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Abstract: The main purpose of this paper is to establish a Laurent expansion of Hurwitz and Riemannq-zeta functions by means of a
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1 Introduction

The Hurwitz zeta-functionζ (s,a) is defined by

ζ (s,a) =
∞

∑
n=0

1
(n+ a)s (1.1)

whereσ = ℜ(s) > 1 anda is any complex number [1].
(Normally, it is assumed that 0< a ≤ 1 in the definition
of ζ (s,a)). Observe thatζ (s,1) = ζ (s), where ζ (s)
denotes the Riemann zeta-function. The functionζ (s,a)
can be analytically continued into the entire complex
s-plane and is holomorphic except for a simple pole at
s = 1 with residue 1. In a neighbourhood ofs = 1,ζ (s,a)
has the Laurent expansion in powers ofs−1

ζ (s,a) =
1

s−1
+

∞

∑
n=0

(−1)nγn(a)
n!

(s−1)n (1.2)

where the quantitiesγn(a) are known as the generalized
Stieltjes constants which are given by the limit [2]

γn(a) = lim
m→∞

[

m

∑
k=0

logn(k+ a)
k+ a

−
logn+1(m+ a)

n+1

]

(1.3)

and whenn = 0, we haveγ0(a) = −ψ(a) whereψ(a) is
the digamma function. Whena = 1 the expansion (1.2)
reduces to the Laurent expansion of the Riemann zeta
function

ζ (s) =
1

s−1
+

∞

∑
n=0

(−1)nγn

n!
(s−1)n (1.4)

whereγn = γn(1) is the (ordinary) Stieltjes constants.
Tsumura [3] definedq-analogue of the Hurwitz zeta

function for a complex numbers and 0< a ≤ 1,0< q < 1
as

ζq(s,a) =
∞

∑
n=0

q−n−1

(q−n−1[n]q + aq−1)s (1.5)

where [x]q = (1 − qx)/(1 − q). When a = 1, ζq(s,a)
reduces to the Riernannq-zeta function

ζq(s) =
∞

∑
n=1

q−n

(q−n[n]q)s (1.6)

the right-hand side of this series converges when
ℜ(s) > 1. Tsumura proved that the seriesζq(s) converges
when ℜ(s) > 1. ζq(s) may be analytically continued to
the whole complex plane, except for a simple pole at
s = 1 with residue(q − 1)/ logq (see also [4,5]). He
definedq-zeta functions (1.5) and (1.6) for 0< q < 1, but
we see that the two series in the right hand sides of (1.5)
and (1.6) converge absolutely for|q|< 1 and thus we will
consider|q|< 1 throughout this paper.

In this paper, we are seeking to establish a Laurent
expansion of Hurwitz and Riemannq-zeta functions by
means of a slightly different version of the
Euler-Maclaurin summation formula from what is usually
given. Let ℓ is a natural number andf (t) is a smooth
function defined for all real numberst betweenα andℓ,
then

∑α<k≤n f (k) =
∫ n

α f (t)dt +∑ℓ
k=1(−1)k Bk

k! f (k−1)(n)+∑ℓ
k=1(−1)k+1Pk(α) f (k−1)(α)+Rℓ

(1.7)
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where the reminder termRℓ is defined as

Rℓ = (−1)ℓ+1
∫ n

α
Pℓ(t) f (ℓ)(t)dt

Here,Bk denotes thekth Bernoulli number, andPk(t) is the
kth periodic Bernoulli function defined by

Pk(t) =
1
k!

Bk({t}) with P1(t) = B1({t}) = {t}−
1
2

whereBk(t) is thekth Bernoulli polynomial and{t} is the
fractional part of the real numbert.

2 Integral representation ofq-zeta functions

In [2], Berndt introduced some representations for the
Hurwitz zeta function. He gave integral representation of
the Hurwitz zeta functionζ (s,a) as follows

ζ (s,a) =
a1−s

s−1
+

a−s

2
− s

∫ ∞

0

{t}−1/2
(t + a)s+1 dt (2.1)

He also gave classical formulae related to Hurwitz zeta
function and Lerch’s expression
lnΓ (a) = ζ ′(0,a)− ζ ′(0). In the present section, we are
seeking to establish integral representations ofq-zeta
functions which tend to the Berndt’s results.
Theorem 2.1.
For 0< a ≤ 1,m ≤ α < m+1;m = 0,1,2, · · · andσ > 1,
the Hurwitz q-zeta function (1.5) can be represented in
the integral form as

ζq(s,a) =
m

∑
k=0

q(k+1)(s−1)

([k]q + aqk)s +
q−1
logq

1
s−1

q(α+1)(s−1)

([α]q + aqα)s−1 +
q(α+1)(s−1)

([α]q + aqα)s

(

{α}−
1
2

)

+

∫ ∞

α

q−2(t+1)({t}−1/2)((a− aq−1)qt +1− s)
(q−t−1[t]q + aq−1)s+1 dt

(2.2)
In particular, whena = 1, the Riemannq-zeta function has
the integral form

ζq(s) =
m

∑
k=0

q(k+1)(s−1)

[k+1]sq
+

q−1
logq

1
s−1

q(α+1)(s−1)

[α +1]s−1
q

+
q(α+1)(s−1)

[α +1]sq

(

{α}−
1
2

)

+

∫ ∞

α+1

q−2t({t}−1/2)(1− s− qt)

(q−t [t]q)s+1 dt

(2.3)
Proof. Let the smooth function

f (t) =
q−t−1

(q−t−1[t]q + aq−1)s (2.4)

and ℓ = 1 in Euler-Maclaurin summation formula (1.7).
Then

n

∑
k=m+1

f (k) =
∫ n

α
f (t)dt−B1 f (n)+P1(α) f (α)+

∫ n

α
P1(t) f ′(t)dt

If σ > 1, upon lettingn → ∞ and after some simple
calculations, we obtain the integral representation (2.2).

The integral representation (2.3) can be obtained by
putting a = 1 in (2.2) with changing the variable of the
integral fromt +1 to t. This ends the proof.

The integral representation (2.2) of Hurwitzq-zeta
function can be rewritten in different forms by assigning
various values of α. Some of these integral
representations are listed below

I) For 0< a≤ 1,α = 1−a andσ > 1, the Hurwitzq-zeta
function (1.5) can be represented in the integral form
as

ζq(s, [a]q) =
qs−1

[a]sq
+

q−1
logq

q−a(s−1)

s−1
+ q−a(s−1)

(

{1− a}−
1
2

)

+

∫ ∞

1−a

q−2(t+1)({t}−1/2)(1− s− qt+a)

(q−t−1[t + a]q)s+1 dt

(2.5)
which appears in Berndt [[2](5.2), ] asq → 1 and if we
puta = 1, we return to (2.3) whenα = 0.

II) For 0< a ≤ 1,α = m = 0 andσ > 1, the Hurwitzq-
zeta function (1.5) can be represented in the integral
form as

ζq(s,a) =
qs−1

2αs +
q−1
logq

1
s−1

qs−1

as−1 +
∫ ∞
0

q−2(t+1)({t}−1/2)((a−aq−1)qt+1−s)
(q−t−1[t]q+aq−1)s+1 dt

(2.6)

= qs−1

as + q−1
logq

1
s−1

qs−1

as−1 +
∫ ∞

0
q−2(t+1){t}((a−aq−1)qt+1−s)

(q−t−1[t]q+aq−1)s+1 dt

(2.7)
which tends to (2.1) asq → 1.

3 Laurent expansion

In the present section, we are seeking to provide Laurent
expansion ofq-zeta functions. To do this, let the integral

I(s;q) =
∫ ∞

0
q−2(t+1){t}((a−aq−1)qt+1−s)

(q−t−1[t]q+aq−1)s+1 dt, σ > 1
(3.1)

which can be rewritten as

I(s;q) =
∫ ∞

0
q(t+1)(s−1){t}((a−aq−1)qt+1−s)

([t]q+aqt)s+1 dt, σ > 1
(3.2)

Unfortunately, this integral just converges forσ > 1 due
to exist the factorqt(s−1) in the integralI(s;q) unlike what
happens in the classical case where ifq → 1, the integral
I(s,1) converges by analytic continuation forσ > −1
(see, Berndt [2]). In contrast to the situation of Berndt,
this does not help much and indeed we want to establish
an equivalent form toI(s;q) which can be continued
analytically.
Lemma 3.1 The integralI(s;q) defined by (3.1) can be
expanded in the series

I(s;q) =
q−1
logq

1
s−1

−
q−1
logq

1
s−1

qs−1

as−1 −
qs−1

as

+
∞

∑
n=0

(−1)n(s−1)n

n!
lim

m→∞

[

m

∑
k=0

logn(q−k−1[k]q + aq−1)

[k]q + aqk −
q−1
logq

logn+1(q−m−1[m]q + aq−1)

n+1
dt

]

(3.3)
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which is continued meromorphically to the whole complex
s-plane except at the points = 1.
Proof. Let f (t) be the function defined by (2.4). Then

I(s;q) =
∫ ∞

0
{t} f ′(t)dt =

∞

∑
k=1

∫ k

k−1
{t} f ′(t)dt

=
∞

∑
k=1

∫ k

k−1
(t − k+1) f ′(t)dt =

∞

∑
k=1

[

f (k)−
∫ k

k−1
f (t)dt

]

=
∞

∑
k=1

[

e−(s−1) log(q−k−1[k]q+aq−1)

[k]q + aqk
−

∫ k

k−1

e−(s−1) log(q−t−1[t]q+aq−1)

[t]q + aqt dt

]

=
∞

∑
n=0

(−1)n(s−1)n

n!
lim

m→∞

[

m

∑
k=1

logn(q−k−1[k]q + aq−1)

[k]q + aqk −
m

∑
k=1

∫ k

k−1

logn(q−t−1[t]q + aq−1)

[t]q + aqt dt

]

By virtue of convergence of the exponential function
everywhere, the summation and limit were permuted in
the previous relation. Now we are interested in
calculating the inner integral to obtain

I(s;q) =
∞

∑
n=0

(−1)n(s−1)n

n!

[

q−1
logq

logn+1(aq−1)

n+1
−

logn(aq−1

a

]

+
∞

∑
n=0

(−1)n(s−1)n

n!
lim

m→∞

[

m

∑
k=0

logn(q−k−1[k]q + aq−1)

[k]q + aqk −
q−1
logq

logn+1(q−m−1[m]q + aq−1)

n+1

]

=
q−1
logq

1
s−1

−
q−1
logq

1
s−1

qs−1

as−1 −
qs−1

as

+
∞

∑
n=0

(−1)n(s−1)n

n!
lim

m→∞

[

m

∑
k=0

logn(q−k−1[k]q + aq−1)

[k]q + aqk −
q−1
logq

logn+1(q−m−1[m]q + aq−1)

n+1

]

It is obvious that the previous series is continued
meromorphically to the whole complexs-plane except at
the points = 1 and so the integralI(s;q). This completes
the proof.

By inserting the relation (3.3) into the relation (2.7)
with noting that the Laurent expansion for any function
(if exists) is unique, the main theorem in this paper can be
formulated as follows

Theorem 3.2. The Hurwitz q-zeta functionζq(s,a)
can be continued meromorphically to the whole complex
s-plane and that it has a simple pole ats = 1 with residue
(q − 1)/ logq. Moreover, it can be expanded in the
Leaurent expansion as

ζq(s,a) =
q−1
logq

1
s−1

+
∞

∑
n=0

(−1)n(s−1)n

n!
γn(a;q) (3.4)

where

γn(a;q) = limm→∞

[

∑m
k=0

logn(q−k−1[k]q+aq−1)

[k]q+aqk − q−1
logq

logn+1(q−m−1[m]q+aq−1)
n+1

]

(3.5)
Remark 3.3.It is known that the Hurwitzq-zeta function
ζq(s,a) tends to the Hurwitz zeta functionζ (s,a) as
q → 1 and thus the expansion (3.4) tends to the expansion
(1.4) as q → 1, consequentlyγn(a;q) tend to the
generalized Stieltjes constantsγn(a) defined by (1.4) for
all n = 0,1,2, · · · . This means thatγn(a;q) can be said to
have q-analogue of the generalized Stieltjes constants
γn(a) for all n = 0,1,2, · · · .
Corollary 3.4. The Reimannq-zeta functionζq(s) can be
continued meromorphically to the whole complexs-plane
and that it has a simple pole ats = 1 with residue

(q − 1)/ logq. Moreover, it can be expanded in the
Laurent expansion as

ζq(s) =
q−1
logq

1
s−1

+
∞

∑
n=0

(−1)n(s−1)n

n!
γn(q) (3.6)

where

γn(q) = γn(1,q) = limm→∞

[

∑m
k=1

logn(q−k[k]q)
[k]q

− q−1
logq

logn+1(q−m[m]q)
n+1

]

.

(3.7)
The q-digamma functionψq(z) is defined as the

logarithmic derivative of theq-gamma function [6]

ψq(z) =
d
dz

(lnΓq(z)) =
Γ ′

q (z)

Γq(z)

whereΓq(z) is theq-gamma function defined as

Γq(z) =
(q;q)∞

(qz;q)∞
(1− q)1−z, z 6= 0,−1,−2, ...

Therefore, theq-digamma functionψq(z) can be expressed
as

ψq(z)=− ln(1−q)+
lnq

1− q

∞

∑
n=0

qn+z

[n+ z]q
, z 6= 0,−1,−2, · · ·

For more details on theq-digamma function, see [7] which
presented some properties and expansions associated with
theq-digamma function.
Theorem 3.5.For 0< a ≤ 1, we have

γ0([a]q;q) =
1− q
logq

ψq(a). (3.8)

Proof. From (3.5), we have

γ0([a]q;q) = lim
m→∞

[

m

∑
k=0

1
[k]q +[a]qqk −

q−1
logq

log(q−m−1[m]q +[a]qq−1)

n+1

]

= lim
m→∞

[

m

∑
k=0

1
[a+ k]q

−
q−1
logq

log(q−m−1[a+m]q)

]

= lim
m→∞

[

m

∑
k=0

1− qa+k+ qa+k

[a+ k]q
− (1− q)(m+1)−

q−1
logq

log([a+m]q)

]

= lim
m→∞

[

m

∑
k=0

qa+k

[a+ k]q
−

q−1
logq

log([a+m]q)

]

=
∞

∑
k=0

qa+k

[a+ k]q
−

1− q
logq

log(1− q) =
1− q
logq

ψq(a).

This ends the proof.
From the Laurent expansion of the Hurwitzq-zeta

function (3.4) and the relation (3.8), we can deduce that

lim
s→1

[

ζq(s, [a]q)−
q−1
logq

1
s−1

]

= γ0([a]q;q)=
1− q
logq

ψq(a).

(3.9)
In particular, whena = 1, we get

lim
s→1

[

ζq(s)−
q−1
logq

1
s−1

]

= γ0(q) =
1− q
logq

ψq(1) = γq

(3.10)
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where γq is the q-analogue of the Euler-Mascheroni
constant defined by

γq = ∑∞
k=1

qk

[k]q
− 1−q

lnq ln(1− q) = limm→∞

[

∑m
k=1

qk

[k]q
− q−1

lnq ln[m]q

]

.

(3.11)
which tends to the Euler-Mascheroni constantγ asq → 1
[8].
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