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1 Introduction

The concept of a preopen set in a topological space was
introduced by H.H. Corson and E. Michael in 1964 [4]. A
subset A of a topological space (X ,τ) is called preopen or
locally dense or nearly open if A ⊆ Int(Cl(A)). A set A is
called preclosed if its complement is preopen or
equivalently if Cl(Int(A)) ⊆ A. The term ,preopen, was
used for the first time by A.S. Mashhour, M.E. Abd
El-Monsef and S.N. El-Deeb [20], while the concept of a
, locally dense, set was introduced by H.H. Corson and E.
Michael [4].

The concept of a semi-open set in a topological space
was introduced by N. Levine in 1963 [17]. A subset A of
a topological space (X ,τ) is called semi-open [10] if A ⊆
Cl(Int(A)). A set A is called semi-closed if its complement
is semi-open or equivalently if Int(Cl(A))⊆ A.

Recall that a subset A of a topological space (X ,τ) is
called α−open if A is the difference of an open and a
nowhere dense subset of X . A set A is called α−closed if
its complement is α−open or equivalently if A is union of
a closed and a nowhere dense set.

We have a set is α−open if and only if it is semi-open
and preopen.

A generalized class of closed sets was considered by
Maki in [19]. He investigated the sets that can be
represented as union of closed sets and called them
V−sets. Complements of V−sets, i.e., sets that are
intersection of open sets are called Λ−sets [19].

Recall that a real-valued function f defined on a
topological space X is called A−continuous [24] if the
preimage of every open subset of R belongs to A, where A

is a collection of subsets of X . Most of the definitions of
function used throughout this paper are consequences of
the definition of A−continuity. However, for unknown
concepts the reader may refer to [5, 11]. In the recent
literature many topologists had focused their research in
the direction of investigating different types of
generalized continuity.

J. Dontchev in [6] introduced a new class of mappings
called contra-continuity. S. Jafari and T. Noiri in [12, 13]
exhibited and studied among others a new weaker form
of this class of mappings called contra-α−continuous. A
good number of researchers have also initiated different
types of contra-continuous like mappings in the papers [1,
3, 8, 9, 10, 23].

Hence, a real-valued function f defined on a
topological space X is called contra-α−continuous (resp.
contra-semi−continuous , contra-precontinuous) if the
preimage of every open subset of R is α−closed (resp.
semi−closed , preclosed) in X[6].

Results of Katětov [14, 15] concerning binary relations
and the concept of an indefinite lower cut set for a real-
valued function, which is due to Brooks [2], are used in
order to give a necessary and sufficient conditions for the
insertion of a contra-α−continuous function between two
comparable real-valued functions.
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If g and f are real-valued functions defined on a space
X , we write g ≤ f (resp. g < f ) in case g(x)≤ f (x) (resp.
g(x)< f (x)) for all x in X .

The following definitions are modifications of
conditions considered in [16].

A property P defined relative to a real-valued function
on a topological space is a cα−property provided that
any constant function has property P and provided that
the sum of a function with property P and any
contra-α−continuous function also has property P. If P1

and P2 are cα−property, the following terminology is
used:(i) A space X has the weak cα−insertion property

for (P1,P2) if and only if for any functions g and f on X

such that g ≤ f ,g has property P1 and f has property P2,
then there exists a contra-α−continuous function h such
that g ≤ h ≤ f .(ii) A space X has the cα−insertion

property for (P1,P2) if and only if for any functions g and
f on X such that g < f ,g has property P1 and f has
property P2, then there exists a contra-α−continuous
function h such that g < h < f .(iii) A space X has the
weakly cα−insertion property for (P1,P2) if and only if
for any functions g and f on X such that g < f ,g has
property P1 , f has property P2 and f − g has property P2,
then there exists a contra-α−continuous function h such
that g < h < f .

In this paper, is given a sufficient condition for the
weak cα−insertion property. Also for a space with the
weak cα−insertion property, we give a necessary and
sufficient condition for the space to have the
cα−insertion property. Several insertion theorems are
obtained as corollaries of these results. In addition, the
weak insertion of a contra-continuous function has also
recently considered by the authors in [21].

2 The Main Result

Before giving a sufficient condition for insertability of a
contra-α−continuous function, the necessary definitions
and terminology are stated.

Let (X ,τ) be a topological space, the family of all
α−open, α−closed, semi-open, semi-closed, preopen
and preclosed will be denoted by αO(X ,τ), αC(X ,τ),
sO(X ,τ), sC(X ,τ), pO(X ,τ) and pC(X ,τ), respectively.

Definition 2.1. Let A be a subset of a topological space
(X ,τ). We define the subsets AΛ and AV as follows:
AΛ = ∩{O : O ⊇ A,O ∈ (X ,τ)} and
AV = ∪{F : F ⊆ A,Fc ∈ (X ,τ)}.
In [7, 18, 22], AΛ is called the kernel of A.

We define the subsets
α(AΛ ),α(AV ), p(AΛ ), p(AV ),s(AΛ ) and s(AV ) as
follows:

α(AΛ ) = ∩{O : O ⊇ A,O ∈ αO(X ,τ)}
α(AV ) = ∪{F : F ⊆ A,F ∈ αC(X ,τ)},
p(AΛ ) = ∩{O : O ⊇ A,O ∈ pO(X ,τ)},

p(AV ) = ∪{F : F ⊆ A,F ∈ pC(X ,τ)},
s(AΛ ) = ∩{O : O ⊇ A,O ∈ sO(X ,τ)} and
s(AV ) = ∪{F : F ⊆ A,F ∈ sC(X ,τ)}.

α(AΛ ) (resp. p(AΛ ), s(AΛ )) is called the α − kernel

(resp. prekernel, semi− kernel) of A.

The following first two definitions are modifications
of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set S then ρ̄ is
defined as follows: x ρ̄ y if and only if y ρ v implies x ρ v

and u ρ x implies u ρ y for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X)
of a topological space X is called a strong binary relation

in P(X) in case ρ satisfies each of the following
conditions:

1) If Ai ρ B j for any i ∈ {1, . . . ,m} and for any j ∈
{1, . . . ,n}, then there exists a set C in P(X) such that Ai ρ C

and C ρ B j for any i ∈ {1, . . . ,m} and any j ∈ {1, . . . ,n}.
2) If A ⊆ B, then A ρ̄ B.
3) If A ρ B, then α(AΛ )⊆ B and A ⊆ α(BV ).

The concept of a lower indefinite cut set for a
real-valued function was defined by Brooks [2] as
follows:

Definition 2.4. If f is a real-valued function defined on
a space X and if {x ∈ X : f (x) < ℓ} ⊆ A( f , ℓ) ⊆ {x ∈ X :
f (x)≤ ℓ} for a real number ℓ, then A( f , ℓ) is called a lower

indefinite cut set in the domain of f at the level ℓ.
We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the
topological space X , in which α−kernel sets are α−open,
with g ≤ f . If there exists a strong binary relation ρ on
the power set of X and if there exist lower indefinite cut
sets A( f , t) and A(g, t) in the domain of f and g at the
level t for each rational number t such that if t1 < t2 then
A( f , t1) ρ A(g, t2), then there exists a
contra-α−continuous function h defined on X such that
g ≤ h ≤ f .
Proof. Let g and f be real-valued functions defined on the
X such that g ≤ f . By hypothesis there exists a strong
binary relation ρ on the power set of X and there exist
lower indefinite cut sets A( f , t) and A(g, t) in the domain
of f and g at the level t for each rational number t such
that if t1 < t2 then A( f , t1) ρ A(g, t2).

Define functions F and G mapping the rational
numbers Q into the power set of X by F(t) = A( f , t) and
G(t) = A(g, t). If t1 and t2 are any elements of Q with
t1 < t2, then F(t1) ρ̄ F(t2),G(t1) ρ̄ G(t2), and
F(t1) ρ G(t2). By Lemmas 1 and 2 of [15] it follows that
there exists a function H mapping Q into the power set of
X such that if t1 and t2 are any rational numbers with
t1 < t2, then F(t1) ρ H(t2),H(t1) ρ H(t2) and
H(t1) ρ G(t2).

For any x in X , let h(x) = inf{t ∈Q : x ∈ H(t)}.
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We first verify that g ≤ h ≤ f : If x is in H(t) then x is
in G(t ′) for any t ′ > t; since x is in G(t ′) = A(g, t ′) implies
that g(x)≤ t ′, it follows that g(x)≤ t. Hence g ≤ h. If x is
not in H(t), then x is not in F(t ′) for any t ′ < t; since x is
not in F(t ′) = A( f , t ′) implies that f (x)> t ′, it follows that
f (x) ≥ t. Hence h ≤ f .

Also, for any rational numbers t1 and t2 with t1 < t2,
we have h−1(t1, t2) = α(H(t2)

V ) \ α(H(t1)
Λ ). Hence

h−1(t1, t2) is α−closed in X , i.e., h is a
contra-alpha−continuous function on X . �
The above proof used the technique of theorem 1 in [14].

Theorem 2.2. Let P1 and P2 be cα−property and X be a
space that satisfies the weak cα−insertion property for
(P1,P2). Also assume that g and f are functions on X such
that g < f ,g has property P1 and f has property P2.The
space X has the cα−insertion property for (P1,P2) if and
only if there exist lower cut sets A( f −g,3−n+1) and there
exists a decreasing sequence {Dn} of subsets of X with
empty intersection and such that for each n,X \ Dn and
A( f − g,3−n+1) are completely separated by
contra-α−continuous functions.
Proof. Assume that X has the weak cα−insertion
property for (P1,P2). Let g and f be functions such that
g < f ,g has property P1 and f has property P2. By
hypothesis there exist lower cut sets A( f − g,3−n+1) and
there exists a sequence (Dn) such that

⋂∞
n=1 Dn = ∅ and

such that for each n,X \ Dn and A( f − g,3−n+1) are
completely separated by contra-α−continuous functions.
Let kn be a contra-α−continuous function such that
kn = 0 on A( f − g,3−n+1) and kn = 1 on X \Dn. Let a
function k on X be defined by

k(x) = 1/2
∞

∑
n=1

3−nkn(x).

By the Cauchy condition and the properties of
contra-α−continuous functions, the function k is a
contra-α−continuous function. Since

⋂∞
n=1 Dn = ∅ and

since kn = 1 on X \ Dn, it follows that 0 < k. Also
2k < f − g: In order to see this, observe first that if x is in
A( f −g,3−n+1), then k(x)≤ 1/4(3−n). If x is any point in
X , then x /∈ A( f − g,1) or for some n,

x ∈ A( f − g,3−n+1)−A( f − g,3−n);

in the former case 2k(x) < 1, and in the latter
2k(x)≤ 1/2(3−n)< f (x)−g(x). Thus if f1 = f − k and if
g1 = g + k, then g < g1 < f1 < f . Since P1 and P2 are
cα−properties, then g1 has property P1 and f1 has
property P2. Since X has the weak cα−insertion property
for (P1,P2), then there exists a contra-α−continuous
function such that g1 ≤ h ≤ f1. Thus g < h < f , it follows
that X satisfies the cα−insertion property for (P1,P2).
(The technique of this proof is by Katětov[14]).

Conversely, let g and f be functions on X such that g
has property P1, f has property P2 and g < f . By
hypothesis, there exists a contra-α−continuous function
such that g < h < f . We follow an idea contained in Lane

[16]. Since the constant function 0 has property P1, since
f − h has property P2, and since X has the cα−insertion
property for (P1,P2), then there exists a
contra-α−continuous function such that 0 < k < f − h.

Let A( f − g,3−n+1) be any lower cut set for f − g and let

Dn = {x ∈ X : k(x) < 3−n+2}. Since k > 0 it follows that⋂∞
n=1 Dn =∅. Since

A( f −g,3−n+1)⊆ {x ∈ X : ( f −g)(x) ≤ 3−n+1} ⊆ {x ∈ X : k(x) ≤ 3−n+1}

and since {x ∈ X : k(x) ≤ 3−n+1} and
{x ∈ X : k(x) ≥ 3−n+2} = X \ Dn are completely
separated by contra-α−continuous functions
sup{3−n+1, inf{k,3−n+2}}, it follows that for each
n,A( f −g,3−n+1) and X \Dn are completely separated by
contra-α−continuous functions.�

3 Applications

The abbreviations cαc, cpc and csc are used for
contra-α−continuous, contra-precontinuous and
contra-semi−continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2,
we suppose that X is a topological space whose α−kernel
sets are α−open.

Corollary 3.1. If for each pair of disjoint preopen (resp.
semi−open) sets G1,G2 of X , there exist α−closed sets
F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 =∅

then X has the weak cα−insertion property for (cpc,cpc)
(resp. (csc,csc)).
Proof. Let g and f be real-valued functions defined on X ,
such that f and g are cpc (resp. csc), and g ≤ f .If a binary
relation ρ is defined by A ρ B in case p(AΛ )⊆ p(BV ) (resp.
s(AΛ ) ⊆ s(BV )), then by hypothesis ρ is a strong binary
relation in the power set of X . If t1 and t2 are any elements
of Q with t1 < t2, then

A( f , t1)⊆{x∈X : f (x)≤ t1}⊆ {x∈X : g(x)< t2}⊆A(g, t2);

since {x ∈ X : f (x) ≤ t1} is a preopen (resp. semi−open)
set and since {x ∈ X : g(x) < t2} is a preclosed (resp.
semi−closed) set, it follows that
p(A( f , t1)

Λ ) ⊆ p(A(g, t2)
V ) (resp.

s(A( f , t1)
Λ ) ⊆ s(A(g, t2)

V )). Hence t1 < t2 implies that
A( f , t1) ρ A(g, t2). The proof follows from Theorem 2.1.
�

Corollary 3.2. If for each pair of disjoint preopen (resp.
semi−open) sets G1,G2, there exist α−closed sets F1 and
F2 such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩F2 =∅ then every
contra-precontinuous (resp. contra-semi−continuous)
function is contra-α−continuous.
Proof. Let f be a real-valued contra-precontinuous (resp.
contra-semi−continuous) function defined on X . Set
g = f , then by Corollary 3.1, there exists a
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contra-α−continuous function h such that g = h = f .�

Corollary 3.3. If for each pair of disjoint preopen (resp.
semi−open) sets G1,G2 of X , there exist α−closed sets
F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and
F1 ∩ F2 = ∅ then X has the cα−insertion property for
(cpc,cpc) (resp. (csc,csc)).
Proof. Let g and f be real-valued functions defined on the
X , such that f and g are cpc (resp. csc), and g < f . Set
h = ( f + g)/2, thus g < h < f , and by Corollary 3.2,
since g and f are contra-α−continuous functions hence h

is a contra-α−continuous function.�

Corollary 3.4. If for each pair of disjoint subsets G1,G2

of X , such that G1 is preopen and G2 is semi−open, there
exist α−closed subsets F1 and F2 of X such that G1 ⊆ F1,
G2 ⊆ F2 and F1 ∩ F2 = ∅ then X have the weak
cα−insertion property for (cpc,csc) and (csc,cpc).
Proof. Let g and f be real-valued functions defined on X ,
such that g is cpc (resp. csc) and f is csc (resp. cpc), with
g ≤ f .If a binary relation ρ is defined by A ρ B in case
s(AΛ ) ⊆ p(BV ) (resp. p(AΛ ) ⊆ s(BV )), then by
hypothesis ρ is a strong binary relation in the power set of
X . If t1 and t2 are any elements of Q with t1 < t2, then

A( f , t1)⊆{x∈X : f (x)≤ t1}⊆ {x∈X : g(x)< t2}⊆A(g, t2);

since {x ∈ X : f (x) ≤ t1} is a semi−open (resp. preopen)
set and since {x ∈ X : g(x) < t2} is a preclosed (resp.
semi−closed) set, it follows that
s(A( f , t1)

Λ ) ⊆ p(A(g, t2)
V ) (resp.

p(A( f , t1)
Λ ) ⊆ s(A(g, t2)

V )). Hence t1 < t2 implies that
A( f , t1) ρ A(g, t2). The proof follows from Theorem 2.1.
�

Before stating consequences of Theorem 2.2, we state
and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are
equivalent:

(i) For each pair of disjoint subsets G1,G2 of X , such
that G1 is preopen and G2 is semi−open, there exist
α−closed subsets F1,F2 of X such that G1 ⊆ F1,G2 ⊆ F2

and F1 ∩F2 =∅.

(ii) If G is a semi−open (resp. preopen) subset of X

which is contained in a preclosed (resp. semi−closed)
subset F of X , then there exists an α−closed subset H of
X such that G ⊆ H ⊆ α(HΛ )⊆ F .

Proof. (i) ⇒ (ii) Suppose that G ⊆ F , where G and F

are semi−open (resp. preopen) and preclosed (resp.
semi−closed) subsets of X , respectively. Hence, Fc is a
preopen (resp. semi−open) and G∩Fc =∅.

By (i) there exists two disjoint α−closed subsets F1,F2

such that G ⊆ F1 and Fc ⊆ F2. But

Fc ⊆ F2 ⇒ Fc
2 ⊆ F,

and

F1 ∩F2 =∅⇒ F1 ⊆ Fc
2

hence
G ⊆ F1 ⊆ Fc

2 ⊆ F

and since Fc
2 is an α−open subset containing F1, we

conclude that α(FΛ
1 )⊆ Fc

2 , i.e.,

G ⊆ F1 ⊆ α(FΛ
1 )⊆ F.

By setting H = F1, condition (ii) holds.
(ii) ⇒ (i) Suppose that G1,G2 are two disjoint subsets

of X , such that G1 is preopen and G2 is semi−open.
This implies that G2 ⊆ Gc

1 and Gc
1 is a preclosed subset

of X . Hence by (ii) there exists an α−closed set H such
that G2 ⊆ H ⊆ α(HΛ )⊆ Gc

1.
But

H ⊆ α(HΛ )⇒ H ∩α((HΛ )c) =∅

and
α(HΛ )⊆ Gc

1 ⇒ G1 ⊆ α((HΛ )c).

Furthermore, α((HΛ )c) is an α−closed subset of X .
Hence G2 ⊆ H,G1 ⊆ α((HΛ )c) and H ∩α((HΛ )c) = ∅.
This means that condition (i) holds.�

Lemma 3.2. Suppose that X is a topological space. If
each pair of disjoint subsets G1,G2 of X , where G1 is
preopen and G2 is semi−open, can be separated by
α−closed subsets of X then there exists a
contra-α−continuous function h : X → [0,1] such that
h(G2) = {0} and h(G1) = {1}.
Proof. Suppose G1 and G2 are two disjoint subsets of X ,
where G1 is preopen and G2 is semi−open. Since
G1 ∩G2 = ∅, hence G2 ⊆ Gc

1. In particular, since Gc
1 is a

preclosed subset of X containing the semi−open subset
G2 of X ,by Lemma 3.1, there exists an α−closed subset
H1/2 such that

G2 ⊆ H1/2 ⊆ α(HΛ
1/2)⊆ Gc

1.

Note that H1/2 is also a preclosed subset of X and contains
G2, and Gc

1 is a preclosed subset of X and contains the

semi−open subset α(HΛ
1/2

) of X . Hence, by Lemma 3.1,

there exists α−closed subsets H1/4 and H3/4 such that

G2 ⊆H1/4 ⊆α(HΛ
1/4)⊆H1/2 ⊆α(HΛ

1/2)⊆H3/4 ⊆α(HΛ
3/4)⊆Gc

1.

By continuing this method for every t ∈ D, where D ⊆
[0,1] is the set of rational numbers that their denominators
are exponents of 2, we obtain α−closed subsets Ht with
the property that if t1, t2 ∈ D and t1 < t2, then Ht1 ⊆ Ht2 .
We define the function h on X by h(x) = inf{t : x ∈ Ht} for
x 6∈ G1 and h(x) = 1 for x ∈ G1.

Note that for every x ∈ X ,0 ≤ h(x)≤ 1, i.e., h maps X

into [0,1]. Also, we note that for any t ∈ D,G2 ⊆ Ht ;
hence h(G2) = {0}. Furthermore, by definition,
h(G1) = {1}. It remains only to prove that h is a
contra-α−continuous function on X . For every α ∈ R, we
have if α ≤ 0 then {x ∈ X : h(x) < α} = ∅ and if 0 < α
then {x ∈ X : h(x) < α} = ∪{Ht : t < α}, hence, they are
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α−closed subsets of X . Similarly, if α < 0 then
{x ∈ X : h(x) > α} = X and if 0 ≤ α then
{x ∈ X : h(x) > α} = ∪{α((HΛ

t )c) : t > α} hence, every
of them is an α−closed subset. Consequently h is a
contra-α−continuous function. �

Lemma 3.3. Suppose that X is a topological space such
that every two disjoint semi−open and preopen subsets of
X can be separated by α−closed subsets of X . The
following conditions are equivalent:

(i) Every countable convering of semi−closed (resp.
preclosed) subsets of X has a refinement consisting of
preclosed (resp. semi−closed) subsets of X such that for
every x ∈ X , there exists an α−closed subset of X

containing x such that it intersects only finitely many
members of the refinement.

(ii) Corresponding to every decreasing sequence {Gn}
of semi−open (resp. preopen) subsets of X with empty
intersection there exists a decreasing sequence {Fn} of
preclosed (resp. semi−closed) subsets of X such that⋂∞

n=1 Fn =∅ and for every n ∈N,Gn ⊆ Fn.

Proof. (i) ⇒ (ii) Suppose that {Gn} is a decreasing
sequence of semi−open (resp. preopen) subsets of X with
empty intersection. Then {Gc

n : n ∈ N} is a countable
covering of semi−closed (resp. preclosed) subsets of X .
By hypothesis (i) and Lemma 3.1, this covering has a
refinement {Vn : n ∈ N} such that every Vn is an
α−closed subset of X and α(VΛ

n ) ⊆ Gc
n. By setting

Fn = α((V Λ
n )c), we obtain a decreasing sequence of

α−closed subsets of X with the required properties.

(ii) ⇒ (i) Now if {Hn : n ∈ N} is a countable covering
of semi−closed (resp. preclosed) subsets of X , we set for
n ∈ N,Gn = (

⋃n
i=1 Hi)

c. Then {Gn} is a decreasing
sequence of semi−open (resp. preopen) subsets of X with
empty intersection. By (ii) there exists a decreasing
sequence {Fn} consisting of preclosed (resp.
semi−closed) subsets of X such that

⋂∞
n=1 Fn =∅ and for

every n ∈ N,Gn ⊆ Fn.Now we define the subsets Wn of X

in the following manner:

W1 is an α−closed subset of X such that Fc
1 ⊆W1 and

α(WΛ
1 )∩G1 =∅.

W2 is an α−closed subset of X such that
α(WΛ

1 )∪Fc
2 ⊆ W2 and α(WΛ

2 )∩G2 = ∅, and so on. (By
Lemma 3.1, Wn exists).

Then since {Fc
n : n ∈ N} is a covering for X , hence

{Wn : n ∈ N} is a covering for X consisting of α−closed
sets. Moreover, we have

(i) α(WΛ
n )⊆Wn+1

(ii) Fc
n ⊆Wn

(iii) Wn ⊆
⋃n

i=1 Hi.
Now setting S1 = W1 and for n ≥ 2, we set Sn = Wn+1 \
α(WΛ

n−1).

Then since α(WΛ
n−1) ⊆ Wn and Sn ⊇ Wn+1 \Wn, it

follows that {Sn : n ∈ N} consists of α−closed sets and
covers X . Furthermore, Si ∩ S j 6= ∅ if and only if
|i− j| ≤ 1. Finally, consider the following sets:

S1 ∩H1, S1 ∩H2

S2 ∩H1, S2 ∩H2, S2 ∩H3

S3 ∩H1, S3 ∩H2, S3 ∩H3, S3 ∩H4

...

Si ∩H1, Si ∩H2, Si ∩H3, Si ∩H4, · · · , Si ∩Hi+1

...

These sets are α−closed sets, cover X and refine {Hn : n ∈
N}. In addition, Si ∩H j can intersect at most the sets in its
row, immediately above, or immediately below row.

Hence if x ∈ X and x ∈ Sn ∩ Hm, then Sn ∩ Hm is an
α−closed set containing x that intersects at most finitely
many of sets Si ∩ H j. Consequently,
{Si∩H j : i ∈N, j = 1, . . . , i+1} refines {Hn : n ∈N} such
that its elements are α−closed sets, and for every point in
X we can find an α−closed set containing the point that
intersects only finitely many elements of that
refinement.�

Corollary 3.5. If every two disjoint semi−open and
preopen subsets of X can be separated by α−closed
subsets of X , and in addition, every countable covering of
semi−closed (resp. preclosed) subsets of X has a
refinement that consists of preclosed (resp. semi−closed)
subsets of X such that for every point of X we can find an
α−closed subset containing that point such that it
intersects only a finite number of refining members then
X has the weakly cα−insertion property for (cpc,csc)
(resp. (csc,cpc)).
Proof. Since every two disjoint semi−open and preopen
sets can be separated by α−closed subsets of X , therefore
by Corollary 3.4, X has the weak cα−insertion property
for (cpc,csc) and (csc,cpc). Now suppose that f and g

are real-valued functions on X with g < f , such that g is
cpc (resp. csc), f is csc (resp. cpc) and f − g is csc (resp.
cpc). For every n ∈ N, set

A( f − g,3−n+1) = {x ∈ X : ( f − g)(x)≤ 3−n+1}.

Since f − g is csc (resp. cpc), hence A( f − g,3−n+1) is a
semi−open (resp. preopen) subset of X . Consequently,
{A( f −g,3−n+1)} is a decreasing sequence of semi−open
(resp. preopen) subsets of X and furthermore since
0 < f − g, it follows that

⋂∞
n=1 A( f − g,3−n+1) =∅. Now

by Lemma 3.3, there exists a decreasing sequence {Dn}
of preclosed (resp. semi−closed) subsets of X such that
A( f − g,3−n+1) ⊆ Dn and

⋂∞
n=1 Dn = ∅. But by Lemma

3.2, the pair A( f − g,3−n+1) and X \ Dn of semi−open
(resp. preopen) and preopen (resp. semi−open) subsets of
X can be completely separated by contra-α−continuous
functions. Hence by Theorem 2.2, there exists a
contra-α−continuous function h defined on X such that
g < h < f , i.e., X has the weakly cα−insertion property
for (cpc,csc) (resp. (csc,cpc)).�
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