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Abstract: In this paper, we establish a coincidence and a common fixed point for a pair of weakly compatible mappings unger
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Keywords: Weak-compatible maps, coincidence point, common fixed pGintetrics, propertyy.

1. Introduction and preliminaries

Until 1968 Banach’s contraction principle was the main tool used to establish the existence and uniqueness of fixed points.
It has been used in many different fields of mathematics, but suffers from one drawback.

In order to use the contractive condition, a self-mappfinmgust be Lipschitz continuous, with Lipschitz constant less
than 1. In particularf must be continuous at all points of its domain. In 1968 Kannan [17] constructed a contractive
condition, like that of Banach, possessed a unique fixed point, which could be obtained by starting at any ipdim
space, and using function iteration definedaby.; = Tz, (also called Picard iteration). However, unlike the Banach
condition, there exist discontinuous functions satisfying the definition of Kannan, although such mappings are continuous
at the fixed point. Following the appearance of [17] many authors created contractive conditions not requiring continuity
of the mapping. Today fixed point literature of contractive mappings contains many such papers. One survey of a number
of these conditions appears in [34].

Weak contraction principle is a generalization of Banach’s contraction principle which was first given by Alber et al.
in Hilbert spaces [5] and after that extended to metric spaces by Rhoades [35].

Khan et al. [19] initiated the use of a control function in metric fixed point theory, which they called an altering
distance function. This function and its generalizations have been used in fixed point problems in metric and generalized
metric spaces (see [6], [7], [8], [11], [20]).

The notion ofG-metric space was introduced by Mustafa and Sims [26], [27] as a generalization of the notion of
metric spaces. Afterwards Mustafa, Sims and others authors introduced and developed several fixed point theorems for
mappings satisfying different contractive conditiongdrmetric spaces, also extend known theorems in metric spaces to
G-metric spaces see [1]-[4], [6], [7], [9], [18], [20]-[32], and many other papers.

The study of unique common fixed points of mappings satisfying strict contractive conditions has been at the center of
rigorous research activity. Study of common fixed point theorenismetric spaces was initiated by Abbas and Rhoades
[1]. Consistent with [27], the following definitions and results will be needed in the sequel. Now onWard,denote
the set of natural numbers.

Definition 1 Let X be a nonempty set and lét: X3 — [0, 00) be a function satisfying:

(G)G(z,y,2)=0if z =y =2,

(G2)0 < G(x,x,y), forall z,y € X, witha # y,

(G3)G(I7x7y) < G(x,y,z),Vx,y,z € Xa with z ?é Y,

(GCu)G(z,y,2) = Gz, z,y) = Gy, z,z) = ..., (symmetry in all three variables)
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(G5)G(z,y, 2) < G(z,a,a) + G(a,y, 2),Vr,y, z,a € X, (rectangle inequality)
Then the functioi7 is called aG-metric onX, and the pair(X, G) is called aG-metric space.
Definition 2 Let(X, G) be aG-metric space, a sequence,,) is said to be

(i)G-convergent if for every > 0, there exists an: € X, andk € N such that for alim,n > k, G(z, 2y, x) < €.
(i) G-Cauchy if for everye > 0, there exists ark € N such that for allm,n,p > k,G(zm, zn,x,) < ¢, thatis
G(x’rru T, pr) —0 asm,n,p — o0.
(ii) A space( X, GG) is said to belG-complete if evergr-Cauchy sequence X, GG) is G-convergent.

Lemma 3 Let(X, ) be aG-metric space. Then the following are equivalent:

() (z,,) is convergent to X,
(i) G(zp,xn, ) — 0asn — oo,
(i) G(xp, x,2) — 0 @sn — oo,
(V)G (zy, T, x) — 0 @SN, M — 00O,
Lemma4 Let(X,G) be aG-metric space. Then the following are equivalent:

(i) The sequencer,,) is G-Cauchy,
(i) for everye > 0, there existsg: € N such thatG(z,,, T, .,) < € form,n > k.

Lemma5 Let(X,G)beaG-metric space. Then the functiéh(z, y, z) is jointly continuous in all three of its variables.
Definition 6 A G metric spaceX is symmetric itG(z,y,y) = G(y,z,z) forall z,y € X.
Proposition 7 everyG-metric space X, G) will define a metric spaceX, d¢) by

da(z,y) = G(z,y,y) + Gy, x, ), Yo,y € X.

Proposition 8 Let(X, G) be aG-metric space. Then for any, y, z, anda € X, it follows that

(\)if G(z,y,2) =0thenz =y = z,
()G (z,y,2) < G(z,2,y) + Gz, 7, 2),
(i) G(z, y,y) < 2G(z, 2,y),

WG (x,y, 2 %( (x Yy,a )+G($ a,z) +G(a’y7z))v

2)
2) <
) <2
(V)G (z,y, g EG(l a Z) +G(a,y, 2),
V)G (2,4, 2) < Glx,a,a) + Gy, a,a) + G(z,a, a),

Jungck [14] proved a common fixed point theorem for commuting mappings as a generalization of the Banach'’s
fixed point theorem. The concept of the commutativity has generalized in several ways. For this Sessa [37] introduce
the concept of weakly commuting mappings, Jungck [15] extend this concept to compatible maps. In 1998, Jungck an
Rhoades [16] introduced the notion of weak compatibility and showed that compatible maps are weakly compatible bu

the converse need not to be true for example see [33].

Definition 9 Let f and g be self maps of a nonempty s€t If w = fx = gz for somex € X, thenx is called a
coincidence point of, g andw is called a point of coincidence gfandg.

Definition 10 [16] Two self mappingg’ and g are said to be weakly compatible if they commute at their coincidence

points, that is,fz = gz implies thatfgx = gfx.

We will denote the set all fixed points of a self mappjfijom X intoitself by F(f),i.e., F(f) ={z € X : fo = z}.
It is obvious that ifz is a fixed point off then it is also a fixed point of™ for eachn, i. e., F'(f) C F(f™) if F(f) # 0.
However converse is false. Indeed the mappfingR — R defined byfz = % — z has a unique fixed point = i , but
everyx € Ris a fixed point forf™, for each evem > 1.

Jeong and Rhoades [12] showed that maps satisfying many contractive conditions have @gropeey have [13]
also shown that for a number of contractive conditions involving pairs of maps have pr@perty

Several works has been done related to Property P and Q (see for instance [9], [10], [20] and [36]).

Definition 11 (Property P [12]) Let f be a self-mapping of metric space with fixed point/seft) # 0. Thenf is said
to have propertyP if F(f™) = F(f), for eachn € N. Equivalently, a mapping has propertyif every periodic point is
a fixed point.
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Definition 12 (Property@ [13] ) Let f andg be self-mappings of metric space witif) N F'(g) # 0. f andg are said
to have property) if F(f™) N F(g™) = F(f)N F(g), for eachn € N.

Definition 13 (Altering Distance Function [19]) A functiott : [0, 00) — [0, c0) is called altering distance function if

()4 is increasing and continuous,
(i) (t) = 0if and only ift = 0.

Recently Khandagji et al. [20] proved the following Theorem
Theorem 14. Let(X,G) be a completé:-metric space. Lef be a self mapping oX satisfying the following

w(G(fI, fya fZ)) < ’l/)(M(l‘,y,Z)) - (p(M(I,y,Z))7
where
M(x,y,z) = max{G(x,y,z),G(x,fx,fx),G(y,fy, fy),G(z7fz,fz)7
aG(fac, fxa y) + (1 - OZ)G(fy, fy,Z),
BG(z, fx, fx) + (1 = B)G(y, fy, fy)},

forall z,y,z € X, where0 < «, 3 < 1, ¢ is an altering distance function, and : [0,00) — [0, 00) is a continuous
function withp(¢) = 0 if and only ift = 0, then f has a unique fixed point.

The rest of this paper is organized as follows: in section 2 we establish a coincidence and a fixed point theorem for
two weakly compatible mappings satisfying generalizeédy)-weakly contractive condition in whicly need not be
continuous inG-metric spaces. The results in this section improve and extend Theorem (14). Also we give an example
satisfying all requirements of our results. Finally in sectiame prove that the mappings satisfying prope&pty

In the sequel, we define
U = {1y :]0,00) — [0,00) is a continuous non-decreasing functign
& = {p:[0,00) — [0,00) is @a non-decreasing function with(t) = 0 if and only if ¢ = 0}.

2. Main results

First of all we state the following Lemmas which are fundamental in the sequel.

Lemma 15 [1] Let f andg be weakly compatible self mappings of nonemptyXsdf f and g have a unique point of
coincidenceaw = fz = gz, thenw is the unique common fixed point paindg.

Lemma 16 Let(X,G) be aG-metric space and,g: (X,G) — (X, G) two mappings such that
V(G(fz, fy, [2) S P(M(2,y,2)) — (M (2,y,2)), @
where
M(z,y, 2) = max{G(gx,9y, 92), G(gz, fz, fx),G(gy, fy, fy), G(g2, [ 2, [2),
aG(fz, fz,gy) + (1 — )G(fy, fy, 92),

forall z,y,z € X, where0 < o, 8 < 1 and, ¢ : [0,00) — [0, 00) with ¢(¢) = 0 if and only if¢ = 0. Then,f andg
have at most a point of coincidence.

Proof. Suppose that = fp = gp andv = fq = gq. Then by (1) we have

where
M(p,p,q) = max{G(gp.gp,99), G(gp, [p, fP), G(gp, fp, fP), G(94, fq, [4),
aG(fp, fp,gp) + (1 — a)G(fp, [P, 99),
BG(gp, fp, fr) + (1 — B)G(gp, fp, fp)},
M(p,p,q) = max{G(u,u,v),0,0,0, (1 — a)G(u,u,v),0} = G(u,u,v).
Then

P(G(u, u,0)) < P(G(u,u,v)) — @(Gu, u, v)).
Thereforep(G(u, u,v)) = 0, henceu = v.

© 2013 NSP
Natural Sciences Publishing Cor.



26 %N\‘ES =) R. A Rashwan, et al: Property and a Common Fixed Point Theorem(af, ¢)-Weakly Contractive ...

Theorem 17. Let(X,G) be aG-metric space and, g : (X,G) — (X, G) satisfying inequality (1) whereé € ¥ and
ped. If f(X)C g(X)andf(X)org(X) is aG-complete metric subspace &f then f andg have a unique point of
coincidence. Moreover, if andg are weakly compatible, thefand g have a unique common fixed point.

Proof. Letx be an arbitrary point oX sincef(X) C g(X) we can choose; € X such thatfzy = gx;. Continuing
this process, we get, = fx, = gxn+1. If Yy, = yny1 fOr somen, theny,,+1 = fr,+1 = gz, Yields f andg have a
coincidence point.

We may assume that, # y,,+1 for eachn. Then from (1) we have

¢(G(yn, Yn+1, yn+1)) = w(G(fzn, frngt, fzn-&-l))
<YM (Tn, Tpg1, Tng1)) — (M (T, Tng1, Tngt)),

)

where

M(2n, Tpi1, Tnt1) = max{G(9Tn, 9Tn11, 9Tn+1), G(gTn, fTn, f2n),
G(92n+1, fTnt1, foni1), G(9Tni1, fTnir, font),
AG(fTn, fTn, 9Tni1) + (1 — )G (fTni1, [Tni1, gTnt1),
5G(gxm fmm fxn) + (1 - 6)G(9xn+1v fl'nJrla fxn+1)}v

yields,

M(‘TTH ‘r’ﬂ+1’ $n+1) = maX{G(ynfla yna yn)a G(ynfh yna yn)v G(yn7 yn+17 yn+1)7
aG(yn7yn7yn> + (1 - a)G(yn+17yn+17yn)7
/BG(ynflaymyn) + (1 - 5)G(yn,yn+1,yn+1)}.

Therefore
M(Iny Tn+1, mn-‘,—l) = maX{G(yn—hyna yn)v G(yna Yn+1, yn+1)}-
If forsomen € N, M (zy, p+1, Tnt1) = G(Yn, Ynt1, Ynt1), from (2) we obtain

w(G(ynayn+17yn+1)) S w(G(yn7yn+17yn+1)) - @(G(yn7yn+17yn+1))~

Hence o(G(yn, Yn+1,Yn+1)) = 0, implies thaty,, = y,41, Which is a contradiction withy,, # y,11. Thus
M (xp, Tpi1, Tnt1) = G(Yn—1, Yn, yn) for eachn € N and (2) becomes

¢(G(ynv Yn+1, yn+1)) S 1/J(G(yn717 Yn, yn)) - @(G(ynflu Yns yn))
< Y(G(Yn—15Yns Yn))-

Sincey is an increasing function, then from (3)we have

®3)

G(ynayn+1; ynJrl) S G(ynflaynvyn) V’I”L S N

Therefore {G(yn-1,yn,yn), n € N} is a non-increasing sequence of positive real numbers. Hence theredexisis
such that

lim G(Yn—1,Yn,yn) =6 and 0<6 <G(Yn—1,Yn,¥n) VR EN. (4)
From (3) we get
O(GYn—1,Yn>Yn)) < V(G Yn-1,Yn>Yn)) — V(G (Yns Yn+1, Ynt1))- 5)

By (4), (5) and Since is non-decreasing function we obtain

0<¢(0) < o(G(Yn-1,Yn>Yn))
< Y(G(Yn—1,YnsYn)) — V(G (Yn, Yn+15 Ynt1))-

Lettingn — oo, and by continuity ofy it follows that

0 <@(d) < Hm @(Yn—1,Yn,Yn) < P(6) = 1(9).

(6)
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Hencep(d) = 0, that meang = 0, so we have
In other words, from Proposition (8) we obtain

0 S G(yn;ynflaynfl) S 2G(yn71>yn7yn)~

Lettingn — oo, and using (7), we find that

lim G(ynv Yn—1, ynfl) =0. (8)

n—oo

Now, we show that the sequen€g, } is a G-Cauchy sequence iN. Suppose thafy, } is not. Then there exist > 0,
and subsequences,,,x) }, {yn(k) } of {yn} with n(k) > m(k) > k such that

G (Yn (k) Ym(k)s Ym(k)) = € 9

Further, corresponding tae.(k), we can choose(k) in such a way that it is the smallest integer witf:) > m (k) and
satisfying (9). Then
G Yn(k)y—=15Ym(k)> Ym(k)) < E- (10)

We want to prove that
(')kliﬂgo G(Yn (k) Ym(k)s Ym(k)) = (if) kli)ﬂgo G (Yn (k)15 Ym(k)—15 Ym(k)—1) = €,

&
("I) kli{rolo G(yn(k)—h Ym(k)s ym(k)) =&
By (9), (10) andG's we have

€ < G(WYnk) Ymk)s Ymk)) < GUn(k)s Yn(e)=1> Yn(k)=1) + G Un (k)15 Ym(k)» Ym(k)) (11)
<&+ G(YUn(k)s Yn(k)—1> Yn(k)—1)-
Now, lettingk — oo in (11) and by (8) we conclude that
Jm G Yn(k)> Ym(k)s Ym(k)) = €- (12)

Moreover, we obtain

G (Yn(k)s Ym(k)s Ymk)) < GUnk) Ynk)—1> Un(k)—1) + G(Ynk) =1, Ymk)—1> Ym(k)—1)
+ G (Ym(k) =15 Ym(k)s Ym(k) )

G(yn(k)—h Ym(k)—1s ym,(k)—l) < G(yn(k)—la Yn(k)s yn(k)) —+ G(yn(k)7 Ym(k)> ym,(k))
+ G(ym(k)7 Ym(k)—15 ym.(k)—l)'

Letting k — oo, in the two above inequalities and using (7), (8) and (12) we have
Jm G(Yn(k)—1> Ym(k)—1> Ym(k)—1) = €- (13)
similarly,
G(Yn (k) Ym(k)s Ym(k)) < GWUnk)s Yn(k)—1> Yn(k)—1) T GUn(k) =15 Ym(k)> Ym(k))»
G WUn(k)—1> Ym(k)s Ym(k)) < GWn(k)—15 Yn(k)s Yn(k)) T GWn(k)s Ym(k)> Ym(k))-
Letting k — oo in the two above inequalities and using (7), (8) and (12) we find that

I — e 14
kinoloG(yn(k)fl’ym(k%ym(m) € (14)
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Now, we have

M (T (), T (k)5 Tr(k)) = MAX{ G(GZrn(k)> 9T (k) 9T (k))» G (9T (k) fTmk)s [Tm())s
G(9T k), Tmk)ys FTmk))s G(9Tnk)s FTnk), FTn(r))s
QG (fTmk)s fTmi)s 9Tmr)y) + (1 = QG (f2 ), [Tmk), 9Tn(k))
BG(9Tmkys fTmr), [Tmry) + (1= B)G(9%m), [Tmkys fTmr))}
= mMaxX{ G (Ym(k)—1> Ym(k)—1> Yn(k)=1)s G (Ym k) =15 Ym (k) Ym(k))»
G (Ym(k) =1 Ym(k) Ymk))s G(Un(k)—15 Un(k)s Yn(k) )
QG (Ym(k)s Ym(k)s Ymk)—1) T (1 = )G Ym(k)s Ym(k) Yn(k)—1);
BG(Ym(k)—15 Ym(k)s Ymk)) T (1 = B)G Um(k)—1> Ym(k)» Ym(k)) -
Taking the limits as: — oo, and using (7), (13) and (14) we obtain

Hm M (k) T () Tn(r)) = max{e, 0, (1 — a)e} = e. (15)

k—oo
Settingz = y = x,,,(x) @ndz = x,,(,y in (1) we conclude that
V(G Ym(k)s Ymk) Ynk))) = V(G (FTmy, fTmi), fTnk)))
S O(M(Z (k) Ton(k)s Trck))) — PM(Z (), Ton(k)s Tr(k)))-

This gives that

O(M (T (k) s Ty Tr(r))) < V(M (Zrn(k)s Tm(k)> Tk))) — PG Umk)s Ym(k)s Yn(k)))-
Since

kli{go M(xm,(k)7 T (k)> xn(k)) =¢ and k:li»n,olo G(yn(k)7 Ym(k)s ym(k)) =5

we get %s < M(Zpn (k) T (k)s Tnry)  fOr sufficiently largek. Sincey is non-decreasing we obtain

0< ¢(5¢) < (M (@mk), Tm(r) Tk )

for sufficiently largek. Therefore we find that

0< @(75) < @(M(xm(k)axm(k)axn(k)))
S YO(M (T iy Trn(k)s Tu(r))) = V(G Ymk)s Ymk) Yn(k)))-

for sufficiently large k.
Letting k£ — oo and by (12), (15) and the continuity gfin the last inequality we get

1 .
0< 80(56) < Bm o(M(Zm k) Tm(r)s Tn(k)))
< dim (DM (Zmr)s Tk Enr))) = DG Ymk)s Ym(k)s Ynr)))
=P(e) —¢P(e) = 0.

Hencey(3e) = 0. Thus from the property op we haves = 0 which is a contradiction since > 0. Then{y, } is a
G-Cauchy sequence.
Suppose thag(X) is G-complete subspace of, so there exists a poigte ¢(X) such thatlim y,, = lim fa, =

lim gx,+1 = q. Also, we can find a point € X such thayp = q. o o
Now, we prove thafp = ¢. By (1) we have
Y(G(fan, [P, [P)) < (M (2n,p,p)) — (M (2n, p, ), (16)
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where
M(zn,p,p) = max{G(g9zn, gp, gp), G(9Zn, fTn, f2n), G(gp, [, [P),
G(gpa fpa fp)7 OZG(fl‘,H fxna gp) + (1 - Oé)G(fp, fpa gp)7
BG(gzn, fan, fan) + (1= B)G(gp, fp. fp)}
= max{G(gxn, q, Q)7 G(gl'm fn, .fxn)v G(Qa fp, fp)v
ozG(fxn, .fxna Q) + (1 - O[)G(fp7 fp7 Q)7
Lettingn — oo we have
Jim M (zn, p,p) = G(g, [P, [P). 17
From (16) one gets
Since
Jim M(zn, p,p) = G(g, fp. fp),
we get %G(q, fp, fp) < M(z,,p,p) forsufficiently largen. Sincey is nondecreasing we have
1
0 < ¢(5G(g, fp, fp)) < o(M(2n, p,p)), (19)

for sufficiently largen. Therefore, (18) and (19) imply that
1
0 < ¢(5G(g, fp. fp)) < p(M(2n,p,p))
S ¢<M(x7lapvp)) - w(G(fxﬂv fpa fp))7

for sufficiently largen. Further more, lettingn — oo and using (17) and the continuity ¢fin the last inequality we get
1 .
0 < ¢(5G(g, fp, fp) < lim (M (2n,p.p))
< ¥(G(g, fp. fp))) — Y(G(fzn, fp, fp)) =0,

henceo(3G(q, fp, fp)) = 0, so thatG(q, fp, fp) = 0, and thenfp = q.
Theng is a point of coincidence of andg. So from lemma (16y is the unique point of coincidence, and from lemma

(15) ¢ is the uniqgue common fixed point gfandg. The proof is similar when we assume thdtX) is complete since
f(X) € g(X).
Corollary 18 Let(X, G) be aG-metric space and, ¢ : (X,G) — (X, G) satisfying the following inequality

G(fz, fy, fz) < Amax{G(gz.9y, 92), G(g9z, fz, fx),G(gy, [y, fy),G(9z, [z, f2),
aG(fz, fx,gy) + (1 — )G(fy, fy.92),
BG(gz, fx, fx) + (1 = B)G(gy, [y, fy)},
forall z,y,z € X, where0 < \,a, 8 < 1, If f(X) C g(X) and f(X) or g(X) is a G-complete metric subspace of

(X, G), thenf andg have a unique point of coincidence. Moreovey;, &nd g are weakly compatible, thehand g have
a uniqgue common fixed point.

Proof. Definey, ¢ : [0,00) — [0,00) by ¢(t) = t, andp(t) = t — At, theniitis clearly that) € ¥ andy € &. So the
result follows by taking)(t) = t andp(t) = ¢ — At in Theorem (17).

If we putg = I, wherel is the identity mapping, in Theorem (17), we have the following Corollary.
Corollary 19 Let(X, G) be a complet&-metric space. Lef be a self mapping oX satisfying the following

’L/}(G(fl‘, fya fZ)) < w<M($7ya Z)) - (P(M(m>y7 Z))7
where
M(x’yv Z) = maX{G(JU,y, Z)’ G(:C’ Jz, fx)a G(ya Ty, fy)a G(Z7 Iz fz)v
OéG(fJ,‘, fxa y) + (1 - (X)G(fy, fy? 2)7
BG(z, fx, fx) + (1= B)G(y, fy, fy)},

forall z,y,z € X, where0 < «, 8 < 1, wherey € ¥ andp € @. Thenf has a unique fixed point.
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The following example was give by Abbas [4], which satisfying the hypotheses of Theorem (17).
Example 1. Let X = {0, 1,2} be a set with G-metric defined by

($7 y?’z) G(x7y7 Z)
(0,0,0),(1,1,1),(2,2,2), 0
(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(0,0,2),(0,2,0),(2,0,0), 1
(07272)7(27072)’(27270)7(17172)7(17271)’ 2717 1)7(17272)7(27172)7(2727 1)7 2
(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0), 2
One note thaty is a non-symmetric a&§(0,0,2) # G(0,2,2). For f andg are self mappings ok defined by

z | flx) | g(x)

0 0 0

1 1 2

2 0 1

It is clearly thatf(X) C ¢(X) and the pair of mapping§f, g) is weakly compatible wher@ is the only coincidence
point of f andg andf¢g0 = f0 = 0 = g0 = ¢f0. Also, M (x,y, z) < 2. If we definey, ¢ : [0,00) — [0, 00) by

Lo fo<t<1
Yt)=t*+1 and o(t) = %3, if t=1
t if t>1.

vl

Theny andy have the properties mentioned in Theorem (17). If

(7,y,2) E{(Ovov 0),(1,1,1),(2,2,2),(0,0,2),(0,2,0),
(2,0,0),(0,2,2),(2,0,2),(2,2,0)},

thenG(fx, fy, fz) = 0andM (z,y, z) € {0, 1,2} therefore
V(G(fz, fy, f2) =1 < (M(z,y,2)) — e(M(z,y,2),

then (1) holds.
On otherwise one find th&t(fz, fy, fz) = 1 andM (x,y, z) = 2. Hence

Then condition (1) satisfied for all, y, z € X. Hence all hypotheses of Theorem (17) are satisfiedOaisdhe unique
common fixed point off andg. We note that is not a lower semi-continuous function.

N | oo

3. Mappings with Property @

Theorem 20. Under the condition of Theorem (17),/ifand g are commuting therf and g has propertyQ.

Proof. From Theorem (17)F(f) N F(g) # 0. ThereforeF'(f™) N F(g™) # 0 for each positive integet. Letn be a
fixed positive integer greater thdrand suppose thate F'(f™) N F(g™). We claim thap € F'(f) N F(g).
Letp € F(f™) N F(g™). Then, for any positive integeisy, k, [, r, s satisfyingl <, j, k,,r, s < n, we have
G(G(fg'p, g’ £79°p)) = (G (F ), F(F* g'p), F(F7 ' 9%p))
<YM (F 7 p, ¥ g, 7 D) — o (M g, 5 g, £ gp)),

where
M(f p S g, 7 g p) = max{G (g p, [ e ST g ),
G g p, fig’p, flg’p), G(f* g p, fFg'p, fFa'p),
G(f" " 'p, £ a°p. f9°p),
aG(fig’p, fig’p, 1" p) + (1 — a)G(fFg'p, fro'p. 1" 'p),
BG(f g, flg?p, flg?p) + (1= B)G(f* g p, fFa'p, fFo'p)},
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Define o
o= max {G(f'd’p, fFa'p, f'9°p)}

1<i,j.k,1rs<n

Assume thad > 0, then from (1) it follows that

Y(0) < p(Ms) — o(Ms) (20)

whereM; is M (z,y, z) corresponding.
SinceM; < §, theny(Ms) < (§), so we get

P(8) < P(Ms) — o(Ms) < ¢(6) — o(Ms).

Henceyp(M5) = 0, so M;s = 0. Substituting)Ms = 0. in (20)¢(6) < ¢(0) — »(0), thereforey(d) < ¢(0), sincey
is non-decreasing then< 0, which is a contradiction fof > 0. Henced = 0. In particular if

i=1, j=l=k=s=r=n and j=1 i=Il=k=s=r=mn,
we conclude that
G(fg"p, f"9"p, f"g"p) =0 and G(f"gp, f"g"p, f"9"p) =0,

this means
G(fp,p,p) =0 and G(gp,p,p) = 0.

Hencefp = gp = p, implies thatp € F(f) N F(g). Hencef andg have Property).

Example 2. Let X = R with the G-metric space
G(m,y,z) = |$—y| =+ |y_Z‘ + |Z—Z‘|,

and f andg are self mappings oK defined byf(z) = 2 andg(z) = 2z — 2. We takey(t) = t andp(t) = %t, for
t € [0,00) anda, 8 € (0, 1]. So we have

1
1/)(M($7 Y, Z)) - QD(M(:C, Y, Z)) = §M(x, Y, Z)
Itis clearly thatf(X) C ¢g(X) and(f, ¢) is commuting and hence weakly compatible. Also,

O:QZ)(G(fx,fy,fz))S M(x,y,z), VCE,y,ZGX.

| —

Therefore condition (1) holds for alt,y, 2 € X, and hypotheses of Theorem (17) are satisfied, arglthe unique
common fixed point of the mappingsandyg.
Moreover, ifp € F(f™) N F(g™), thenp = 2 and sof andg have Property)
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