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FOR VALIDATION OF FINITE ELEMENT MODELS: INDUSTRIAL
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Abstract. Stochastic parametric system parameters identification approach with taking into

account the aliasing problem for validation of finite element models is presented. Investigated

measurement noise perturbation influences to the identified system modal and physical pa-

rameters. Estimated measurement noise border, for which identified system parameters are

acceptable for validation of finite element model of examine system. System identification is

realized by observer Kalman filter and Subspace algorithms. In special case observer gain may

be coincide with the Kalman gain. Stochastic state-space model of the structure are simulated

by Monte-Carlo method.
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1. Introduction

When forced excitation tests are very difficult or only response data are measurable while the
actual loading conditions are unknown, operation modal analysis (output-only modal identifica-
tion techniques) remains the only technique for parametrical identification. The main advantage
of this method is that no special, artificial type of excitation has to apply to the structure to de-
termine its dynamic characteristics. Furthermore, if a structure has high period (more than one
second) modes, it may be difficult to excite it with a shaker, whereas this is generally no prob-
lem for drop weight or ambient sources. However if mass-normalized mode shapes are required,
ambient excitation cannot be used. Output-only modal identification techniques efficiently use
with model updating tools to develop reliable finite element models of structures.

The term system identification as research field in automatic control was coined by Lutfi
Zadeh (1962) [45].

System identification is the process of developing or improving a mathematical representation
of a physical system using experimental data investigated in Kalman [10, 17], Ibrahim [11, 12],
Bendat [5], Ljung [31], Juang [16], Van Overschee and De Moor [41] and system identification ap-
plications in civil engineering structures are presented in works Trifunac [38], Link [30], Ventura
[42], Brincker [6], Roeck [8, 44], Peeters [34], Cunha [43], Wenzel [7], Kasimzade [20]. Extract-
ing system physical parameters from identified state space representation was investigated in
references [3, 4, 13-15, 32, 35-37, 39, 40]. The solution of a matrix algebraic Riccati equation
and orthogonality projection more intensively and inevitably used in system identification was
deeply investigated in works of Aliev, F.A., Bordyug, B.A., Larin, V.B. [1, 2].
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In engineering structures there are three types of identification: modal parameter identifica-
tion; structural-modal parameter identification; control-model identification methods are used.

In the frequency domain the identification is based on the singular value decomposition of
the spectral density matrix and it is denoted Frequency Domain Decomposition (FDD) and its
further development Enhanced Frequency Domain Decomposition (EFDD).

In the time domain there are three different implementations of the Stochastic Subspace Iden-
tification (SSI) technique: Unweighted Principal Component (UPC); Principal component (PC);
Canonical Variety Analysis (CVA) are used.

For the modal updating of the structure [9, 21, 22, 33] it is necessary to estimate sensitivity
of reaction of examined system to change of random [23, 25-29] or fuzzy [25] parameters of a
building.

Below stochastic parametric system parameters identification approach with take into account
the aliasing (bound checking) problem for validation of finite element models is presented. Inves-
tigated measurement noise perturbation influences to the identified system modal and physical
parameters. Estimated measurement noise border, for which identified system parameters are
acceptable for validation of finite element model of examine system. System identification is
realized by observer Kalman filter [14] and Subspace [41] algorithms. In special case observer
gain may be coincide with the Kalman gain. Stochastic state-space model of the structure are
simulated by Monte-Carlo method.

2. Time-domain model of the system

In presented paper mentioned problem was investigated for multi degree of freedom structural
(buildings, towers, matches and et cetera) systems with no limited number of elements (such as
beam, membrane, shell, solid and et cetera). As known for similar type systems the system ma-
trices [m], [c], [k] may be build only by FEM and the equation of motion for a finite-dimensional
linear-dynamic system a set of n2 second-order differential equations are arranged as

[m] {ü (t)}+ [c] {u̇ (t)}+ [k] {u (t)} = [d] {f⊕ (t)} . (1)

Here the direct stiffness method was used for implementation FEM [18, 19, 23] and appropri-
ately was build system mass, damping and stiffness matrices ([m] , [c] , [k]). For example FEM
implementation system stiffness matrix [k] by the direct stiffness method shown below as follows
[18, 19]:

[k̄r]− > [¯̄kr] = [Cr][k̄r][Cr]T− > [¯̄kr+] = [τr]T [¯̄kr][τr]− > [k•] =
r∗∑

r=1

[¯̄kr+]− > a.b.c.− > [k], (1b)

here, [k̄r] is the element stiffness matrix in local coordinate system (c.s.) for r−th finite element,
[¯̄kr] is the element stiffness matrix in global coordinate system for r−th finite element,
[Cr] is the coordinate transformation matrix from local to global c.s. for r−th finite element,
[τr] is the topology matrix for r−th finite element, a.b.c. is abbreviation ”mean after application
of boundary conditions”, r∗ is a number of identical finite elements examined system,
[k] is the stiffness matrix of the in examined system in global c.s.
Here main relations of FEM are given on base Lagrange variation principle.

The equation of motion (1) are transformed to the state-space former of first order equations-
i.e., a continuous-time state-space model of the system are evaluated as

{ż (t)} = [Ac] {z (t)}+ [Bc] {f⊕ (t)} . (2a)
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[Ac] =
[

[0] [I]
− [m]−1 [k] − [m]−1 [c]

]
, (2b)

[Bc] =
[

[0]
[m]−1 [d]

]
, (2c)

{z(t)} =

[
u(t)
u̇(t)

]
. (2d)

If the response of the dynamic system is measured by the m1 output quantities in the output
vector {y(t)} using sensors (such as accelerometers, velocity, displacements, etc.,), for system
model represented by the equations (2), appropriate measurement-output equation become as

{y(t)} = [Ca]{ü}+ [Cv]{u̇}+ [Cd]{u} = [C]{z(t)}+ [D]{f⊕(t)}, (3a)

[C] = [ [Cd]− [Ca][m]−1[k], [Cv] − [Ca][m]−1[c] ], (3b)

[D] = [Ca][m]−1[d]. (3c)

Where {u} is the vector of displacement; [Ac], is an n1 (n1 = 2n2 ; n2 is the number of inde-
pended coordinates) by n1 state matrix ; [d] is an n2 by r1 input influence matrix, characterizing
the locations and type of known inputs {f⊕ (t)} ; [Ca] , [Cv] , [Cd] are output influence matrices
for acceleration, velocity, displacement for using sensors (such as accelerometers, tachometers,
strain gages, etc.,) respectively; [C] is an m1 x n1 output influence matrix for the state vector
{z} and displacement only; [D] is an m1 x r1 direct transmission matrix; r1 is the number of
inputs; m1 is the number of outputs.

In the output - only modal analysis environment, the main assumption is that input force
{F (t)} = [d] {f⊕ (t)} comes from white noise or time impulse excitation. Under this hypothesis
discrete-time stochastic state–space model may be written as:

{zk+1} = [A] {zk}+ [B] {f⊕k}+ {wk} , (4)

{yk} = [C] {zk}+ [D] {f⊕k}+ {vk} , (5)

where {zk} = {z (k∆t)} is the discrete-time state vector; is the process noise due to distur-
bance and modeling imperfections; {vk} is the measurement noise due to sensors’ inaccuracies;
{wk}, {vk} vectors are non-measurable, but assumed that they are white noise with zero mean.
If this white noise assumption is violated, in other words if the input contains also some dom-
inant frequency components in addition to white noise, these frequency components cannot be
separated from the eigen frequencies of the system and they will appear as eigenvalues of the
system matrix [A].

In the real structures, exited by ambient vibration, the input {f⊕(t)}, {f⊕k} remains unmea-
sured and therefore it disappears from the equations (2)-(5) respectively. Then to take into
consideration this fact, the input is implicitly modeled by the noise terms {wk}, {vk}, which are
indirectly contain no measurable input from ambient vibration and mentioned relation became
as:

{zk+1} = [A] {zk}+ {wk} , (6)
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{yk} = [C] {zk}+ {vk} . (7)

3. Solution of the deterministic problem described by equation (2a), (3a)

Assuming zero initial conditions zk=0 = 0, the set of equations (2a,3a) for sequence of k =
0, 1, 2, . . . , ` can be grouped in a matrix form (linear difference or ARX model) as

[y] = [Y][F⊕]. (8)

For the special case where [A] is asymptotically stable so that for some sufficiently large p,
[A]k ≈ 0 for all time steps k ≥ p; truncating [Y], [F⊕] choose the data length ` greater than
r1(p + 1) such that [C][A]k[B] ≈ 0 for k ≥ p, equation (8) can be approximated by

[y] = [Y ][F⊕], (9)

[y] = [y0 y1 y2 ... yp ... y`−1],

[Y ] = [[D] [C][B] [C][A][B] ... [C][A]p−1[B]],

[F⊕] =




f⊕0 f⊕1 f⊕2 ... f⊕p ... f⊕`−1

f⊕0 f⊕1 ... f⊕p−1 ... f⊕`−2

f⊕0 ... f⊕p−2 ... f⊕`−3

... ...

f⊕0 ... f⊕`−p−1




and its solution [Y ] (the first p Markov parameters) can be approximately determined from the
equation (9) as

[Y ] = [y] [F⊕]†, (10)

where matrices dimensions are respectively as [y](m1 x `), [Y ](m1 x r1(p+1)) , [F⊕](r1(p+1)x `);
[F⊕]† is the pseudo-inverse of the matrix [F⊕], and the approximation error decreases as p is
increases; ` is the number of data samples.

In equation (10) more equations (m1 x `), than unknowns ((m1 x r1(p + 1)), because ` >

r1(p + 1).
Unfortunately, for lightly damped space structures, the integer p and thus the number of data

samples ` required to make the approximation in Eq. (9) valid becomes impractically large in the
sense that the size of matrix [F⊕] is too large to solve the its pseudo-inverse [F⊕]† numerically.

4. Solution of the stochastic problem described by equations (4), (5) or (6),

(7) using observer gain the okid algorithm

When using real data with noise, a feedback loop (observer gain [G]) is added to artificially
increase the damping of the system to make the system (4), (5) or (6), (7) as stable as desired
and relation (9) became as

[y] = [Ȳ][V] (11a)

which is the input–output description in matrix form for equation:

{zk+1} = [Ā]{zk}+ [B̄]{ϑk}, (11b)

[Ā] = [A] + [G][C],

[B̄] = [[B] + [G][D] − [G]],
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{ϑk} =
[ {f⊕k}
{yk}

]
.

For the special case where [Ā] is asymptotically stable so that for some sufficiently large p,
[Ā]k ≈ 0 for all time steps k ≥ p; truncating

[
Ȳ

]
, [V] choose the data length ` greater than

r1(p + 1) such that [C][Ā]k[B̄] ≈ 0 for k ≥ p, equation (11a) can be approximated by

[y] = [Ȳ ][V ], (12)

[y] =
[

y0 y1 y2 ... yp ... y`−1

]
,

[
Ȳ

]
=

[
[D] [C]

[
B̄

]
[C]

[
Ā

] [
B̄

]
... [C]

[
Ā

]p−1 [
B̄

] ]
,

[V ] =




f⊕0 f⊕1 f⊕2 ... f⊕p ... f⊕`−1

ϑ0 ϑ1 ... ϑp−1 ... ϑ`−2

ϑ0 ... ϑp−2 ... ϑ`−3

... ...

ϑ0 ... ϑ`−p−1




and its (12) solution [Ȳ ] (the first p Markov parameters) can be approximately determined from
real data ([V ]) as

[Ȳ ] = [y][V ]†, (13)

where matrices dimensions are respectively as [y](m1 x `), [Ȳ ] (m1 x [(r1 + m1)p + r1], [V ]([r1 +
m1)p+r1]x `); [V ]† is the pseudo-inverse of the matrix [V ], and the approximation error decreases
as p is increases. The maximum value of p is the number that maximizes the number (r1 +
m1) p + r1 ≤ ` of independent rows of [V ]. The maximum p means the upper bound of the
order of the deadbeat observer. The lower bound of the order of the observer chosen such that
minimum value of p is the number that minimizes the number m1 p ≥ n1 . Consequently for
the asymptotically stable solution of Eq. (12), bound of the order of observer p must be in the
following interval

[m1 / n1 ] ≤ p ≤ [(`− r1)/(r1 + m1)]. (14)

The least squares solution of the Eq. (12) using the batch (non-recursive) algorithm for a
sequence k = 0 , . . . , `− 1, assume zero initial conditions, zk=0 = 0, from Eq. (11b), it is easy
to show that

[ȳ] = [C][Ā]p[z] + [Ȳ ][V̄ ]. (15)

For the case where [Ā]p is sufficiently small and all the states in [z] are bounded, Eq. (15) can
be approximated by neglecting the first term on the right hand side,

[ȳ] = [Ȳ ][ V̄ ] (16)

which has the following least – squares solution for the observer Markov parameters ([Ȳ ]):

[Ȳ ] = [ȳ][V̄ ]†,
[V̄ ]† = [V̄ ]T [[V̄ ][V̄ ]T ]−1,

(17)

where [ȳ], [Ȳ ], [V̄ ] are described in the form

[ȳ] = [yp, yp+1, ... y`−1],

[Ȳ ] = [Ȳ0, Ȳ1, Ȳ2, ... Ȳp−1].

Theoretically [Ȳ ] contains system matrices [Ā], [B̄], [C], [D] so
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Ȳ = [[D] [C][B̄] [C][Ā][B̄] ... [C][Ā]p−1[B̄]], (18)

V̄ =




f⊕p f⊕p+1 ... f⊕`−1

ϑp−1 ϑp ... ϑ`−2

ϑp−2 ϑp−1 ... ϑ`−3

... ... ... ...

ϑ0 ϑ1 ... ϑ`−p−1




. (19)

The Eq. (2a, 3a) for the state space observer model (another word for direct measurement)
in discrete time domain has the observer form

{ẑk+1} = [Ā]{ẑk}+ [B̄]{ϑk} (20)

or

{ẑk+1} = [A] {ẑk}+ [B] {f⊕k} − [G] ({yk} − {ŷk}) , (21)

{ŷk} = [C] {ẑk}+ [D] {f⊕k} (22)

with the state estimation error

{ek+1} = [Ā]{ek},

{ek} = {zk} − {ẑk}.
Where {ẑk} is an observer state vector and {ŷk} is the estimated output.
If [Ā] is asymptotically stable, then for large k, the estimated {ẑk} tends to the true state {zk}.

Theoretically, one would choose the gain matrix [G] to make state estimation error diminish as
quickly as possible. Under ideal conditions, the quickest observer (gain [G]) is the Kalman filter
([K]).

The initial conditions have negligible influence on the measured data after p time steps. When
there are system and measurement noise present, the elimination of initial condition dependence
makes the system response become stationary.
Schematic illustration of the Observer gain ([G]) identification [25] is presented below:

(u, y) → ȳ = Ȳ V̄ → Ȳ = ȳV̄ †; Ȳ → (OKID) → Y 0, Y ; Y → Ypulse →
→ ERA/DC[H(Y ), SV D(H)] → A,B, C, D; G(A,C, Y 0).

(23)

Here H is the Hankel matrix composed from the Markov parameters (Y); SVD(H) is the
singular value decomposition of Hankel matrix (H); abbreviation Ȳ → (OKID) → Y 0, Y

is mean: Observer Kalman filter identification algorithm is applied to solution (Ȳ - observer
Markov parameters) of the equation (16) for separation of observer gain Markov parameters (Y 0 )
and system Markov parameters (Y ) respectively; abbreviation Y → Ypulse → ERA/DC[H(Y ),
SV D(H)] → A,B, C,D; G(A,C, Y 0) is mean: from system Markov parameters (Y ) are build
pulse response Markov parameters (Ypulse), then applied to system Markov parameters (Y )
Eigen Realization Algorithm using Data Correlations (ERA/DC) which contain building of
Hankel matrix (H) from system Markov parameters and then by the singular value decomposition
of Hankel matrix (SVD(H)), system matrices (A, B, C, D) and gain matrix (G) are build.
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5. Kalman filter application

Another (beyond the observer gain including as presented above) way to stochastically char-
acterize system uncertainties including process (input) and measurement (output) noises (de-
scribed by the Eq. (4), (5) to specify the Kalman filter equation with its steady state Kalman
gain ([K]), which is function of the process and measurement noise covariances ([Q], [R]):

w̄k = E({wk}) = 0;E({wk}{wj}T ) = [Q] δ(k − j), (24a)

v̄k = E({vk}) = 0;E({vk}{vj}T ) = [R] δ(k − j). (24b)

Where E( ) is the expected value operation.
The process noise includes system uncertainties and input noise. Expression for the steady-
state Kalman filter model is

{ẑk+1} = [A]{ẑk}+ [B]{fk}+ [K]({yk} − {ŷk}), (25)

{ŷk} = [C]{ẑk}+ [D]{fk}. (26)

Substituting of Eq. (26) into Eq. (25) yields the following

{ẑk+1} = [Ã]{ẑk}+ [B̃]{ϑk}. (27)

Where {yk} is the real measurement and {ŷk} is the estimated measurement and
[
Ã

]
= [A]− [K] [C] ,

[
B̃

]
=

[
[B]− [K] [D] [K]

]
,

{ϑk} =
[ {f⊕k}
{yk}

]
. (28)

The measurement equation becomes

{yk} = [C] {ẑk}+ [D] {f⊕k}+ {εk} . (29)

A combination of Eqs. (27) and (29) can be written in the following matrix form:

{ȳ} = [C]{Ã}p[ẑ] + [ ε] + [Ỹ ][V̄ ]. (30)

Where [ȳ] and [V̄ ] are defined as in Eq. (15)

[ȳ] = [yp yp+1 ... y`−1], (31a)

[ẑ] = [ẑ0 ẑ1 ... ẑ`−p−2], (31b)

[Ỹ ] = [[D] [C][B̃] [C][Ã][B̃] ... [C][Ã]p−1[B̃]], (31c)

[ε] =
[

εr,p εr,p+1 εr,p+2 ... εr,`−1

]
. (31d)

If the observer ([G]) happens to be a Kalman filter ([K]), then the residual ([ε]) is white, zero-
mean, and Gaussian.

The choice of p in Eq. (30) has to be sufficiently large that the transients of the Kalman filter
are negligible, i.e.,

[C][Ã]p[ẑ] ≈ 0. (32)
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For case ` →∞, for all k > p Eq. (30) can now be written as

[ȳ] = [Ỹ ][V̄ ]. (33)

Solution of the Eq. (33) is

[Ỹ ] = [ȳ][V̄ ]†. (34)

Where
[V̄ ]† = [V̄ ]T [ [V̄ ][V ]T ]−1. (35)

We conclude that any observer ([Ȳ ]) satisfying Eq. (15) or its equivalent (30), produces the
same input-output map as a Kalman filter does if the data length (` ) is sufficiently long and the
order (p) of the observer is sufficiently large so that the truncation error is negligible. Therefore,
when reduced to system order, the identified observer (gain [G]) has to be a Kalman filter (gain
[K]) and thus the [G] computed from the combined Markov parameters gives the steady-state
Kalman filter gain

[K] = −[G]. (36)

Schematic illustration of the Kalman gain ([K]) identification [25] is presented below:

(u, y) → ȳ = Ỹ V̄ → Ỹ = ȳV̄ †; Ỹ → (OKID) → Y 0, Y ; Y → Ypulse →
→ ERA/DC → A,B, C,D; K(A,C, P, Q, R).

(37)

Explanation of abbreviations in (37) similer to (23) except that (Ỹ ) is solution of the equation
(33); Abbreviation K(A,C, P, Q,R) is mean that Kalman gain (K) are build as function of sys-
tem matrices (A,C), solution (P) of Riccati equation, and the covariances ([Q], [R]) respectively
of the process and measurement noises. Here Kalman gain ([K]) of the building parametrical
model Eq. (25), (26) or (27) obtained as

[K] = [A][P ][C]T ([R] + [C][P ][C]T )−1. (38)

In which
[P ] = E({ek}{ek}T ), with estimation error {ek} = {zk} − {ẑk} (39)

is the error covariance and obtained as solution of the discrete algebraic Riccati equation

[P ] = [A][P ][A]T − [A][P ][C]T ([R] + [C][P ][C]T )−1[C][P ][A]T + [Q]. (40)

The existence of the Riccati equation solution is only possible, if the covariance matrix is
positive definite. There are a few proposals in literature to guarantee a solution. But the
existing experiences it remains an open problem in large scale stochastic realization theory.
In short, for the known dynamics Eq. (4) and measurement {yk} Eq. (5), with aim to find
the best (or optimal) estimate {zk} in the sense that the estimation error {ek} = {zk}−{ẑk} is
as small as possible, the error covariance [P ] must be satisfy discrete algebraic Riccati equation
(40).

One can obtain Kalman gain ([K]) from Eq. (38), (40), for the building parametric model
Eq. (4), (5) with (23), (24). Kalman filter equation is evaluated

{ẑk+1} = [A]{ẑk}+ [B]{fk}+ [K]{εk} (41)

with the output measurement yk satisfying

{yk} = [C]{ẑk}+ [D]{fk} + { εk} (42)
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or

{ŷk} = [C]{ẑk}+ [D]{fk}.
The output residual ({εk} = yk − ŷk) satisfies

{εk} = [C]{ ek} + { vk}. (43)

Comparing building system modeling (Eqs. (4), (5) with (23), (24)) by the Kalman filter
equations (41), (42), (43) the error is evaluated as:

• the state estimation error

{ek} = {zk} − {ẑk}; E({ek}) = 0, (44)

• error dynamics (the estimation error at steady-state reduces to)

{ek+1} = {zk+1} − {ẑk+1} = ([A]− [K][C]){ek} − [K]{vk} + {wk}, (45)

• output residual

{εk} = [C]{ ek} + {vk} ; E({εk}) = 0. (46)

The Kalman filter is the only optimal state estimation which can be optimal for linear systems.
Theoretically, the Kalman filter is very attractive, because it has a closed-form solution (i.e.,
Riccati equation ) for its gain matrix. However, the Kalman filter requires information including
the covariances ([Q], [R]) respectively of the process and measurement noises. The measurement
noise ({vk}) may be quantified by a sufficiently large number of repeated tests on the sensors.
However, the process noise ({wk}) due to modeling error and system uncertainties is very diffi-
cult, if not impossible, to quantify in practice. It may by easier to estimate the Kalman filter
gain directly from the experimental data (observer gain [G]) without estimating ([Q], [R]) and
solving the Riccati equation.

In practice, due to the presence of the presence of other factors such as disturbances, nonlin-
earities, and non whiteness of the process and measurement noises, the resultant identified filter
is not the Kalman filter.

In such a case, the identified filter is simply an observer ([G]) that is computed from input-
output data that minimize the filter residual in a least-squares sense.

6. Extracting modal parameters from identified state space model

After obtaining discrete time system matrices [A], [B], [C], [D] by the ERA / OKID based
approach [6, 8, 13-15, 37], and these matrices wore converted to their continuous time counter
parts

[AC ], [BC ], [CC ], [D] , (47)

eigenvalues [Λ ] and eigenvectors [ψ] of the continuous time system matrix [AC ] is calculated as

([ψ], [Λ] = eig([AC ]). (48)

The transformation matrix [τ ] using orthogonality conditions [28] is obtained as
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[τ ] =




τ1

τ2

...

τi

...




, (49)

τi =
√

([ψ]−1[BE
C (:, i)])T ([CE

C (i, :)][ψ])−1.

The mode shape [ψ(:, r)] of the rth mode at the sensor locations are the observed parts of the
system eigenvectors [ψ(:, r)] of [ψ] , given by the formal equation:

[ψ(:, r)] = [CC ][ψ(:, r)]. (50)

The mode shape [ψ ] more detailed calculated by the following Eqs. (51)-(54):
a) If there is a sensor at the kth DOF

[ψ(k, :)] = [CE
C (k, :)][ψ][τ ], (51)

b) If kth DOF is instrumented with either a sensor or actuator

[ψ(k, :)] = ([τ ]−1[ψ]−1[BE
C (:, k)])T , (52)

c) If there is a full set of sensors,

[ψ] = [Cd]−1[CC ][ψ][τ ], (53)

d) If there is a full set of actuators,

[ψ]T = ([τ ]−1[ψ]−1[BC ][d]−1. (54)

Here [CE
C ], [BE

C ] expended to incorporate all the degrees of freedom of the continuous-time
system matrices [CC ], [BC ]; [d] is an input influence matrix, characterizing the locations and
type of known inputs {f (t)} ; [Ca] , [Cv] , [Cd] are output influence matrices for acceleration,
velo- city, displacement for using sensors (such as accelerometers, tachometers, strain gages,
etc.,) respectively; using eigenvalues [Λ] from eq.(50), (48) for continuous time system

[Λ] =




λ1

λ2

...

λr

...




, (55)

λr = cr + iωr,

cr = Re(λr) is the damping factor,
ωr = Im(λr) is the damped natural frequency.

The damping ration ξr of the rth mode is given by

ξr = − cr√
c2
r + ω2

k

. (56)

Above obtained system modal parameters [ψ], [Λ] from the input-output measurements, the-
oretically must be satisfies the complex eigenvalue problem with known physical parameters
[m], [c], [k] as:
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(λ2
r[m] + λr[c] + [k]){ψr} = 0; (57)

Here

[Λ] =




λ1

λ2

...

λr

...




,

λr = cr + iωr; i =
√−1,

[ψ] = [{ψ1} {ψ2} ... {ψr} ...].

7. Extracting physical parameters from identified state space model

The mass [m], damping [c], stiffness [k] matrices of the finite element model can be obtained
using orthogonality conditions [4] from the modal parameters as [32, 35, 39, 40]

[m] = ([ψ][Λ][ψ]T )−1, (58)

[c] = −[m][ψ][Λ]2[ψ]T [m], (59)

[k] = −([ψ][Λ]−1[ψ]T )−1, (60)

[ψ][ψ]T = 0. (61)

The minimum requirement for the above representation is that all degrees of freedom should
contain either a sensor or an actuator, with at least one co-located sensor-actuator pair. But
in general, it is possible to have more co-located sensors and actuators. These extra conditions
are redundant if the system is noise free. However, in the presence of noise it might be best to
proceed with a least squares approach to obtain the entries of the matrix [τ ].

Below numerical investigation of stochastic parametrical system parameters identification
approach with take into account the aliasing (bound checking) problem for validation of finite
element models is presented.

8. Numerical investigations

Three degree of freedom system with classical damping was investigated. The analytical
system mass, damping, damping rations, stiffness matrices are presented as
Mass matrix

[m] =




181.35 0 0
0 181.35 0
0 0 90.674


 .

Uncoupled (classical-proportional) damping matrix
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[c] =




621.25 − 227.5 0
−227.5 621.5 − 227.5

0 − 227.5 311.5


 .

Damping rations for uncoupled (classical) damping case

{ξ} =





0.05
0.05
0.0593



 .

Stiffness matrix

[k] =




213500 − 106750 0
−106750 213500 − 106750

0 − 106750 106750


 .

Internal white noise base excitation (∆̈(t)) indirectly as −mi,i∆̈(t) is applied at the i=1, 2,
3-th DOFs appropriately , another word for every i=1, 2, 3-th DOFs actuator excitation is
fi,i = −mi,i∆̈(t). Related with it, input influence matrix became as

[d] =




1 0 0
0 1 0
0 0 1


 .

Base acceleration presented as one realization of normally distributed white noise with zero
mean value and with standard deviation as σ∆̈ = 0.000327 m/sec2. Assumed that responses
are measured as acceleration of the 1, 2, 3-th DOF. Respectively output influence matrices are
presented as

[Ca] =




1 0 0
0 1 0
0 0 1


 , [Cv] =




0 0 0
0 0 0
0 0 0


 , [Cd] =




0 0 0
0 0 0
0 0 0


 .

Sampling time (∆t) was determined from the following known relation ∆t ≤ (min(T0))/2. For
presented example T0 = [0.50029 0.18312 0.13405]T are the system natural vibration periods,
∆t ≤ (min(T0))/2 = 0.13405/2 = 0.067 sec and sampling time is accepted as ∆t = 0.05 sec .

Total number of sample points is accepted 500.
Effective frequencies of the system f = 1/T = ω/2π must be in interval 0÷ fNyquist. Where

fNyquist is the Nyquist Frequency which presented by the relation as fNyquist = 1
2∆t

. It is known
aliasing problem: Standard way of solving is to use analogy low-pass filters with a cut-off
frequency of about 0.8fNyquist. For presented example

fsystem effective = 0÷ fNyquist = 0÷ 1
2∆t

= 0÷ 10.

Standard way of solving

fsystem effective accepted = 0÷ 0.8fNyquist = 0÷ 0.8 ∗ 10 = 0÷ 8.

Appropriately system effective period must be in interval

Tsystem effective accepted = ∞÷ 0.125 sec .
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As seen in presented example, system periods T0 = [0.50029 0.18312 0.13405]T are in above
(T0 = ∞ ÷ 0.125 sec) interval. The effective system frequency (max(f)) must be less than
Nyquist frequency, e.s. max(f) < fNyquist. For presented example

max(f0) = 7.4599 < fNyquist = 10.

Known free vibration ([m] {ü (t)}+ [k] {u (t)} = [0]) results:
Eigenvectors

ψ0 =



−3.5355e− 1 −7.0711e− 1 3.5355e− 1
−6.1237e− 1 −6.1811e− 16 −6.1237e− 1
−7.0711e− 1 7.0711e− 1 7.0711e− 1


 .

Frequencies and periods

{f0} =





1.9988
5.4609
7.4597



 , {T0} =





0.5003
0.1881
0.1341



 .

8A) Results for deterministic case are:

The discrete time state space model is identified from recorded input /output data using
ERA/DC and Subspace identification approaches:
-Identified system modal parameters
Damping ratio

{ξe} =





5.0008e− 2
4.9968e− 2
5.9758e− 2



 .

Frequencies and periods

{fe} =





1.9988
5.4609
7.4597



 , {Te} =





5.0029e− 1
1.8312e− 1
1.3405e− 1



 .

Mode shapes

[ψe] =

[
8.5593e− 3± 8.5603e− 3i −51787e− 3∓ 5.1787e− 3i 4.4331e− 3± 4.4311e− 3i

7.4131e− 3± 7.4129e− 3i −9.9420e− 7± 9.4915e− 7i −3.8380e− 3∓ 3.8386e− 3i

4.2801e− 3± 4.2796e− 3i 5.1787e− 3± 5.1787e− 3i 2.2155e− 3± 2.2165e− 3i

]
.

Theoretically must be satisfied [ψ]∗ [ψ]T• = [0] . In presented example

[ψe]
∗ [ψe]

T
• =

=

[
3.8491e− 14 + 5.4210e− 20i −2.1115e− 17 + 3.3881e− 20i −3.8570e− 14− 3.3881e− 20i

−2.1115e− 17 + 3.3881e− 20i −37920e− 17− 6.7763e− 21i −1.5179e− 17− 1.0164e− 20i

−3.8570e− 14− 3.3881e− 20i −1.5179e− 17− 1.0164e− 20i 3.8529e− 14 + 1.8635e− 20i

]
.

where [ψ]T• is the conjugated transpose of the matrix [ψ].
Physical parameters:
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[me] =




1.8135e + 2 −1.0732e− 12 3.6249e− 9
−1.0732e− 12 1.8135e + 2 4.8082e− 12
3.6249e− 9 4.8046e− 12 9.0674e + 1


 ,

[ke] =




2.1350e + 5 −1.0675e + 5 6.8330e− 6
−1.0675e + 5 2.1350e + 5 −1.0675e + 5
6.8330e− 6 −1.0675e + 5 1.0675e + 5


 ,

[ce] =




6.2125e + 2 −2.2750e + 2 −7.3405e− 7
−2.2750e + 2 6.2125e + 2 −2.2750e + 2
−7.3405e− 7 −2.2750e + 2 3.1150e + 2


 .

Maximum difference between analytical and extracting experimental results for damping ra-
tion is 7.7258e-1%, for frequencies is 7.6262e-7%, for system mass matrix is 4.0095e-9 %, for
system stiffness matrix is 6.3995e-9 %, for system damping matrix is 2.3615e-7%. As seen they
are exactly with analytical system parameters.

For the case 0.01 sec sampling time (which also satisfied known relation for determination
sampling time), extracted physical parameters has one order low accuracy relatively to above
(0.05 sec sampling time) results, which may matter in aliasing problem, especially in appropriate
stochastic investigations.

8B) Results for stochastic case are:

For the input (actuators in the i=1, 2, 3 system DOFs) as one realization of normally dis-
tributed white noise with zero mean value and with standard deviation as

σf = [5.966e− 2 5.9635e− 2 2.9849e− 2]

system not polluted output mean and standard values are obtained as

ymean = [5.7057e− 7 2.7945e− 7 0.7049e− 7],

σy = [5.7595e− 4 7.0606e− 4 8.3182e− 4].

Stochastic state-space model of the structure are simulated by Monte-Carlo method. The ne-
cessary number of the Monte-Carlo realization N∗ of random base acceleration, such that, with
specified probability β, we can expect that the arithmetic mean variable S (element of the output
state) will depart from its expected value not more than ε , determined from the equation

N∗ = (σS/ε)2[φ−1(β/2)]2.

Where σS is the standard deviation of random variable S; φ−1 is an inverse Laplace function.
For examined example N∗ is obtained equal to 300. For more details applications of above
equation see [27, 28, and 29].

For every Monte Carlo realization every story output (y(:, i), i = 1, 2, 3) is polluted with zero
mean and standard deviation equal to 0.0005% σy= 0.000005σy white noise. The signal to noise
ratio (1.6616e+005) for presented example must be and is sufficiently high (>> 15 − 25). The
discrete time state space model is identified from recorded input /output data using OKID/ERA
and Subspace identification approaches:
-Identified system modal and physical parameters mean, standard (std) deviations, coefficients
of variation (%, cv=(100 σ/mean), absolute values of the percentage errors in the mean val-
ues [error = abs [ 100 (analytical− experimental mean)/ analytical]] of the identified samples
respectively are:
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For modal parameters

ξmean =

{
5.0008e− 2

4.9967e− 2

5.9760e− 2

}
, ξstd =

{
2.6141e− 7

5.2006e− 7

1.0597e− 6

}
, ξcv =

{
5.2273e− 4

1.0408e− 3

1.7733e− 3

}
, ξerror =

{
6.6079e− 4

1.8527e− 3

3.5714e− 3

}
,

fmean =

{
1.9988

5.4609

7.4597

}
, fstd =

{
8.0124e− 7

2.0996e− 6

8.0541e− 6

}
, fcv =

{
4.0085e− 5

3.8448e− 5

1.0797e− 4

}
, ferror =

{
1.2464e− 3

1.6737e− 4

3.5072e− 4

}
,

[ψmean] =

[
1.2839e− 3± 1.2840e− 3i −5.9105e− 3∓ 5.0903e− 3i 4.4332e− 3± 4.4312e− 3i

1.1120e− 3± 1.1119e− 3i −9.6471e− 7± 1.1120e− 6i −3.8381e− 3∓ 3.8384e− 3i

6.4203e− 4± 6.4192e− 4i 5.9104e− 3± 5.0904e− 3i 2.2153e− 3± 2.2165e− 3i

]
,

[ψmean] [ψmean]T• =

=

[
1.8080e− 5 + 4.4723e− 19i 1.0200e− 8 + 3.3881e− 21i −1.8044e− 5− 4.7095e− 19i

1.0200e− 8 + 3.3881e− 21i −44932e− 9 −1.1949e− 8 + 1.6941e− 21i

−1.8044e− 5− 4.7095e− 19i −1.1949e− 8 + 1.6941e− 21i 1.8032e− 5 + 4.7942e− 19i

]
.

Where [ψmean]T• is the conjugated transpose of the matrix [ψmean].

[ψstd] =

[
8.4840e− 3± 8.4841e− 3i 1.8598e− 4± 9.8615e− 5i 1.2230e− 7± 8.8534e− 8i

7.3479e− 3± 7.3468e− 3i 4.3055e− 8∓ 2.2841e− 8i 9.3666e− 8∓ 3.4518e− 8i

4.2425e− 3± 4.2415e− 3i 1.8597e− 4± 9.8635e− 5i 4.0974e− 8∓ 3.1793e− 10i

]
,

[ψcv] =

[
6.6077e + 2 6.6077e + 2 2.6987 2.6987 2.4088e− 3 2.4088e− 3

6.6077e + 2 6.6077e + 2 3.3106 3.3106 1.8390e− 3 1.8390e− 3

6.6077e + 2 6.6077e + 2 2.6988 2.6988 1.3075e− 3 1.3075e− 3

]
,

[ψerror] =




8.5e + 1 8.5e + 1 1.0064e + 1 1.0064e + 1 1.8450e− 3 1.8450e− 3

8.5e + 1 8.5e + 1 1.2043e + 1 1.2043e + 1 3.7207e− 3 3.7207e− 3

8.5e + 1 8.5e + 1 1.0064e + 1 1.0064e + 1 5.4063e− 3 5.4063e− 3


.

For physical parameters

[me mean] =




1.6944e + 2 −3.6133e− 3 5.9564
−3.6133e− 3 1.8135e + 2 5.0989e− 3

5.9564 5.0989e− 3 8.7697e + 1


 ,

[me std] =




7.2182 3.3631e− 3 3.6106
3.3631e− 3 5.3259e− 3 3.9847e− 3

3.6106 3.9847e− 3 1.8045


 ,

[me cv] =




4.2600 9.3076e + 1 6.0618e + 1
9.3076e + 1 2.9368e− 3 7.8148e + 1
6.0618e + 1 7.8148e + 1 2.0577


 ,

[merror] =




6.5649 − −
− 3.1105e− 3 −
− − 3.283


 ,

[ke mean] =




1.9758e + 5 −1.0676e + 5 7.9647e + 3
−1.0676e + 5 2.1350e + 5 −1.0675e + 5
7.9647e + 3 −1.0675e + 5 1.0277e + 5


 ,
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[ke std] =




8.4465e + 3 5.1078 4.2246e + 3
5.1078 8.8516 5.6436
4.2246e + 3 5.6436 2.1116e + 3


 ,

[ke cv] =




4.2750 4.7845e− 3 5.3042e + 1
4.7845e− 3 4.1459e− 3 5.2869e− 3
5.3042e + 1 5.2869e− 3 2.0548


 ,

[kerror] =




7.4558 6.5914e− 3 −
6.5914e− 3 1.3271e− 3 2.7317e− 3

− 2.7317e− 3 3.7326


 ,

[ce mean] =




1.1452e + 3 −2.2757e + 2 −2.6194e + 2
−2.2757e + 2 6.2166e + 2 −2.2746e + 2
−2.6194e + 2 −2.2746e + 2 4.4250e + 2


 ,

[ce std] =




1.8798e + 2 9.2429e− 2 9.4019e + 1
9.2429e− 2 3.1676e− 1 5.3997e− 2
9.4019e + 1 5.3997e− 2 4.7030e + 1


 ,

[ce cv] =




1.6414e + 1 4.0616e− 2 3.5893e + 1
4.0616e− 2 5.0954e− 2 2.3739e− 2
3.5893e + 1 2.3739e− 2 1.0628e + 1


 ,

[cerror] =




8.4338e + 1 2.9994e− 2 −
2.9994e− 2 6.6723e− 2 1.6926e− 2

− 1.6926e− 2 4.2054e + 1


 .

As seen for sampling time ∆t = 0.05 Second and (0.0005) output pollution
(0.0005% σy= 0.000005σy) maximum relative error for damping ration is 3.5714e-3 %, for fre-
quencies is 1.2464e-3%, for mode shapes 85% (but satisfies condition [ψmean][ψmean]T• ≈ [0]),
for system mass matrix is 6.5649%, for system stiffness matrix is 7.4558%, for system damping
matrix is 84.338%.

Summarize the results, for the case when existing low-order (no more than (0.0005% σy)
output pollution algorithm for extracting physical parameters partly (except of damping
matrix) may be used in applications.

For another case with sampling time ∆t = 0.05 Second and 1% output pollution
(1% σy= 0.01σy) maximum relative error for damping ration is 458.58 %, for frequencies is 6.5%,
for mode shapes 1293% (but satisfies condition [ψmean][ψmean]T• ≈ [0]), for system mass matrix
is 493%, for system stiffness matrix is 1469%, for system damping matrix is 1e+5%. As seen
for the case 1% output pollution (1% σy= 0.01σy) algorithm for extracting modal and
physical parameters is not acceptable for applications.

9. Industrial applications

The four storey space steel frame structure was build by the Earthquake Engineering Re-
search Laboratory at the University of Ondokuz Mayis (in scope of the research project MF-046
is supported by the University research fond by leading off the author) for the testing with
aim comparing several identification techniques (including ambient vibration) and other various
structural engineering research studies (Figure 1). It is two-by-two bay, 3.0 m x 5.0 m in plan
and 4.6 m in height. Details of the structure are given in [20, 21, and 26]. All of devises with
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appropriate software and necessary instruments for structural monitoring are placed in mobile
vehicle designed in scope of the research project MF-046 and use as mobile structural monitoring
system (Figure 1 and website: http://www2.omu.edu.tr/akademikper.asp?id=1528 ). Response
of the structure from ambient vibration is presented in Figure 2 and Figure 3 respectively.

Figure 1. Mobile structural monitoring system and steel frame benchmark structure.

Figure 2. First story output: acceleration-time graphic.

Figure 3. Fourth story output: acceleration-time graphic.
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Identified system physical parameters by the relations (58)-(61) are not acceptable. It shown
that output noise is more than 0.0005%. As seen for the case more than 0.0005% output
pollution (0.0005% σy) algorithm for extracting physical parameters is not acceptable for
applications. For industrial applications, model updating tools is efficiently use to develop
reliable finite element models of structures [9, 21, 22, 33].

10. Conclusions

In this study, stochastic parametric system parameters identification approach with taking
into account the aliasing problem for validation of finite element models is presented. It was
shown that, existing algorithms for extracting system physical parameters are very sensitive to
output noise. In presented example, only for the case when existing low-order (no more than
0.0005% σy) output pollution, algorithm for extracting physical parameters partly (except of
damping matrix) may be used in applications. When the algorithms are applied to the real
instrumented structure, the results are not quite acceptable for extracting physical parameters.
In real structures it is very difficult, in many cases it is not possible estimate output pollution
percent. But compeering with the academic example, may be estimated that output pollution
more than 0.0005% (0.0005% σy= 0.000005σy).

Otherwise for cases output pollution more than 0.0005% (0.0005% σy), algorithm for
extracting physical parameters is not acceptable for applications. For this case finite element
model updating [9, 33] tools is more productive for verification and validation of numerical model
in applications [21, 22, and 26].

The aliasing (bound checking) problem for validation of finite element models is presented.
In presented example for the case 0.01 sec sampling time, extracted physical parameters has one
order low accuracy relatively to 0.05 sec sampling time results, which may matter in aliasing
problem, especially in appropriate stochastic investigations. (Both 0.01 sec and 0.05 sec sampling
times are satisfied known relation for determination sampling time)

System identification is realized by observer Kalman filter and Subspace algorithms. The
Subspace algorithm represents a feasible tool for the identification real partially instrumented
structures.

The possibility to improve the implementation of the Least Squares Method algorithm in civil
structures to obtain system physical parameters, that allow evaluating the structures behaviour.
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