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LINEAR LYAPUNOV FUNCTIONS FOR VOLTERRA QUADRATIC
STOCHASTIC OPERATORS

U.U. JAMILOV1

Abstract. We construct a class of linear Lyapunov functions for Volterra quadratic stochastic

operator. Using these functions we improve known results about ω-limit set of trajectories of

the Volterra quadratic operators.
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1. Introduction

The notion of quadratic stochastic operator (QSO) was first formulated by Bernshtein [1].
For more than 80 years this theory has been developed and many papers were published (see
[1]-[10]). Several problems of physical and biological systems lead to necessity of study the
asymptotic behavior of the trajectories of quadratic stochastic operators.

Let E = {1, 2, ...,m}. By the (m− 1)− simplex we mean the set

Sm−1 = {x = (x1, ..., xm) ∈ Rm : xi ≥ 0,
m∑

i=1

xi = 1}. (1)

Each element x ∈ Sm−1 is a probability measure on E and so it may be looked upon as the
state of a biological (physical and so on) system of m elements.

A quadratic stochastic operator V : Sm−1 → Sm−1 has the form

V : x′k =
m∑

i,j=1

pij,kxixj , (k = 1, ..., m), (2)

where pij,k− coefficient of heredity and

pij,k = pji,k ≥ 0,
m∑

k=1

pij,k = 1, (i, j, k = 1, ..., m). (3)

For a given x(0) ∈ Sm−1, the trajectory {x(n)}, n = 0, 1, 2, ... of x(0) under the action of QSO
(2) is defined by x(n+1) = V (x(n)), where n = 0, 1, 2, ...

One of the main problems in mathematical biology is to study the asymptotic behavior of the
trajectories. In [2]-[4] this problem was solved for the Volterra QSO’s by using the theories of
the Lyapunov function and tournaments. These Lyapunov functions used in [2]-[4] were usually
nonlinear.

1Institute of Mathematics and Information Technologies, Tashkent, Uzbekistan,

e-mail: jamilovu@yandex.ru

Manuscript received March 2011.

28



U.U. JAMILOV: LINEAR LYAPUNOV FUNCTIONS FOR VOLTERRA ... 29

We refer to [6] for a detailed history, results and open problems related to quadratic stochastic
operators. In particular, in [6] was stated an open problem: to find new classes of Lyapunov
function for Volterra QSO.

In this paper we shall construct linear Lyapunov functions for Volterra QSO.

2. Definition

A Volterra QSO is defined by (2), (3) and the additional assumption

pij,k = 0, if k 6∈ {i, j}, ∀i, j, k ∈ E. (4)

The biological treatment of condition (4) is clear: the offspring repeats the genotype of one
of its parents.

In [2] the general form of Volterra QSO

V : x = (x1, ..., xm) ∈ Sm−1 → V (x) = x′ = (x′1, ..., x
′
m) ∈ Sm−1

is given

x′k = xk

(
1 +

m∑

i=1

akixi

)
, k ∈ E, (5)

where
aki = 2pik,k − 1 for i 6= k and aii = 0, i ∈ E. (6)

Moreover
aki = −aik and |aki| ≤ 1.

Denote by A = (aij)m
i,j=1 the skew-symmetric matrix with entries (6).

Let {x(n)}∞n=1 be the trajectory of the point x0 ∈ Sm−1 under QSO (5). Denote by ω(x0) the
set of limit points of the trajectory. Since {x(n)} ⊂ Sm−1 and Sm−1 is compact, it follows that
ω(x0) 6= ∅. Obviously, if ω(x0) consists of a single point, then the trajectory converges, and ω(x0)
is a fixed point of (5). However, looking ahead, we remark that convergence of the trajectories
is not the typical case for the dynamical systems (5). Therefore, it is of particular interest to
obtain an upper bound for ω(x0), i.e., to determine a sufficiently ”small” set containing ω(x0).

Denote

intSm−1 = {x ∈ Sm−1 :
m∏

i=1

xi > 0}, ∂Sm−1 = Sm−1 \ intSm−1.

Definition 2.1. A continuous function ϕ : Sm−1 → R is called a Lyapunov function for the
dynamical system (5) if the limit lim

n→∞ϕ(x(n)) exists for any initial point x0.

Obviously, if lim
n→∞ϕ(x(n)) = c, then ω(x0) ⊂ ϕ−1(c). Consequently, for an upper estimate of

ω(x0) we should construct the set of Lyapunov functions that is as large as possible.

The following results are known:

Theorem 2.1. [2],[4] For the Volterra QSO (5) the following assertions hold
1) For the dynamical system (5) there exists a Lyapunov function of the form ϕp(x) =

xp1
1 ...xpm

m , where pi ≥ 0,
m∑

i=1
pi = 1 and x = (x1, ..., xm) ∈ intSm−1.

2) If there is r ∈ {1, ..., m} such that aij < 0 (see (4)) for all i ∈ {1, ..., r}, j ∈ {r + 1, ..., m}
then ϕ(x) =

m∑
i=r+1

xi, x ∈ Sm−1 is a Lyapunov function for QSO (5).
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3) There are Lyapunov functions of the form

ϕ(x) =
xi

xj
, i 6= j, x ∈ intSm−1.

3. Linear Lyapunov functions

The following theorem gives a condition under which a given linear function is a Lyapunov
function.

Theorem 3.1. For the Volterra operator (5), the function ϕ : Sm−1 → R defined by

ϕc(x) =
m∑

k=1

ckxk (7)

is a Lyapunov function if c = (c1, ..., cm) satisfies ckaki ≤ 0 for all i, k ∈ E.

Proof. Suppose that ckaki ≤ 0 for all i, k ∈ E, then we have

ϕc(V (x)) =
m∑

k=1

ckx
′
k =

m∑

k=1

ckxk

(
1 +

m∑

i=1

akixi

)
=

=
m∑

k=1

ckxk +
m∑

k=1

ckxk

m∑

i=1

akixi = ϕc(x) +
m∑

k=1

xk

m∑

i=1

ckakixi ≤ ϕc(x).

Thus, for any n we have ϕc(x(n)) ≤ ϕc(x(n−1)) and c ≤ ϕc(x(n)) ≤ c, with c = min
k

ck, c =

max
k

ck. Consequently, the sequence {ϕc(x(n))}∞n=0 is convergent. Therefore, ϕc(x) =
m∑

k=1

ckxk is

a Lyapunov function for the operator (5). This completed the proof. ¤

Corollary 3.1. The function defined by

φ(x) =
m∏

k=1

( m∑

i=1

ckixi

)pk

is a Lyapunov function for Volterra operator (5) for any pk ∈ R+, if c(q) = (cq1, cq2, ..., cqm)
satisfies cqkaki ≤ 0 for all i, q, k ∈ E.

Remark 3.1. The set of Volterra quadratic operators and vectors c, which satisfying condition
of theorem 3.1 is non-empty. On the S2 we see the following QSO

V :





x′1 = x1(1 + x2 + x3),

x′2 = x2(1− x1 + x3),

x′3 = x3(1− x1 − x2),

(7′)

and as a vector c we get c = (−l, 0, l), l ∈ R+. It easy one can see that ckaki ≤ 0 for all
k, i = 1, 2, 3.

Denote by c↑ the vector c↑ = (c1, . . . , cm), where c1 ≤ c2 ≤ ... ≤ cm. Also we denote by c↓ the
vector c ∈ Rm, where c1 ≥ c2 ≥ ... ≥ cm.
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Theorem 3.2. The function

ϕc↑(x) =
m∑

k=1

ckxk (8)

is a Lyapunov function for the Volterra operator (5), for any vector c↑, if aki ≥ 0 for all k ≤ i.

Proof. Suppose that aki ≥ 0 for all k ≤ i, then for vector c↑ we have using (6)

ϕc↑(V (x)) =
m∑

k=1

ckx
′
k =

m∑

k=1

ckxk

(
1 +

m∑

i=1

akixi

)
=

m∑

k=1

ckxk +
m∑

k=1

ckxk

m∑

i=1

akixi =

= ϕc↑(x) + c1x1

m∑

i=1

akixi + c2x2

m∑

i=1

akixi + ... + cmxm

m∑

i=1

akixi = ϕc↑(x)+ (9)

+
∑

1≤k<i≤m

(ckaki + ciaik)xkxi = ϕc↑(x) +
∑

1≤k<i≤m

(ckaki − ciaki)xkxi = ϕc↑(x)+

+
∑

1≤k<i≤m

(ck − ci)akixkxi.

Therefore

ϕc↑(V (x)) ≤ ϕc↑(x) +
∑

1≤k<i≤m

(ck − ci)akixkxi ≤ ϕc↑(x).

¤

Corollary 3.2. The function

ϕc↓(x) =
m∑

k=1

ckxk

is a Lyapunov function for the Volterra operator (5), for any vector c↓, if aki ≤ 0 for all k ≤ i.

Remark 3.2. The set of Volterra quadratic operators which satisfy condition of theorem 3.2 is
non-empty. For example:Volterra QSO corresponding to the following skew-symmetric matrix

A =




0 1 1 1 1 1 ... 1 1

−1 0 1 1 1 1 ... 1 1

−1 −1 0 1 1 1 ... 1 1

−1 −1 −1 0 1 1 ... 1 1

−1 −1 −1 −1 0 1 ... 1 1

−1 −1 −1 −1 −1 0 ... 1 1

...
...

...
...

...
... ...

...
...

−1 −1 −1 −1 −1 −1 ... 0 1

−1 −1 −1 −1 −1 −1 ... −1 0




(10)

satisfies the condition.
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4. The ω−limit set

The problem of describing the ω−limit set of a trajectory is of great importance in the
theory of dynamical systems. The following theorem completely describes the behavior of the
trajectories of Volterra operators, which satisfies condition of theorem 3.2.

We denote by Fix(V ) the set of fixed points operator (5).

Theorem 4.1. If aki > 0 for all k ≤ i and ck0 < ck0+1 satisfied for some k0 ∈ {1, 2, ..., m− 1},
and vector c↑, then for any initial point x0 ∈ Sm−1, x0 /∈ Fix(V ) we have ω(x0) ⊂ ∂Sm−1.

Proof. Using the equality x1 + x2 + ... + xm = 1 from (8) we get

ϕc↑(V (x)) =
m∑

k=1

ckx
′
k =

m∑

k=2

(ck − c1)xk + c1. (11)

For any vector c↑ we have c1 ≤ ϕc↑(V (x)), ∀x ∈ Sm−1 and from theorem 3.2 we have
ϕc↑(x

(n+1)) ≤ ϕc↑(x
(n)), n = 0, 1, 2, ..., therefore there exits

lim
n→∞ϕc↑(x

(n)) = q ≥ c1.

If q = c1 then it is clear that the function (11) is a convex and decreasing. We have

min
x∈Sm−1

ϕc↑(x) = ϕc↑(e1) = c1,

though the minimum obtain only at the point e1 = (1, 0, ..., 0).
We suppose that q > c1, that equivalent to lim

n→∞ϕc↑(x
(n))− c1 > 0. Then using (5), (9) and

(11) we get

1 = lim
n→∞

ϕc↑(x
(n+1)
k )− c1

ϕc↑(x
(n)
k )− c1

= lim
n→∞

m∑
k=1

ckx
(n+1)
k − c1

m∑
k=1

ckx
(n)
k − c1

=

= lim
n→∞

m∑
k=1

ckx
(n)
k

(
1 +

m∑
i=1

akix
(n)
i

)
− c1

m∑
k=1

ckx(n) − c1

= 1 + lim
n→∞

m∑
k=1

ckx
(n)
k

m∑
i=1

akix
(n)
i

m∑
k=1

ckx
(n)
k − c1

.

lim
n→∞

m∑
k=1

ckx
(n)
k

m∑
i=1

akix
(n)
i

m∑
k=1

ckx
(n)
k − c1

=

m∑
k=1

ckx
(∗)
k

m∑
i=1

akix
(∗)
i

m∑
k=1

ckx
(∗)
k − c1

= 0. (12)

m∑

k=1

ckx
(∗)
k

m∑

i=1

akix
(∗)
i =

∑

1≤k<i≤m

(ck − ci)akix
∗
kx
∗
i . (13)

Since aki > 0 for all k ≤ i and ck0 < ck0+1 satisfies for some k0 ∈ {1, 2, ..., m − 1}, for any
vector c↑ from (13) we get (ck0+1 − ck0)akix

∗
k0+1x

∗
k0

> 0. This contradictory statement for (11).
Therefore x∗ ∈ ∂Sm−1.

The proof of theorem 4.1 is complete. ¤

Corollary 4.1. If aki > 0 for all k < i and ck < ck+1 for all k ∈ {1, 2, ..., m− 1} and vector c↑,
then for initial point x0 ∈ Sm−1, x0

1 > 0, x0 /∈ Fix(V ) we have ω(x0) = {e1}, i.e. contains of
a single point.
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Proof. From (12), (13) we get

x∗kx
∗
k+1 = 0, k ∈ {1, 2, ..., m− 1}.

In other words

x∗1 > 0, x∗2 = 0, x∗3 ≥ 0, x∗4 = 0, ..., x∗m−1 ≥ 0, x∗m = 0.

From (5) we have

x
(n+1)
1 = x

(n)
1

(
1 +

m∑

i=1

a1ix
(n)
i

)
.

Since
(

1 +
m∑

i=1
a1ix

(n)
i

)
≥ 1 for any n, the sequence {x(n)

1 } is non decreasing and 0 < x
(n)
1 ≤ 1.

Therefore there exists lim
n→∞x

(n)
1 = 1. Therefore lim

n→∞x(n) = e1.
¤

Remark 4.1. The QSO V satisfies the ergodic theorem (see [11]) if the limit

lim
n→∞

1
n

n−1∑

k=0

V (k)(x)

exits for any x ∈ Sm−1. On the basis of numerical calculation Ulam conjectured ([11]) the
ergodic theorem holds for any QSO. In [13] it was proven that this conjecture is false in general.
From theorem 4.1 follows that the ergodic theorem holds for any QSO determined by conditions
theorem 3.2.

Remark 4.2. Note that the form of the Lyapunov function in theorem 3.2 more general than
the Lyapunov function in 2) of theorem 2.1.

Remark 4.3. By theorem 4.1 we see that our Lyapunov functions (8) are applicable to wider
class of Volterra operators, than the Lyapunov function in 2) of theorem 2.1.

Remark 4.4. We note that for the Volterra quadratic stochastic operators only Lyapunov func-
tions mentioned in theorem 2.1 and the linear Lyapunov functions (described in this paper) are
known. We have not an example of another type of Lyapunov function for the Volterra operators.
The description of the set of all Lyapunov functions is very difficult problem.
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