
[∆(s)F (x,−s)−∆(−s)F (x, s)] ,

and
Z(x, s) =

1
2is

[∆1(s)F (x, s)−∆1(−s)F (x, s)] ,

where
∆1(s) = F ′(0, s)− h1F (0, s),

M(s) =
S1(s)F ′(a, s)− F ′(a,−s) + H [S1(s)F (a, s)− F (a,−s)]
F ′(A,−s)− S(s)F ′(a, s) + H [f(a,−s)− S(s)F (a, s)]

,

with
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S1(s) =
∆1(−s)
∆1(s)

.

The function M(s) is moromorphic such that its poles and zeros coincide with eigen-
values of the problems (4.11)-(4.12), respectively.

Since the functions S(s), F (a, s), and F ′(a, s) are defined, M(s) is uniquely defined
by this way.

We set up the function

σ(s) = lim
ς→0

1
a

∫ s

0

Im M(s + iς)ds

Hence the function q is uniquely defined by two spectra on [0, a] from the work of Gelfand-
Levitan-Gasymov-Seleeman and William Rundell [14], [20], [21], [22]. Finally, we con-
clude that equation (1.1) can be reconstructed on the interval [0, ∞) and this completes the
proof of the theorem. ¤
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