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Abstract: In the present paper, we focus on the Zenga index, the asymptotic normality of the classical estimators has been established

in the literature under the classical assumption that the second moment of the loss variable is finite, this condition is very restrictive in

practical applications. Such a result has been extended by Greselin et al. (2014) [31] in the case of distributions with infinite second

moment. Thus, we base on this framework and propose a reduced-bias estimator for the classical estimators. Finally, we illustrate the

efficiency of our approach by some results on a simulation study and compare its performance with other estimators.
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1 Introduction and motivation

Inequality measurement is an attempt to give meaning to comparisons of income distributions in terms of criteria which
may be derived from ethical principles, appealing mathematical constructs or simple intuition. A serious approach to
inequality measurement should begin with a consideration of the entities to which the tools of distributional judgment are
applied. In the recent decades, economic thinking about the income shows that, the capital income is among the major
incomes in a big number of countries, there are many important econometrics devoted to the income capital, mainly
dealing with relationships between capital income taxation and welfare benefits, and in particular with the incidence and
efficiency effects of taxes on incomes from capital in various economic scenarios, for further details consult the
following references (cf., e.g., Chamley, (1986)[5]; Judd, (2002) [34]; Sörensen, (2007) [40]; Abel, (2007) [1]; Golosov
et al., (2003)[27], Greselin, et al. (2014) [31]).
For more details about the analysis of the impact of the capital incomes on the income inequality we refer to the
following references (cf., e.g., Lerman and Yitzhaki, (1985)[35]; Saez, (2005) [41]). In recent years, micro-data shows
that capital revenues are extremely volatile, and that their share of disposable income has increased. Moreover, in some
countries, capital incomes have been making up an insufficient income for high contribution to the overall inequality (cf.,
e.g., Frädorf et al., (2011) [18]).

The present work has been motivated by the need for better understanding of the distribution and inequality of capital
incomes, which in many cases appear to be heavy tailed. We focus on capital incomes which are income flows from
financial assets actually received during the reference year. Capital gains and losses are thus excluded from the definition.
Since there are many individuals with no capital incomes, we restrict our attention to only those with positive capital
incomes.
The rest of the paper is organized as follows. In Section 2 we formulate the main quantities of interest: the Zenga curve
and index, their empirical estimators, and we formulate the kernel-type estimator. In Section 3 we present the main results
of statistical inference for the kernel-type estimators of the Zenga index and the construction of a reduced-bias estimator
and formulate the different results of its asymptotic behaviours. In Section 4 we illustrate and show the performance of
our results by some results of simulation study. The proof of different results are presented in Section 5.
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Note that throughout this paper, the standard notations
P→,

d→ and
d
= respectively stand for convergence in

probability, convergence in distribution and equality in distribution, N (a,b2) denotes the normal distribution with mean
a and variance b2, and {Bn (s) ,0 < s < 1}n≥1 is a sequence of standard Brownian bridges.

2 Zenga curve and index: Definitions

M. Zenga (2007) [43] proposed a measure of inequality index which aggregates the ratios of lower and upper conditional
tail expectations, and by doing so it takes into account the relative nature of the poor and the rich. Namely, let F denote
the cumulative distribution function (cdf) of the population represented by a non-negative random variable X ≥ 0. We
assume that F is continuous and strictly increasing. The (generalized) inverse Q : (0,1)→ [0,∞) of the cdf F , known in
the literature as the quantile function, is defined for all t ∈ (0,1) by the formula Q(t) = inf{x : F(x)≥ t} .

The upper and lower conditional tail expectations are E[X |X > Q(t)] and E[X |X ≤ Q(t)], respectively. Since F is
continuous, they coincide with the upper and lower Tail-Values-at-Risk (TVaR) (e.g., Denuit et al., (2005) [14] ):

TVaRF(t) =
1

1− t

∫ 1

t
Q(s)ds and TVaR∗

F(t) =
1

t

∫ t

0
Q(s)ds

respectively. M. Zenga (2007) [43] defined the index ZF of (relative) inequality and the corresponding curve, which are
given by, respectively,

ZF =

∫ 1

0
zF(s)ds where zF (s) = 1− TVaR∗

F(t)

TVaRF(t)
.

To interpret that, we first note that the Zenga curve zF(s) measures the inequality between the poorest t×100% part of the
population and the remaining richer (1− t)× 100% part. Note also that zF(t) ∈ [0,1]. Hence, the Zenga index ZF takes
on values closer to 1 when, averaging over all t ∈ [0,1], the mean income of the poorest t ×100% sub-population is small
compared to the mean of the remaining richer sub-population. On the other hand, the index ZF takes on values closer to
0 when the difference between the mean incomes of the aforementioned two sub-populations is small, in average. For
additional thoughts on the topic, we refer to Zenga, (2007) [43], Greselin et al., (2013) [30], and references therein.
To compare the Zenga index and curve with the classical Gini index and curve, we write the latter pair as follows:

GF (t) =

∫ 1

0
gF(t)(2t)dt and gF(t) = 1− TVaR∗

F(t)

TVaRF(0)
.

Now, we contrast the definitions of the curves zF(t) and gF(t), we see that while zF(t) compares the mean incomes of
two disjoint sub-populations, the poor and the rich, the Gini curve gF(t) compares overlapping parts of the population.
Furthermore, we see that, due to the weighting function 2t, the Gini index underestimates the comparisons measured by
gF(t) between the very poor and the whole population and emphasizes those comparisons that involve almost identical
population subgroups.
The Zenga index, hence, detects with the same sensibility all deviations from equality in any part of the distribution,
measured by zF(t). For more details on contrasting the Zenga and Gini indices, we refer to Greselin et al. (2013) [30] and
references therein.

2.1 Empirical estimator of the Zenga index

Replacing the population cdf F by its empirical counterpart Fn, where Fn(x) =
1
n ∑n

i=1 1{Xi≤x}, where 1C(t) denotes the

indicator function (1C(t) = 1 if t ∈ C, and equal to 0 otherwise), and X1,X2, ...,Xn are independent and identically
distributed (i.i.d.) observations drawn from the distribution function F , we arrive at the ‘traditional’ Zenga estimator (cf.,
e.g., Greselin and Pasquazzi, (2009) [28] and Greselin et al., (2013) [30]

Ẑn = 1− 1

n− 1

n−1

∑
j=1

j−1 ∑
j
i=1 Xi,n

(n− j)−1
∑n

i= j+1 Xi,n

, (1)

where X1,n ≤ X2,n ≤ ... ≤ Xn,n are the order statistics of X1,X2, ...,Xn. Note that the estimator is neither a ratio of L-
statistics nor a ratio of U-statistics. For this reason, Greselin and Pasquazzi (2009) [28] and Greselin et al. (2010) [29]
have developed an asymptotic theory for the traditional Zenga estimator, assuming that the underlying i.i.d. random
variables X1,X2, ...,Xn have finite (2+ ε) moments for some ε > 0 as small as desired.
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2.2 Kernel-type estimators

The latter moment assumption plays a crucial role. To illustrate the performance of Ẑn, we choose the Pareto distribution

1−F(x) = x−1/γ ,x > 0, . (2)

for some γ > 0, which is called the tail index.

When γ > 1, then TVaRF(t), thus zF (t) and ZF are not defined.
When γ < 0.5, then E[X2+ε ]< ∞ for some ε > 0, and so we can use the available estimator of ZF .
When γ ∈ (0.5,1) the second moment is infinite, and so we cannot rely on the estimator (1). Greselin, et al. (2014) [30]

motivated the need of a specific estimator for heavy-tailed distributions, motivated that the traditional estimator Ẑn

suffers badly from undercoverage by drawing samples from Pareto model with index γ = 0.75.

In the next part of this paper, we consider a class of heavy-tailed distributions, we assume that

lim
t→∞

1−F (tx)

1−F(x)
= x−1/γ , x > 0. (3)

We restrict ourself to the case γ ∈ (0.5,1), hence, we indeed need another estimator in the case of heavy-tailed populations.
The estimation of γ has been extensively studied in the literature and the most famous estimator is the Hill (1975) [33]
estimator defined as

γ̂H
n,k =

1

k

k

∑
i=1

logXn−i+1,n − logXn−k,n, (4)

or, equivalently

γ̂H
n,k =

1

k

k

∑
i=1

i(logXn−i+1,n − logXn−i,n) , (5)

for an intermediate sequence k, i.e. a sequence such that k → ∞ and k/n → 0 as n → ∞.
More generally, Csörgő et al. (1985) [9] extended the Hill estimator (5) into a kernel class of estimators as follows:

γ̂K
n,k =

1

k

k

∑
i=1

K

(
i

k+ 1

)
Yi, (6)

where K is a kernel integrating to one and Yi = i(logXn−i+1,n − logXn−i,n) .
Note that the Hill estimator corresponds to the particular case where K = K := 1(0,1).

In this spirit, we can construct a new estimator of ZF for a heavy-tailed distribution satisfying the condition (3) as
follows:

Z̃K
n,k = 1−

∫ 1

0


 T̃VaR

∗
n,k(t)

T̃VaRn,k(t)


dt, (7)

where T̃VaRn,k(t) is a semi-parametric estimator of TVaRn,k(t), we can rewrite TVaRn,k(t) as follows:

TVaRn,k(t) =
1

(1− t)

∫ 1−k/n

t
Q(s)ds+

1

(1− t)

∫ k/n

0
Q(1− s)ds

= TVaR
(1)
n,k(t)+TVaR

(2)
n,k(t),

then, an estimator of TVaRn,k(t) is defined by the formula:

T̃VaRn,k(t) = T̃VaR
(1)

n,k(t)+ T̃VaR
(2)

n,k(t) (8)

=
1

(1− t)

∫ 1−k/n

t
Qn(s)ds+

(k/n)Xn−k,n

(1− t)
(

1− γ̂K
n,k

) , (9)
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where Qn(s) is a trimmed empirical estimaor of the quantile for s ∈ (t,1−k/n). To estimate TVaR
(2)
n,k(t) we use an extreme

quantile, known by Weissman-type estimator [42] for Q, such that:

Q̂W
n (1− s) := Xn−k,n (k/n)γ̂K

n,k s
−γ̂K

n,k , s → 0. (10)

where γ̂K
n,k is the kernel class of Hill estimator of the tail index γ.

Also, we define an estimator for TVaR∗
F as the following:

T̃VaR
∗
n,k =

1

t

(
T̃VaRn,k(0)+ (1− t)T̃VaRn,k(t)

)
.

Thus, the estimator (7) is already proposed by Greselin et al., 2014 [31] in the particular case where K = K := 1(0,1).

Asymptotic normality for Z̃K
n,k is obviously related to the one γ̂K

n,k estimator. As usual in the extreme value framework, to

prove such type of results, we need a second-order condition on the tail quantile function U, defined as

U(z) = inf{y : F(y)≥ 1− 1/z}, z > 1. (11)

We say that the function U satisfies the second-order regular variation condition with second-order parameter ρ ≤ 0 if
there exists a function A(t) which does not change its sign in a neighbourhood of infinity and such that, for every x > 0,

lim
t→∞

logU(tx)− logU(t)− γ log(x)

A(t)
=

xρ − 1

ρ
, (12)

when ρ = 0, then the ratio on the right-hand side of equation (12) should be interpreted as logx. As an example of heavy-
tailed distributions satisfying the second-order condition, we have the so called and frequently used Hall’s model which
is a class of cdf’s, such that

U(t) = ctγ (1+ dA(t)/ρ + o(tρ)) as t → ∞. (13)

where γ > 0, ρ ≤ 0, c > 0, and d ∈ R∗.
This sub-class of heavy-tailed distributions contains the Pareto, Burr, Fréchet and t−Student, these cdf’s are usually used
in economic and insurance mathematics, as models for dangerous risks. For statistical inference concerning the second-
order parameter ρ we refer, for example, to Peng and Qi (2004) [38], Gomes et al., (2005) [24], Gomes and Pestana
(2007) [25].
The study of the asymptotic distributions of the estimator given by equation (7) for the uniform kernel K = K := 1(0,1), is
established by Greselin et al., (2014) [31] under the second-order framework (12), which is asymptotically normal with

null mean value whenever
√

kA(n/k)→ 0, but there appears a non-null asymptotic bias, whenever
√

kA(n/k)→ λ is finite.

In this paper we are going to base on reduced bias estimators of the Zenga index, even when
√

kA(n/k) → λ is finite,
non-necessarily Null. Our procedure is based on the exponential regression model.

3 Main results

To study the asymptotic normality of the estimator of Z̃K
n,k, we need some results and classical assumptions about the

kernel:
Condition (K ): Let K be a function defined on (0,1]

CK1.K(s) ≥ 0 whenever 0 < s ≤ 1 and K(1) = K′(1) = 0;
CK2.K(·) is differentiable, nonincreasing and right continuous on (0,1];
CK3.K and K′ are bounded (K′ is the derivative function of K);

CK4.
∫ 1

0 K(u)du = 1;

CK5.
∫ 1

0 u−1/2K(u)du < ∞.

3.1 Asymptotic result for the Z̃K
n,k estimator

Theorem 1.Assume that F satisfies the condition (12) for γ ∈ (1/2,1). If further (K ) holds and the sequence k satisfies

k → ∞ and k/n → 0 as n → ∞, we have

√
k

(k/n)U(n/k)

(
Z̃K

n,k −ZF

)
d
=
√

kA

(n

k

)
A BK (γ,ρ)+W1,n +W2,n (K)+W3,n + oP (1) ,
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where

A BK (γ,ρ) =

(
v(1)

(1− γ)(γ +ρ − 1)
+

v(1)

(1− γ)2

∫ 1

0
s−ρ K(s)ds

)
;

W1,n =
γv(1− k/n)

(1− γ)

√
n

k
Bn

(
1− k

n

)
;

W2,n (K) = − γv(1− k/n)

(1− γ)2

√
n

k

{∫ 1

0

1

s
Bn

(
1− sk

n

)
d (sK (s))

}
;

W3,n = −
∫ 1−k/n

0 v(s)Bn(s)

(k/n)1/2Q(1− k/n)
dQ(s)+ oP(1),

and

v(s) =

∫ s

0

TVaR∗
F(t)

(1− t)TVaR2
F(t)

dt.

Now, by computing the asymptotic variances of the different processes appearing in Theorem 1, we deduce the
following corollary.

Corollary 1.Under the same assumptions of Theorem 1, if
√

kA(n/k)→ λ ∈ R, we have

√
k

(k/n)U(n/k)

(
Z̃K

n,k −ZF

)
d→ N (λA BK (γ,ρ) ,A C K (γ,ρ)) ,

where

A C K (γ,ρ) =
v2 (1)γ2

(1− γ)2 (2γ − 1)
+

v2 (1)γ2

(1− γ)4

∫ 1

0
K2 (s)ds.

The Corollary 1 generalizes the result of the Theorem 1 in Greselin, F. et al. (2014)[31] in case λ 6= 0 and when we
use a general kernel instead of K.

In view of these results, Z̃K
n,k is an estimator of ZF with an asymptotic bias given by

(k/n)U(n/k)A(n/k)A BK (γ,ρ) .

For a specific kernel, the asymptotic bias and variance can be computed. For instance, we have the following corollary 2
if K = K.

Corollary 2.Under the assumptions of Corollary 1 and in the special case where K = K, we have

√
k
(
Z̃K

n,k −ZF

)

(k/n)U(n/k)

d→ N

(
λ

γρv(1)

(1−ρ)(γ +ρ − 1)(1− γ)2
,σ2

γ

)
(14)

for any fixed t ∈ (0,1), where the asymptotic variance σ2
γ is given by the formula

σ2
γ =

γ4v2(1)

(1− γ)4(2γ − 1)
.

The next step is to propose a reduced-bias estimator of ZF .

3.2 Bias-correction for the Z̃K
n,k estimator

The problem of reduced bias of inequality measures estimation is well known in the literature, and it has been addressed
recently by several authors, among whom we mention Fichtenbaum and Shahidi, 1988 [17], Breunig, 2002 [4], Deltas
2003 [13], all these researchers consider the possibility of dealing with the bias term in an appropriate way, building
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different new reduced bias estimators.
For the kernel-type estimator Z̃K

n,k, we recall that, from Theorem 1,

Z̃K
n,k − (k/n)U(n/k)A(n/k)A BK (γ,ρ) ,

is an asymptotically unbiased estimator for ZF . Note that γ,ρ , U(n/k) and A(n/k) are unknown quantities that we have
to estimate. Under the condition (12), Feuerverger and Hall (1999) [16] and Beirlant et al. (1999, 2002) [2,?] propose the
following exponential regression model for the log-spacings of order statistics:

Yi ∼
(

γ +A
(n

k

)( i

k+ 1

)−ρ
)
+ εi,k, 1 ≤ i ≤ k, (15)

where εi,k are zero-centered error terms. If we ignore the term A(n/k) in equation (15), we obtain the Hill estimator γ̂H
n,k by

taking the mean of the left-hand side of (15). By using a least-square approach, (15) can be further exploited to propose a
reduced-bias estimator for γ in which ρ is substituted by a consistent estimator ρ̂ = ρ̂ (n,k) (see for instance Beirlant et
al., 2002 [3] and Fraga Alves et al., 2003) [19] or by a canonical choice, such as ρ = −1(see e.g. Feuerverger and Hall
(1999) [16] or Beirlant et al., (1999)[2]). The least squares estimators for γ and A(n/k) are then given by

γ̂L.S
n,k (ρ̂) =

1

k

k

∑
i=1

Yi −
ÂL.S

n,k (ρ̂)

1− ρ̂
;

ÂL.S
n,k (ρ̂) =

(1− 2ρ̂)(1− ρ̂)2

ρ̂2

1

k

k

∑
i=1

((
i

k+ 1

)−ρ̂

− 1

1− ρ̂

)
Yi.

Note that γ̂L.S
n,k (ρ) can be viewed as the kernel estimator γ̂

Kρ

n,k , where for 0 < u ≤ 1:

Kρ (u) :=
1−ρ

ρ
K (u)+

(
1− 1−ρ

ρ

)
Kρ (u) (16)

with K (u) = 1{0<u<1} and Kρ (u) =
(

1−ρ
ρ

)
(u−ρ − 1)1{0<u<1}, both kernels satisfy condition (K ). On the contrary Kρ

does not satisfy statement (CK1) in (K ). We refer to Gomes and Martins (2004) [22] and Gomes et al., (2007) [26] for
other techniques of bias reduction based on the estimation of the second-order parameter.

We are now able to obtain a reduced-bias estimator for the Zenga index ZF from condition (12) and using the above
estimators for the different unknown quantities:

Z̃
K,ρ̂
n,k = Z̃K

n,k −
(

k

n

)
Xn−k,nÂL.S

n,k (ρ̂)A BK

(
γ̂L.S

n,k (ρ̂) , ρ̂
)
. (17)

The asymptotic normality of Z̃
K,ρ̂
n,k is established in the theorem 2.

Theorem 2.Under the assumptions of Theorem 1, if ρ̂ is a consistent estimator for ρ , then we have

√
k
(
Z̃

K,ρ̂
n,k −ZF

)

(k/n)U(n/k)

d→ N

(
0,Ã C K (γ,ρ)

)
,

where

Ã C K (γ,ρ) = A C K (γ,ρ)+
γ2

ρ2
(1− 2ρ)(1−ρ)2

A B
2
K (γ,ρ)

+
2γ2 (1− 2ρ)(1−ρ)

ρ2 (1− γ)2

(
1− (1−ρ)

∫ 1

0

K(s)

sρ
ds

)
A BK (γ,ρ) .

Let us observe that Z̃
K,ρ̂
n,k has a null asymptotic bias, which is not the case for Z̃K

n,k (Corollary 1).
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Corollary 3.Under the same assumptions as in Theorem 2 and in the special case where K = K, we have

√
k
(
Z̃

K,ρ̂
n,k −ZF

)

(k/n)U(n/k)

d→ N

(
0,

γ4 (γ −ρ)2
v2(1)

(2γ − 1)(γ +ρ − 1)2 (1− γ)4

)
.

Now, in the special case where K = Kρ , as already mentioned, the estimator γ̂
Kρ

n,k coincides with γ̂L.S
n,k (ρ).

The aim of the next corollary is to establish the asymptotic normality of the resulting Zenga estimator Ẑ
Kρ ,ρ̂
n,k , denoted by

Ẑ
L.S,ρ̂
n,k , when the least squares approach is adopted.

Corollary 4.Under the same assumptions as in Theorem 2 and in the special case where K = Kρ , we have

√
k
(
Ẑ

L.S,ρ̂
n,k −ZF

)

(k/n)U(n/k)

d→ N

(
0,Ã C Kρ (γ,ρ)

)
,

where

Ã C Kρ (γ,ρ) =
γ2 (1−ρ)2

ρ2 (1− γ)4
v2(1)+

v2(1)γ2

(2γ − 1)(1− γ)2

+
γ2 (1− 2ρ)(1−ρ)(γρ + 2ρ + γ −ρ − 1)

ρ2 (1− γ)3 (γ +ρ − 1)2
v2(1).

4 Simulation study

In this section we examine via Monte Carlo simulations a finite-sample performance of the proposed (asymptotic) Zenga

index measure, with particular emphasis on comparisons and illustrations of the performance of the biased estimator Z̃K
n,k

and the reduced-bias estimator Z̃
L.S,ρ̂
n,k , we compare the two estimators in terms of the bias and Root Mean Square Error

(RMSE), we note that bias1 and RMSE1 are for the estimator Z̃K
n,k, and bias2 and RMSE2 are for the estimator Z̃

L.S,ρ̂
n,k ,

also we compare between the coverage probability (cov prob) of the bias and the RMSE for a significance level ζ = 0.95,

through its application to sets of samples taken from Pareto distribution with tail of distribution F(x) = 1− x−1/γ , x > 1,

and Fréchet distributions with tail of distribution F(x) = 1− exp
(
−x−1/γ

)
, x > 0, in this study, we consider two values

of tail index (γ = 2/3 and γ = 3/4 ), and the second-order parameter ρ = −1, we generate 1000 independent replicates
of samples sizes 1000, 2000 and 4000 from the selected parent distribution. With the optimal values of k, we estimate the
following minimal Asymptotic Mean Squared Error (AMSE) values of γ̂K

n,kopt
, several procedures have been suggested in

the literature, and we refer to, e.g., (Dekkers and de Haan, (1993) [12], Drees and Kaufmann, (1998) [15], Danielsson et
al., (2001) [10], Cheng and Peng, (2001) [6], Neves and Fraga Alves, (2004) [37]) and references therein.
In our current study we employ the method of Cheng and Peng (2001) [6] for deciding on an appropriate value kopt of k.
For each simulated sample, we obtain an approximation of the estimators of Zenga index ZF . The overall estimated ZF is
then taken as the empirical mean of the values in the 1000 repetitions. To this end, we summarize the results in Table 1
and Table 2

5 Proofs

Let Y1, ...,Yn be i.i.d. r.v.’s from the unit Pareto distribution G, defined as G(y) = 1− 1/y,y > 1. For each n ≥ 1, let

Y1,n ≤ ... ≤ Yn,n be the order statistics pertaining to Y1, ...,Yn. Clearly X j,n
d
= U(Yj,n), j = 1, ...,n. In order to use results

from Csörgö et al., (1986) [8], a probability space (Ω ,A ,P) is constructed carrying a sequence 1,2, ... of independent
random variables uniformly distributed on (0,1) and a sequence of Brownian bridges {Bn(s),0 ≤ s ≤ 1,n = 1,2....} . The
resulting empirical quantile is denoted by

βn(r) =
√

n(r−V(r)) ,

where

V(r) = ζ j,n,
j− 1

n
≤ r ≤ j

n
, j = 1,2, ...,n and V(0) = 0.
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Table 1: Simulations results based on Pareto distribution with γ = 3/4 and γ = 2/3, the corresponding Zenga index values 0.8247 and

0.7590, respectively

γ 2/3 3/4

bias1 RMSE1 bias2 RMSE2 bias1 RMSE1 bias2 RMSE2

n=1000 -0.0024 0.0075 -0.0012 0.0031 -0.0026 0.0069 -0.0016 0.0038

n=2000 -0.0018 0.0049 -0.0013 0.0023 -0.0019 0.0055 -0.0012 0.0029

n=4000 -0.0013 0.0036 -0.0010 0.0019 -0.0013 0.0038 -0.0010 0.0015

cov prob

n=1000 0.627 0.665 0.714 0.755 0.605 0.685 0.669 0.775

n=2000 0.635 0.676 0.726 0.762 0.619 0.697 0.682 0.782

n=4000 0.639 0.681 0.744 0.785 0.632 0.701 0.705 0.796

Table 2: Simulations results based on Fréchet distribution with γ = 3/4 and γ = 2/3, the corresponding Zenga index values 0.8652 and

0.8229, respectively

γ 2/3 3/4

bias1 RMSE1 bias2 RMSE2 bias1 RMSE1 bias2 RMSE2

n=1000 0.0019 0.0073 0.0013 0.0055 0.0021 0.0055 0.0012 0.0024

n=2000 0.0010 0.0048 0.0009 0.0026 0.0015 0.0034 0.0011 0.0019

n=4000 0.0008 0.0022 0.0006 0.0012 0.0012 0.0023 0.0009 0.0010

cov prob

n=1000 0.625 0.701 0.734 0.755 0.596 0.659 0.682 0.748

n=2000 0.633 0.713 0.747 0.774 0.613 0.665 0.699 0.768

n=4000 0.639 0.721 0.762 0.781 0.629 0.671 0.718 0.782

Proof(Proof of Theorem 1). Theorem 1 follows from the asymptotic expansion

Z̃K
n,k = 1−

∫ 1

0


 T̃VaR

∗K

n,k(t)

T̃VaR
K

n,k(t)


dt,

we have

√
k√

k/nU(n/k)

(
Z̃n,k

K −ZF

)
= −

∫ 1

0

1

TVaRF(t)

√
n

T̃VaR
∗K

n,k(t)−TVaR∗
F(t)√

k/nU(n/k)
dt

+

∫ 1

0

TVaR∗
F(t)

TVaR2
F(t)

√
n

T̃VaR
K

n,k(t)−TVaRF(t)√
k/nU(n/k)

dt

+

∫ 1

0

(
1

TVaRK
n,k(t)

− 1

TVaRF(t)

)

×
√

n
T̃VaR

∗K

n,k(t)−TVaR∗
F(t)√

k/nU(n/k)
dt

+

∫ 1

0

TVaR∗
F(t)

TVaRF(t)


 1

T̃VaR
K

n,k(t)
− 1

TVaRF(t)




×
√

n
T̃VaR

K

n,k(t)−TVaRF(t)√
k/nU(n/k)

dt

= I1 + I2 + I3 + I4.

Greselin et al. (2014) [31] showed that I3 = oP(1) and I4 = oP(1) when n → ∞.
On the other hand, we have

(1− t)

(
T̃VaR

K

n,k(t)−TVaRF(t)

)
= An,1 +An,2 (t) ,
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and

t

(
T̃VaR

K∗
n,k(t)−TVaR∗

F(t)

)
= An,2 (0)−An,2 (t) ,

for all t such that 0 ≤ t ≤ 1− k/n, where

An,1 =

(
k

n

)
Xn,k

1− γ̂K
n,k

−
∫ 1

1−k/n
Q(s)ds

An,2 (t) =

∫ 1−k/n

t
(Qn (s)−Q(s))ds

We have, from Rassoul, (2013) [39], that

√
kAn,1(t)

(k/n)Q(1− k/n)
=−

∫ 1−k/n

0 Bn(s)dQ(s)

(k/n)1/2Q(1− k/n)
+ oP(1) =Wn,3 (18)

and √
kAn,2 (t)

(k/n)Q(1− k/n)
=
√

kA(n/k)A BK (γ,ρ)+W1,n +W2,n. (19)

The proof of statement (18) is similar to that of Theorem 2 in Necir et al., (2010) [36], though some adjustments are
needed since we are now concerned with the Zenga index. Therefore, we present the main blocks of the proof together
with pinpointed references to Necir et al., (2010) [36] for specific technical details.
Next, from theorem 1 in Rassoul (2013) [39], we have

(1− t)
√

k

(k/n)U(n/k)

(
T̃VaR

K

n,k(t)−TVaRF (t)

)

d
=
√

kA
(n

k

)
A BK (γ,ρ)+W1,n +W2,n (K)+W3,n + oP (1) ,

where

A BK (γ,ρ) =

(
v(1)

(1− γ)(γ +ρ − 1)
+

v(1)

(1− γ)2

∫ 1

0
s−ρ K(s)ds

)
;

W1,n =
γv(1− k/n)

(1− γ)

√
n

k
Bn

(
1− k

n

)
(1+ oP (1)) ;

W2,n (K) = − γv(1− k/n)

(1− γ)2

√
n

k

{∫ 1

0

1

s
Bn

(
1− sk

n

)
d (sK (s))

}
;

W3,n = −
∫ 1−k/n

0 v(s)Bn(s)

(k/n)1/2Q(1− k/n)
dQ(s)+ oP(1).

Finally √
k√

k/nU(n/k)

(
Z̃K

n,k −ZF

)
d
=
√

kA

(n

k

)
A BK (γ,ρ)+W1,n +W2,n (K)+W3,n + oP (1) .

Proof(Proof of corollary 1). From Theorem 1, the sum W1,n+W2,n(K)+W3,n is a centered Gaussian random variable. To
calculate its asymptotic variance, the computations are tedious but quite direct. The classical Sultsky’s lemma completes
the proof of corollary 1.

Proof(Proof of corollary 2). The proof of the corollary 2 is a direct result of the corollary 1 with the kernel K = K = 1(0,1).

Proof(Proof of Theorem 2).

We have √
k
(
Z̃

K,ρ̂
n,k −ZF

)

(k/n)U(n/k)

d
=W1,n +W2,n (K)+W3,n +W4,n + oP (1) ,

where
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W4,n =
√

k

(
A(n/k)A BK (γ,ρ)− ÂL.S

n,k (ρ̂)A BK

(
γ̂L.S

n,k (ρ̂) , ρ̂
) Xn−k,n

U(n/k)

)

= −A BK (γ,ρ)
√

k
(

ÂL.S
n,k (ρ̂)−A(n/k)

)

−
√

kÂL.S
n,k (ρ̂)

(
A BK

(
γ̂L.S

n,k (ρ̂) , ρ̂
)
−A BK (γ,ρ)

)

−
√

kÂL.S
n,k (ρ̂)A BK

(
γ̂L.S

n,k (ρ̂) , ρ̂
)( Xn−k,n

U(n/k)
− 1

)

d
=−A BK (γ,ρ)γ (1−ρ)

√
n

k

{∫ 1

0

1

s
Bn

(
1− sk

n

)
d
(
s
(
K (s)−Kρ (s)

))}

+oP (1) .

By the result of Lemma 5 of Girard and Guillou, (2013) [21], for any consistent estimator ρ̂ of ρ , we have

√
k
(
γ̂L.S

n,k (ρ̂)− γ
) d
= γ

√
n

k

∫ 1

0

1

s
Bn

(
1− sk

n

)
d
(
sKρ (s)

)
+ oP (1) , (20)

and
√

k
(

ÂL.S
n,k (ρ̂)−A

(n

k

))

d
= γ (1−ρ)

√
n

k

∫ 1

0

1

s
Bn

(
1− sk

n

)
d
(
s
(
K (s)−Kρ (s)

))
+ oP (1) , (21)

and by using the consistency and the inequality | ex−1
x

− 1| ≤ e|x|− 1 for all x ∈ R. Moreover, direct computations lead to
the desired asymptotic variance which ends the proof of Theorem 2.

Proof(Proof of corollary 3). The proof of the corollary 3 is a direct result of the Theorem 2 with the kernel K = K = 1(0,1).

Proof(Prooof of corollary 4). Recall that Kρ does not satisfy condition (K ) but it can be rewritten as (16) with both K

and Kρ satisfying (K ). So, following the lines of the proof of Theorem 2, Corollary 4 follows.

6 Conclusion

This paper develops a kernel-type estimator of the Zenga index for heavy-tailed model. Our estimator is consistent and
asymptotically normal, and performs excellently in finite samples as shown by Monte Carlo simulations.
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