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1 IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
2 Industrial Engineering School, University of Extremadura, Badajoz, Spain

Received: 3 Apr. 2018, Revised: 26 Jun. 2018, Accepted: 2 Jul. 2018

Published online: Apr. 2019

Abstract: Endowing robots with the ability to closely collaborate with humans is an important challenge of robotics. For this purpose,

systems are required that behave in a manner humans are comfortable with, and mimicking the way another human would behave is a

good choice. This paper presents simulation results of how a KUKA LWR IV robot with 7 degrees of freedom (DOF) can be made to

behave like a human arm, having surgical (e.g. orthopedic) applications in view. This performance is achieved using a fractional order

transfer function model of the arm, which have been presented in previous papers. Results are satisfactory and could not be obtained

using only the control features provided with the robot.
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1 Introduction

Robots that appear and perform like humans are being developed in many fields. It is possible to identify in recent literature
two main lines of research, both of similar importance to achieve behaviour truly human-like. This is because two different
points of view for the problem of human-robot cooperation can be sustained. The first line of research attempts to embed
robots with more human-like cognitive capabilities, and to create a new generation of assistance technology for both
healthy and disabled people. Exoskeleton robots are an important area of application of this line (see e.g. [1, 2, 3, 4] for
some of them designed for the upper limb). By contrast, the other line of research attempts to control already existing
robots through human-friendly means. This includes ordinary robots which are employed for useful work, as well as the
development of human interfaces for already existing robotics systems. The impact of this approach is expected to be
important for example in nursing and patient aiding, in helping humans in surgery and other complex tasks in health
care, and also in implementing space-restricted systems wherever alternative input-output devices are not flexible (refer
to [5, 6, 7, 8] for some examples). This paper focuses on the second line of research.

There are two main reasons to develop surgical robots. On the one hand, they can improve the effectiveness of surgical
procedures, applying available information with effectiveness, to perform a better action in the operating room. On the
other hand, they can bring an improvement upon the physical limitations of a surgeon or a radiologist, all the while letting
them control the procedure. That is why currently it is a surgeon who has direct control of a surgical robot. This is often
done using teleoperation, i.e. the human operator manipulates an input device, and then a patient-side robot follows the
input. Thus, the physical coupling between a human and a robot is a challenging task, so as to stably and naturally integrate
the two systems. Capabilities for efficient robot interaction with humans can be found in [9, 10, 11, 12].

In what concerns human arm models, several papers have shown fractional derivatives to give the fractal nature of
muscular tissue. For example, the dynamic behavior of muscles of different animal species (including humans) were
modelled using fractional derivatives in [13, 14, 15, 16], and from a viscoelastic point of view in [17, 18]. In previous
papers, it has been shown that fractional order transfer functions provide excellent models for a human arm [19, 20],
both direct (relating the force at the hand, as input, with the arm angle, as output) and inverse (the other way round). In
the current paper, such models are used to provide simulation results of how a KUKA LWR IV robot with 7 degrees of
freedom (DOF) can be made to behave like a human arm. This means different things depending on whether control is
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carried out in joint space or in Cartesian space. In the first case, each of the joints of the robot will behave like a human
elbow. In the latter, all joints will behave in a manner which may not be that of an elbow, but so that the overall effect is
that of the human arm. Our motivation results from surgical (e.g. orthopedic) applications.

The paper’s contribution is to show that this is possible, and that a model with fractional derivatives is most suited for
the purpose, and for its applications, namely in an operating theatre as mentioned above. There is thus a double motivation
for this research. The principal motivation is to emulate the dynamics of a human arm by means of a 7-DOF KUKA LWR
IV robot, using the previously obtained inverse model of the human arm. These results could not be obtained using only
the control features provided with the robot. The second motivation is to demonstrate that the fractional dynamics of the
human arm can be successfully used to simulate the control of the robot, and make it behave in a manner similar to that
of a human arm during surgery.

The paper is organised as follows. Section 2 summarizes alternative models for the human arm. Section 3 presents
the robot to be used. Sections 4 and 5 show the results of control in joint space and in Cartesian space. Comments and
conclusions are drawn in Section 6.

2 Human arm models

As mentioned above, both direct and inverse models for the human arm, published in [19, 20], were obtained from data
collected with the assistance of nine female and nine male volunteers, with ages ranging from 25 to 66, without any known
musculo-skeletal injuries of the higher limbs. They kneeled or sat, holding a horizontal robotic arm, while trying to keep
it steady. At the same time, the robotic arm, which was actuated by a Kollmorgen direct drive D061M-23-1310 motor,
moved randomly. Experiments lasted 40 s to avoid fatigue, and were grouped into three types: (i) type I, oscillations in
both directions around the zero-point; (ii) type II, oscillations only in the positive side of the zero-point (flexion of the
elbow); and (iii) type III, oscillations only in the negative side of the zero-point (extension of the elbow).

Data was used to find transfer functions Gdirect (s) =
θ(s)

Fmeasured(s)
and Ginverse(s) =

Fmeasured(s)
θ(s) , where θ is the measured

arm angle, and Fmeasured is the force at the hand, respectively. More details are given in this paper’s Appendix. The model
used in what follows is

Ginverse(s) =
Fmeasured(s)

θ(s) = 1550.49(s1.52+61.66)(s1.52+605.19)

s3.04+1872.72s1.52+1232403.37
(1)

≈
1656.54(s+67)(s+38.8)(s+2.3)(s2+13.8s+206.37)(s2+68s+4889.21)

(s+61.9)(s+15.5)(s+2.2)(s2+120.6s+8820.09)(s2+29.6+11433.85)

This is a fractional order, linear, time-invariant model. Such models appear because the plant can be described with a
differential equation involving fractional derivatives (about which interested readers may read more in [21, 22, 23, 24, 25,
27]). This fractional transfer function was then approximated by a 7th order integer transfer function as shown above.

3 The robot

The KUKA LWR IV+ is a 7-DOF (hence intrinsically redundant) robot, weighting 15 kg and handling a useful load of up
to 7 kg (see Fig. 1). It is a low energy consumption robot designed for precision positioning and direct human interaction.
The robot was controlled from a computer using the Fast Research Interface (FRI) system [26], communicating with the
robot via UDP with a bandwidth in the [10 Hz, 1 kHz] range, and allowing real time access to measured and estimated
signals. (Joint coordinates and joint torques are measured; the position and pose of the terminal element, and the applied
forces and torques, are estimated.) Impedance control is used to control the robot, both in the joint space and in Cartesian
space, causing a mass-spring-dashpot behaviour, which must then be controlled to achieve a human arm-like behaviour
[26]. Readers interested in details about impedance control may find details e.g. in book [28].

3.1 Control in joint space

The control action τττCMD (which is a vector with values of control actions for each of the joints) is given by

τττCMD = KKK(θθθ re f −θθθ )+D(ξξξ , θ̇θθ )+ τττuser + fdyn(θθθ , θ̇θθ , θ̈θθ) (2)

where KKK is a diagonal matrix with the stiffness values desired for each joint, θθθ re f is a vector with the desired joint
coordinates, θθθ is a vector with the actual joint coordinates, ξξξ is a vector with the desired damping coefficients for each
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Fig. 1: The 7 degree of freedom KUKA LWR IV+ robot; this paper deals with one of the robotic arms only

joint, D is the damping of the control actions (being a function of the desired damping coefficients and of joint speeds),
τττuser is a vector with binaries freely chosen by the user, and fdyn is a term with compensations for gravity, centrifugal and
Coriolis forces acting on the robot’s links. This term is calculated by KUKA’s software [29]. This achieves for each joint
a dynamical behaviour given by

τ(t) = Iθ θ̈ +Dθ θ̇ +Kθ

(

θ (t)−θre f (t)
)

(3)

Iθ =
Kθ

ω2
n

(4)

Dθ =
2ξθ Kθ

ωn
(5)

where Kθ is the joint’s stiffness, Iθ is the inertia, Dθ is the effective damping, ξθ is the damping factor, and ωn is the
natural frequency of the second order behaviour obtained by FRI. FRI allows setting for each joint Kθ and ωn; ωn cannot
be set, but is chosen by FRI from Kθ and the robot’s configuration.

Applying the Laplace transform to the above,

Θ(s) =
Kθ

Iθ s2 +Dθ s+Kθ
Θre f (s)+

1

Iθ s2 +Dθ s+Kθ
τ(s) (6)

3.2 Control in Cartesian space

The control action τττCMD is now given by

τττCMD = J (θθθ)T
(

KKK(xxxre f − xxx)+D(ξξξ , ẋxx)+FFFuser

)

+ fdyn(θθθ , θ̇θθ , θ̈θθ ) (7)

where xxxre f is a vector with the desired pose (Cartesian coordinates of the manipulator and its orientation), θθθ is a vector
with the actual pose, FFFuser is a vector with forces freely chosen by the user, J (θθθ ) is the geometric Jacobian, and other
variables are as in (2). The geometric Jacobian is given by

J (θθθ) =
[

J XXX (θθθ ) J ΦΦΦ (θθθ)
]T

(8)

[ẋ ẏ ż]T = J XXX(θθθ )θ̇θθ (9)

[ωx ωy ωz]
T = J ΦΦΦ(θθθ )θ̇θθ (10)

where x, y and z are the Cartesian coordinates of the terminal element, and ωx, ωy and ωz are its rotation velocities. In
other words, the geometric Jacobian relates the rotation of the joints with the pose of the terminal element.
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The Laplace transform leads now to transfer function

X(s) =
Kx

Mxs2 +Dxs+Kx

Xre f (s)+
1

Mxs2 +Dxs+Kx

X(s) (11)

which holds for each of coordinates x, y, z, ωx, ωy and ωz. Variables are analogous to those of the joint space case; so are
expressions for Mx and Dx similar to (4)–(5) for Iθ and Dθ .

Fig. 2: Control in joint space: loop for one joint; symbols defined in text

4 Results of control in joint space

The purpose of control in joint space is to get each of the joints of the robot to behave like the elbow of a human arm,
as modelled by (1). The control loop for each joint is shown in Fig. 2, where 0.35 m is the average length of the human
upper arm, τext (t) denotes the external perturbations applied to the joint, τuser was defined in (2), and GKUKAτ (s) stands for
the dynamics of the robot. Results are assessed by four performance indexes: mean squared error (MSE), mean absolute
deviation (MAD), maximum deviation (MD) and variance accounted for (VAF). Letting y be the desired result and ŷ the
experimental result, they are given by:

MSE =

N

∑
j=1

(y j − ŷ j)
2

N
(12)

MAD =

N

∑
j=1

∣

∣y j − ŷ j

∣

∣

N
(13)

MD = max
N

∣

∣y j − ŷ j

∣

∣ (14)

VAF = 1−
σ2 (yyy− ŷyy)

σ2(yyy)
(15)

(σ2 denotes the variance.) In our case, the desired result is the position of the joint, measured in the plane of the two links
it connects.

Three different manners of implementing control in joint space were tried:

–Natural frequencies ωn were identified for the particular configuration of the robot seen in Fig. 3 (chosen because it
is used during a particular orthopedic surgery currently under study [19]), with values of stiffness and damping for
each joint set midway between the lower and higher values that FRI allows. It was expected that parameters would not
change too much for other configurations, or that control would be able to compensate for that. But results obtained
were poor (and are not shown).

–Values of stiffness and damping for each joint were set as low as the FRI allows, to obtain joints as complacent as
possible. Control achieved much better results, but still not satisfactory; these too are not shown.

–Values of stiffness and damping for each joint were optimised to improve the performance measured by indexes
(12)–(15), using a genetic algorithm [30]. This was the strategy that led to the best results, shown below.

The genetic algorithm was as follows:
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Fig. 3: Pose of the KUKA LWR IV+ robot used to identify the parameters of its dynamic behaviour; the bone is the
patient’s, in orthopedic surgery

–Initial population: 40 individuals are generated with random values for rigidity K, damping ξ and natural frequency
ωn.

–Control performance: this is assessed using the VAF (15) of the positioning error.
–Natural selection: the 20 worst performing individuals are eliminated.
–Pairing: the other 20 individuals are randomly paired.
–Reproduction: each pair generates two new individuals. One of the three variables is randomly selected; let it be ϒ .
The two descendants will have

ϒ1 =ϒf ather + r(ϒf ather −ϒmother) (16)

ϒ2 =ϒmother − r(ϒf ather −ϒmother) (17)

where r ∈ [0,1] is a random number. As to the two other variables, one descendent will received one from the father
and one the mother, and vice-versa for the other.

–Mutation: these 20 descendants have, in all, 60 variables, of which 12 are randomly selected, to be randomly replaced.
–Convergence test: at least 20 generations are created. From then on, if any time there has be an improvement in the
VAF of less than 0.1% over the last 6 generations, the algorithm stops.

Parameters and performances obtained are given in Table 1. Figure 4 shows part of the response of the model of the
human arm to a random solicitation (as used during the identification process) and compares this with the response the
robot achieves with control in joint space. The two responses are seen to be close, as expected from the low values of the
indexes in Table 1.

Table 1: Parameters and performances of control in joint space, for each one of the joints

Stiffness 34.19 Nm/rad

Damping 0.43

Natural frequency 26.65 rad/s

MSE 2.444×10−5 rad2

MAD 3.461×10−3 rad

MD 1.784×10−2 rad

VAR 40.07 %

Still using control in joint space, when there is a trajectory reference in Cartesian space, control is achieved as seen in
Fig. 5. In this block diagram, account is taken that during a surgical operation the patient may move, and so the direction
which the robot ought to follow changes in an inertial referential. Performance is checked, not with a perturbation applied
in each joint in the plane of the links that the joint connects, but rather with a perturbation applied at the terminal element
of the robot, in a plane perpendicular to the axis shown in Fig. 3. In that plane, there are many possible directions; let β be
the angle that defines the direction in the plane, and β = 0◦ the direction pointing to the first joint. Stiffness and damping
coefficients had to be recalculated for every single joint depending on β . Values and performances are given in Table
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Fig. 4: Performance of control in joint space, corresponding to Table 1

Fig. 5: From joint control to control in the Cartesian space

2 for the first joint. Results are similar for most other joints, save for those with rotation axes in the same plane of the
perturbation, which can do little to cope with it. This shows why for this type of perturbations it is better to use control in
Cartesian space rather than the control strategy of Fig. 5. Indeed, since we do not know the direction of the perturbation,
it would have to be estimated by the FRI in each instant, and the control parameters would have to be time-varying.
Consequently, this approach would be very sensitive to any mistake in FRI estimations.

Table 2: Parameters for the first joint and performances of control in joint space, with a perturbation applied to the terminal
element of the robot

β / ◦ Stiffness / Nm/rad Damping Natural frequency / rad/s MSE / mm2 MAD / mm MD / mm VAF / %

0 126.18 0.496 23.77 1.836 1.099 6.011 18.87

30 91.08 0.499 24.01 1.743 1.245 5.749 24.10

60 39.80 0.497 25.21 1.933 1.331 6.105 31.26

90 147.25 0.435 25.33 2.021 1.224 5.928 17.62

120 342.28 0.563 23.16 1.581 1.132 5.536 36.07

150 167.78 0.524 23.44 1.461 1.083 5.339 34.66
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Fig. 6: Control in Cartesian space: loop for one joint; symbols defined in text

Fig. 7: Control in the Cartesian space (cf. Fig. 5)

5 Results of control in Cartesian space

When working in Cartesian space, the control loop is shown in Fig. 6, where GKUKAx (s) is a term that reflects the changes
in the operating point of the robot in Cartesian space. Results are assessed as before. The diagram of Fig. 5 is replaced by
that in Fig. 7, which is simpler.

For each direction, the stiffness, the damping factor and the natural frequency were optimised as above. Results for
different values of β are given in Table 3 and can be seen to be rather constant. So average values can be used, irrespective
of the direction of the perturbation in the plane perpendicular to the axis where the robot is moving, leading to the
performances recorded in Table 4. It is clear that errors are almost always far lower (and the VAF higher) in 4 than in
Table 2, proving the superiority of control in Cartesian space. Parts of the simulations are shown (for one particular value
of β ) in Figs. 8 (for each Cartesian direction separately) and 9 (now measured in the direction of the perturbation). In all
cases the robot reproduces the desired movement.

Table 3: Parameters for control in Cartesian space, with a perturbation applied to the terminal element of the robot

Stiffness / Nm/rad Damping Natural frequency / rad/s

β / ◦ Ox Oy Oz Ox Oy Oz Ox Oy Oz

0 296.70 294.61 294.78 0.39 0.39 0.39 26.31 26.42 26.26

30 282.45 294.68 297.68 0.41 0.41 0.38 25.95 26.38 26.51

60 286.57 295.40 289.70 0.42 0.38 0.42 26.74 26.61 26.13

90 303.29 300.29 296.64 0.39 0.39 0.40 26.87 26.56 26.55

120 289.33 289.02 288.71 0.41 0.40 0.41 26.36 26.48 26.82

150 299.13 299.61 288.02 0.38 0.41 0.43 26.41 26.53 26.60

Averages 293.70 0.40 26.47
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Table 4: Performances of control in Cartesian space, with a perturbation applied to the terminal element of the robot,
using the average parameters of Table 3

MSE / mm2 MAD / mm MD / mm VAF / %

β / ◦ Ox Oy Oz Ox Oy Oz Ox Oy Oz Ox Oy Oz

0 0.00005 2.955 0.041 0.003 1.203 0.142 0.014 6.207 0.931 40.10 40.10 40.10

30 0.741 2.241 0.015 0.602 1.048 0.087 3.103 5.404 0.449 40.08 40.09 40.10

60 2.232 0.762 0.0002 1.046 0.611 0.009 5.395 3.155 0.046 40.09 40.10 40.08

90 2.985 0.0002 0.010 1.209 0.011 0.071 6.545 0.058 0.0369 40.08 40.09 40.10

120 2.245 0.715 0.036 1.049 0.592 0.133 5.408 3.053 0.685 40.10 40.10 40.09

150 0.752 2.194 0.051 0.607 1.036 0.158 3.133 5.348 0.817 40.10 40.09 40.09

Averages 1.493 1.478 0.026 0.753 0.750 0.100 3.883 3.870 0.516 40.10 40.10 40.10

6 Conclusions

We could think that it should suffice to use the optimisation above to find impedance control parameters ensuring a
behaviour as close as possible to that of the human arm, without resorting to the control loop of Fig. 2. This is indeed
possible, as shown in Fig. 10: the two curves are indistinguishable. But since the natural frequency is not known and can
indeed vary, this is not a good idea, because results are not robust to changes in the natural frequency, as shown in Fig. 11.
Of course, we do not want our control to deteriorate in this way. What this means is that the control scheme of Fig. 6 is
unavoidable.

We conclude that the models obtained when identifying the dynamics of the human arm can be successfully used to
simulate the control the KUKA LWR IV+ robot, and make it behave in a manner similar to that of a human arm, when
performing surgery. These results could not be obtained using only the control features provided with the robot.

Future work includes developing ways of providing robustness to variations in the mass of the surgical tool the robot
is holding, and, of course, extensive experimental tests of these results.
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Appendix: More about models of the human arm

Third order integer linear models. These models are often employed for this system in the literature (see e.g. [31]), both
because experimental data can be reasonably fitted, and because there is a clear analogy shown in Fig. 12. Identification
methods applied were the same given below for fractional transfer functions (restricting differentiation orders to integers,
of course). The best results were obtained for models with three poles and one zero for direct arm dynamics, and with
three poles for the inverse case.

Fractional linear models. A measured time response can be directly used to identify a fractional transfer function
[32, 27], but in this case it was preferred to first identify a frequency response (using Welch’s method on the filtered
output), and then apply Levy’s method. This alternative leads to less noisy results. Levy’s method takes a frequency
response G( jωp), p = 1, . . . , f and fits thereto a commensurable fractional model, the frequency response of which is
given by

Ĝ( jωp) =

m

∑
k=0

bk( jωp)
kα

1+
n

∑
k=1

ak( jωp)
kα

=
N( jωp)

D( jωp)
(18)

Levy’s method minimizes (G( jω)D( jω)−N( jω))2
. The commensurable orders of fractional models were found

sweeping all values α = 0,0.1,0.2, . . . ,1.9,2] (outside this range, no transfer function is stable). Then the α for which
results are better, using a heuristic based on some performance indexes, was kept. In this case, the best direct arm model
had two poles and one zero and two poles in the inverse case.

Comparing performances. Time responses and frequency responses of these models, and also of neural network
models, were compared for inputs of all types (I, II and III). The performance of fractional models was superior, while
needing less parameters. For more details see [20].
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Fig. 9: Performance of control in Cartesian space, as in Fig. 8, according to the direction of the perturbation
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Fig. 10: Performance comparison of the robot with impedance control alone and with the loop of Fig. 2, for nominal
values of the natural frequency

5 10 15 20 25 30 35 40 45 50 55 60

−40

−30

−20

−10

0

10

20

30

40

Natural frequency / rad/s

V
A

F
 /

 %

 

 

Control with the inverse model

Impedance Control Only

Fig. 11: Performance comparison of the robot with impedance control alone and with the loop of Fig. 2, when the natural
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force applied by motor

position measured by motor encoder
(analogous with motor angle)

mass–spring–damper
model of the arm

spring–damper model
of the hand elasticity
(mass neglectable)

position analogous
with elbow angle

Fig. 12: Third order translation analog to elbow dynamics
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[9] N. Jarrassé, V. Sanguineti and E. Burdet, Slaves no longer: Review on role assignment for human-robot joint motor

action, Adapt. Behav. 22(1), 70–82 (2014).
[10] S. Park, H. Lim, B.-S. Kim and J.-B. Song, Development of safe mechanism for surgical robots using equilibrium

point control method, In Rasmus Larsen, Mads Nielsen, and Jon Sporring, editors, Medical image computing and

computer-assisted intervention — MICCAI 2006, volume 4190 of Lecture Notes in Computer Science, pp. 570–577,
Springer Berlin / Heidelberg, 2006.

[11] V. Potkonjak, S. Tzafestas, D. Kostic and G. Djordjevic, Human-like behavior of robot arms: General considerations
and the handwriting task — Part I: Mathematical description of human-like motion: distributed positioning and virtual
fatigue, Robot. Comput. Integ.Manufact. 17(4), 305–315 (2001).

[12] K. Sakita, K. Ogawara, S.Murakami, K. Kawamura and K. Ikeuchi, Flexible cooperation between human and robot
by interpreting human intention from gaze information. In Proceedings the 2004 IEEE/RSJ International conference

on intelligent robots and systems (IROS2004), pp. 846851 (2004).
[13] V. D. Djordjevic, J. Jaric, B. Fabry, J. J. Fredberg and D. Stamenovic, Fractional derivatives embody essential features

of cell rheological behavior, Annals Biomed. Eng. 31:692-699, (2003).
[14] L. Sommacal, P. Melchior, J.-M. Cabelguen, A. Oustaloup and A. J. Ijspeert, Advances in Fractional Calculus:

Theoretical Developments and Applications in Physics and Engineering, chapter Fractional Multimodels of the

Gastrocnemius Muscle for Tetanus Pattern, pp. 271–285, Springer-Verlag, 2007.
[15] L. Sommacal, P. Melchior, A. Dossat, J. Petit, J.-M. Cabelguen, A. Oustaloup and A. J. Ijspeert, Improvement of the

muscle fractional multimodel for low-rate stimulation, Biomed. Sign. Proc. Contr. 2 226–233 (2007).
[16] L. Sommacal, P. Melchior, A. Oustaloup, J.-M. Cabelguen and A. J. Ijspeert, Fractional multi-models of the frog

gastrocnemius muscle, J. Vibr. Contr. 14(9-10), 1415–1430 (2008).
[17] R. L. Magin, Fractional calculus in bioengineering, Begell House, 2004.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


110 A. Ventura et al.: Fractional control of a 7-DOF robot...

[18] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, An introduction to mathematical models,
Imperial College Press, London, 2010.
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