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CONTINUITY OF FUZZY APPROXIMATE ADDITIVE MAPPINGS
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Abstract. In this paper we introduce the concept of fuzzy continuity. Then we investigate

the continuity of fuzzy approximate linear maps.
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1. Introduction

The stability of functional equations is an interesting area of research for mathematicians,
but it can be also of importance to persons who work outside of the realm of pure mathematics.
For example, physicists are interested in the stability of the mathematical formulae which they
use to model physical processes. More precisely, physicists and other scientists are interested in
determining when a small change in an equation used to the model of a phenomenon, gives a
large changes in the results predicted by the equation.

It seems that the stability problem of functional equations had been first raised by Ulam [7]:
For what metric groups G is it true that an approximate additive of G is necessarily near to a
strict linear map?

An answer to the above problem has been given as follows [6]. Suppose E1 and E2 are two
real Banach spaces and f : E1 → E2 is a mapping. If there exist δ ≥ 0 and 0 ≤ p < 1 such that
||f(x + y) − f(x) − f(y)|| ≤ δ(||x||p + ||y||p) for all x, y ∈ E1, then there is a unique additive
mapping T : E1 → E2 such that ||f(x)− T (x)|| ≤ 2δ||x||p/|2− 2p| for every x ∈ E1.

In 1992, Gavruta [1] generalized the result of Rassias for the admissible control functions.
Moreover the approximated mappings have been studied extensively in several papers. (See

for instance [2], [3]).
Fuzzy notion introduced firstly by Zadeh [8] that has been widely involved in different subjects

of mathematics. Zadeh’s definition of a fuzzy set characterized by a function from a nonempty
set X to [0, 1].

Fuzzy set theory is a powerful hand set for modelling uncertainty and vagueness in various
problems arising in the field of science and engineering.

Later in 1984, Katsaras [4] defined a fuzzy norm on a linear space to construct a fuzzy vector
topological structure on the space.

In this paper we introduce the new concept of continuity for functions from a normed space
into a fuzzy normed space and then we study the continuity for fuzzy approximate additive
mappings.
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2. Preliminaries

In this section, we provide a collection of definitions and related results which are essential
and used in the next discussions.

Definition 2.1. [5] Let X be a real linear space. A function N : X × R→ [0, 1] is said to be a
fuzzy norm on X if for all x, y ∈ X and all t, s ∈ R,

(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function on R and lim

t→∞N(x, t) = 1;

(N6) for x 6= 0, N(x, .) is (upper semi) continuous on R.

The pair (X, N) is called a fuzzy normed linear space.
We give an example for a fuzzy normed space:

Example 2.1. [5] Let (X, ||.||) be a normed linear space. Then

N(x, t) =





0, t ≤ 0;
t
||x|| , 0 < t ≤ ||x||;
1, t > ||x||

is a fuzzy norm on X.

Definition 2.2. [5] Let (X,N) be a fuzzy normed linear space and {xn} be a sequence in X.
Then {xn} is said to be convergent if there exists x ∈ X such that lim

n→∞N(xn − x, t) = 1 for all

t > 0. In that case, x is called the limit of the sequence {xn} and we denote it by N− lim
n→∞xn = x.

Definition 2.3. [5] A sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0
there exists n0 such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is known that every convergent sequence in a fuzzy normed space is Cauchy and if each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and furthermore the
fuzzy normed space is called a fuzzy Banach space.

Theorem 2.1. Let X be a normed linear space and (Y, N) be a fuzzy Banach space. Let θ ≥ 0
and q 6= 1. Suppose that f : X → Y is a function such that

lim
t→∞N(f(x + y)− f(x)− f(y), tθ(||x||q + ||y||q)) = 1

uniformly on X ×X. Then there is a unique additive mapping T : X → Y such that

lim
t→∞N(T (x)− f(x), 2θt||x||q

|1−2q−1|) = 1

uniformly on X.

Proof. [5] ¤

3. Continuity of fuzzy approximately additive mappings

We start our work with the definition of fuzzy continuity.

Definition 3.1. Let X be a normed space, (Y, N) a fuzzy normed space and T : X → Y be a
function. We say that T : X → Y is fuzzy continues at a point s0 ∈ X if for all ε > 0 there
exists δ > 0 such that for each s with ||s− s0|| < δ,
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lim
t→∞N(T (s)− T (s0), tε) = 1,

uniformly on X.

Theorem 3.1. Let X,Y be normed linear spaces and T be a map from X into Y . T is continuous
at zero if and only if T is continuous.

Proof. Suppose that T is continuous at zero so by definition 3.1, for all ε > 0 and all s ∈ X we
have lim

t→∞N(T (s), tε) = 1 for some δ > 0 such that ||s|| < δ. Given ε > 0 we have

N(T (s), tε) ≥ 1− ε

for all s ∈ X.
Now, for given ε > 0 and all s, s0 ∈ X, we can find some δ > 0 such that ||s− s0|| < δ, then

N(T (s)− T (s0), tε) ≥ min{N(T (s), tε/2), N(T (s0), tε/2)} ≥ 1− ε.

So

lim
t→∞N(T (s)− T (s0), tε) = 1.

¤

Theorem 3.2. Let X, Y be normed linear spaces and T be an additive map from X into Y . T

is continuous at a point if and only if T is continuous.

Proof. Suppose that T is continuous at s0. So by definition (3.1), for all ε > 0 and all s ∈ X we
have lim

t→∞N(T (s) − T (s0), tε) = 1 for some δ > 0 such that ||s − s0|| < δ. We prove that T is
continuous at zero.

lim
t→∞N(T (s), tε) = lim

t→∞N(T (s)− T (s0) + T (s0), tε) = lim
t→∞N(T (s + s0)− T (s0), tε) = 1

for all s ∈ X.
So T is continuous at zero. By Theorem (3.1) the proof is complete. ¤

Theorem 3.3. Let 0 ≤ q < 1, X, Y, θ and f satisfies the conditions of Theorem (2.1). If for
some x ∈ X and all n ∈ N, the mapping g : R → Y defined by g(s) = f(2nsx) for every s ∈ R
is fuzzy continuous. Then the mapping s 7→ T (sx) from R to Y is fuzzy continuous.

Proof. Using Theorem (2.1) we deduce that, there exists a unique additive mapping T such that

lim
t→∞N(T (x)− f(x), 2θt||x||q

|1−2q−1|) = 1.

Given ε > 0, we can find some t0 > 0 such that

N(T (x)− f(x),
2θt||x||q
|1− 2q−1|) ≥ 1− ε, (1)

for all t ≥ t0. Since lim
n→∞

2θt2n(q−1)||x||q
|1−2q−1| = 0, there is some n0 such that 2θt2n(q−1)||x||q

|1−2q−1| < t/3 for all
n ≥ n0. On the other hand, since N is a nondecreasing function hence for each n ≥ n0,

N(T (x)− f(2nx)
2n , t/3) > N(T (x)− f(2nx)

2n , 2θt2n(q−1)||x||q
|1−2q−1| ).

Note that for each x ∈ X, t ∈ R and n ∈ N, by (1) we have

N(T (x)− f(2nx)
2n

, t/3) ≥ 1− ε. (2)

Fix x ∈ X and s0 ∈ R. From (2) follows that
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N(T (s0x)− f(2ns0x)
2n , t/3) ≥ 1− ε.

By the fuzzy continuity of the mapping t 7→ f(2ntx), there exists δ such that for each s with
0 < |s− s0| < δ, we have

N(f(2nsx)
2n − f(2ns0x)

2n , t/3) ≥ 1− ε.

It follows that

N(T (sx)− T (s0x), t) ≥

≥ min{N(T (sx)−f(2nsx)
2n

, t/3), N(
f(2nsx)

2n
−f(2ns0x)

2n
, t/3), N(T (s0x)−f(2ns0x)

2n
, t/3)} ≥ 1−ε,

for each s with 0 < |s− s0| < δ. Hence, the mapping s 7→ T (sx) is fuzzy continuous.
¤

Theorem 3.4. Let 0 ≤ q < 1, X,Y and f satisfies the conditions of Theorem (2.1). If for some
x ∈ X and all n ∈ N, the mapping g : R → Y defined by g(s) = f(2nsx) is fuzzy continuous.
Then T is real homogeneous.

Proof. For each q ∈ Q, we have T (qx) = qT (x). Q is a dense subset of R. Fix r ∈ R and t > 0.
Choose a rational sequence qn such that qn → r. Then, there exists δ > 0 such that

N(T (rx)− rT (x), t) ≥
≥ min{N(T (rx)− T (qnx), t/3), N(T (qnx)− qnT (x), t/3), N(qnT (x)− rT (x), t/3)}.

By using the Theorem (3.3) for given ε > 0, we have

N(T (rx)− rT (x), t) ≥ min{1− ε, 1, N(qnT (x)− rT (x), t/3)}.
By taking n tend to infinity,

N(T (rx)− rT (x), t) ≥ 1− ε.

So T is real homogeneous. ¤

4. A fuzzy norm for the set of fuzzy mappings

In this section we define a norm for the class of fuzzy mappings.

Definition 4.1. Let X be a normed space, (Y, N) a fuzzy normed space and T : X → Y be a
function. We define

N(T, t) = inf{N(T (x), t) : x ∈ X},
for all t > 0.

Theorem 4.1. Let X be a normed space, (Y, N) a fuzzy normed space. Then N(T, t) is defined
in Definition (4.1) is a norm.

Proof. We check the items in Definition (2.1). It is easy to see that (N1), (N2), (N3), (N5) and
(N6) are true. We consider (N4):

N(T + S, t + s) = inf{N((T + S)(x), t + s) : x ∈ X} ≥ inf{min{N(T (x), t), N(S(x), s)} : x ∈
X} = inf{inf{N(T (x), t), N(S(x), s)} : x ∈ X} = inf{inf{N(T (x), t) : x ∈ X}, inf{N(S(x), s) :

x ∈ X}} = min{inf{N(T (x), t) : x ∈ X}, inf{N(S(x), s) : x ∈ X}}



A. ZOHRI, N. EGHBALI: CONTINUITY OF FUZZY APPROXIMATE ... 39

(N5)N(T, .) is a non-decreasing function on R and lim
t→∞N(T, t) = 1;

(N6) for x 6= 0, N(T, t) is (upper semi) continuous on R.
¤

Let X be a normed space, (Y, N) a fuzzy normed space. By associating to each T the number
N(T, t) makes the class of functions from X into Y a normed space.

Theorem 4.2. Let X be a normed space, (Y, N) a fuzzy normed space. If Y is a Banach space,
so the class of functions from X into Y is complete, too.

Proof. Assume that Y is complete and that {Tn} is a cauchy sequence. For given ε > 0,

N(Tn+p − Tn, t) = inf{N(Tn+p(x)− Tn(x), t) : x ∈ X} ≥ 1− ε.

So N(Tn+p(x) − Tn(x), t) ≥ 1 − ε for every x ∈ X. Therefore {Tn(x)} is Cauchy in Y .
Now, there exists T : X → Y such that lim

t→∞N(Tn(x) − T (x), t) = 1. On the other hand we

have N(Tn − T ) = inf{N(Tn(x) − T (x), t) : x ∈ X}. By taking t tend to infinity we have
lim
t→∞N(Tn − T, t) = 1.

¤
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