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Abstract: In this paper, we use quadratic rank transmutation map to propose a new distribution called Transmuted Ishita Distribution

(TID). The proposed distribution is a generalization of Ishita distribution. Many properties of this distribution are investigated such

as: the reliability, hazard rate and cumulative hazard functions, rth moment, moment-generating function, order statistics, generalized

entropy, quantile function. The maximum likelihood method is used to estimate the unknown parameters of the TID. The proposed

distribution is used for modeling a real-life data set. It is found that the TID is a better fit for this data set than some other available

distributions.
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1 Introduction

Classical families of distributions might not be adequate for modeling many real data. Therefore, generalizing the existing
distributions by adding one or more parameters allows the resulted distributions to be more appropriate to fit real-life data.
Shaw and Buckley (2007) employed the quadratic rank transmutation map to generate a general and flexible family of
distributions called transmuted family of distributions.

Transmuted distributions have received a lot of attention in the past years. Aryal and Tsokos (2011, 2013) used
transmutation with Weibull and log-logistic distributions. Merovci (2013a,b) considered the quadratic rank transmutation
map to develop the transmuted Lindley distribution and transmuted Rayleigh distribution. Cordeiro et al. (2013) derived
the transmuted exponentiated generalized G family as an extension of the exponentiated generalized G class of
distributions. Bourguignon et al. (2016) gave a simple representation for the transmuted G-family density function as a
linear mixture of the G and the exponentiated-G densities. A transmuted Lomax distribution is introduced by Ashour and
Eltehiwy (2013). In addition to the aforementioned work, transmutation have been used to generalize several more
distributions such as the transmuted Lindley-Geometric distribution (Merovci and Elbatal, 2014), transmuted
exponentiated Fréchet distribution (Elbatal et al., 2014), transmuted new modified weibull distribution (Vardhan and
Balaswamy, 2016), transmuted Burr Type XII distribution (Khazaleh, 2016), transmuted Weibull Fréchet distribution
(Afify et al., 2016), transmuted Mukherjee-Islam distribution (Al-zou′bi, 2017), and transmuted Janardan distribution
(Al-Omari et al., 2017). We use the quadratic rank transmutation map to introduce a new distribution namely,
Transmuted Ishita Distribution (TID). This proposed distribution is a generalization of the Ishita distribution (Shanker
and Shukla, 2017).

The rest of this paper is organized as follows: the definition of Ishita distribution and its basic properties are given in
Section 2. In Section 3, we define the probability density function (pd f ) and cumulative distribution function (cd f ) of
the TID. In Section 4, the reliability, hazard rate, cumulative hazard, reversed hazard and odds functions of the proposed
distribution are obtained. The distribution of order statistics is presented in Section 5. Some properties including the rth

moment, mean, variance, skewness, kurtosis, coefficient of variation and the moment generating function of the TID are
studied in Section 6. In Section 7, the maximum likelihood estimates of the distribution parameters are discussed. The
generalized entropy is presented in Section 8. Section 9 provides the qth quantile of the TID. Application of the TID is
considered in Section 10. The paper is concluded in Section 11.
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2 Ishita Distribution

Ishita distribution was proposed by Shanker and Shukla (2017). This distribution is a two-component mixture of
exponential distribution with parameter η and a gamma distribution with parameters (3, η) using mixing proportion

η3

η3+2
.

The probability density function (pd f ) of the Ishita distribution is given by:

f (x) =
η3

η3 + 2
(η + x2)e−ηx;x > 0,η > 0, (1)

with a corresponding cumulative distribution function (cd f ) defined as:

F(x) = 1−

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx;x > 0,η > 0. (2)

The moment-generating function and rth moment of the Ishita distribution random variable are, respectively, given by

MX(t) =
∞

∑
k=0

η3 +(k+ 1)(k+ 2)

η3 + 2

(

t

η

)k

, (3)

and

E(X r) =
r!
(

η3 +(r+ 1)(r+ 2)
)

ηr(η3 + 2)
; r = 1,2,3, ... (4)

3 Transmuted Ishita Distribution

Definition 1.A random variable X is said to have a transmuted distribution (see [1]) if its cd f is given by

FT (x) = (1+λ )F(x)−λ [F(x)]2, −1 ≤ λ ≤ 1, (5)

where F(x) is the cd f of the base distribution.

The pd f of the transmuted random variable is given by

fT (x) = f (x)
(

1+λ − 2λ F(x)
)

, (6)

where f (x) is the pd f of the base distribution.

Therefore, by plugging equation (2) in (5), the cd f of the TID random variable, X , is defined as:

FTID(x) = (1+λ )
[

1−

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]

−λ
[

1−

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]2

= 1−

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx

[

1−λ +λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx

]

, (7)

with corresponding pd f given by

fT ID(x) =
η3

η3 + 2
(η + x2)e−ηx

[

1−λ + 2λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]

. (8)
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Fig. 1: The pd f of the TID distribution with η = 2 and λ = 0,0.1,0.5,0.7,0.9

Fig. 2: The cd f of the TID distribution with η = 2 and λ = 0,0.1,0.5,0.7,0.9

Figures 1 and 2 show the pd f and cd f of the TID with different values of the distribution parameters. It is clear that
the TID is skewed to the right.

4 Reliability analysis

The reliability or survival function, R(x), is the probability that an object of interest survives beyond a specified time x.
Using (7), the reliability function of the TID is given by

RT ID(x) = 1−FTID(x) =

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx

[

1−λ +λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx

]

. (9)

The hazard or failure rate function H(x) is defined as the ratio of the probability density function and the survival function.
Using (8) and (9), the hazard rate function of the TID is defined as

HT ID(x)=
fT ID(x)

1−FTID(x)
=

η3(η + x2)
[

1−λ + 2λ
(

1+ ηx(ηx+2)

η3+2

)

e−ηx
]

[

η3 + 2+ηx(ηx+ 2)
][

1−λ +λ
(

1+ ηx(ηx+2)
η3+2

)

e−ηx
] . (10)

The cumulative hazarad function HTIDcum(x) is

HT IDcum(x) = −ln(1−FTID(x))

= ηx− ln

(

1+
ηx(ηx+ 2)

η3 + 2

)

− ln

[

1−λ +λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx

]

. (11)
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The reliability and hazard functions of the TID for some values of the distribution parameters are shown in Figures 3 and
4.

Fig. 3: The reliability of the TID with η = 2 and λ =−1,−0.5,0,0.5,1

Fig. 4: The hazard of the TID with η = 2 and λ =−1,−0.5,0,0.5,1
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The reversed hazard rate function and odds function of the TID are

RHT ID(x)=
fT ID(x)

FTID(x)
=

η3

η3+2
(η + x2)

[

1−λ + 2λ
(

1+ ηx(ηx+2)

η3+2

)

e−ηx
]

eηx −
(

1+ ηx(ηx+2)
η3+2

)[

1−λ +λ
(

1+ ηx(ηx+2)
η3+2

)

e−ηx
] , (12)

and

OT ID(x)=
FTID(x)

1−FTID(x)
=

eηx

(

1+ ηx(ηx+2)
η3+2

)[

1−λ +λ
(

1+ ηx(ηx+2)
η3+2

)

e−ηx

] − 1. (13)

The cumulative hazard, reversed hazard, and odds functions of the TID for some values of the distribution parameters are
shown in Figures 5, 6, and 7. From Figurs 3 - 7, we can see that hazard, cumulative hazard and odds functions increase as
the value of λ increases, while reliability and reversed hazard decrease.

Fig. 5: The cumulative hazard function of the TID with η = 2 and λ =−1,−0.5,0,0.5,1

5 Order Statistics

In this section, the pd f of the order statistics of the TID is derived. Let X1, X2, . . . Xn be a random sample with pd f

fT ID(x) and cd f FT ID(x). If X(1), X(2), ... X(n) are the order statistics of this sample, where X(1) ≤ X(2) ≤ . . . ≤ X(n). Then,

the pd f of the jth order statistics, X( j) (see David and Nagaraja (2005)) is given by:

fT ID( j)(x) =
n!

(n− j)!( j− 1)!
fT ID(x)[FT ID(x)]

j−1[1−FTID(x)]
n− j (14)

By using binomial series and substituting (7) and (8) in (14), we have

fTID( j)(x) =
n!

(n− j)!( j−1)!
fT ID(x)

j−1

∑
l=0

(

j−1

l

)

(−1)l [1−FT ID(x)]
n+l− j

=
n!

(n− j)!( j−1)!

[

η3

η3 +2
(η +x2)e−ηx

[

1−λ +2λ

(

1+
ηx(ηx+2)

η3 +2

)

e−ηx
]

]

×
j−1

∑
l=0

(

j−1

l

)

(−1)l

[

(

1+
ηx(ηx+2)

η3 +2

)

e−ηx

[

1−λ +λ

(

1+
ηx(ηx+2)

η3 +2

)

e−ηx

]

]n+l− j

(15)
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Fig. 6: The reversed hazard function of the TID with η = 2 and λ =−1,−0.5,0,0.5,1

Fig. 7: The odds function of the TID with η = 2 and λ =−1,−0.5,0,0.5,1

Using binomial series, we can write

[

1−λ +λ

(

1+
ηx(ηx+2)

η3 +2

)

e−ηx

]n+l− j

=
n+l− j

∑
k=0

(

n+ l − j

k

)

(1−λ )n+l− j−k

(

λ

(

1+
ηx(ηx+2)

η3 +2

)

e−ηx

)k

(16)

c© 2019 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 8, No. 2, 67-81 (2019) / www.naturalspublishing.com/Journals.asp 73

Therefore, by plugging (16) in (15), the pd f of the jth order statistics, fTID( j)(x), can be written as

fTID( j)(x) =
n! η3(η +x2)

(n− j)!( j−1)! η3 +2

[

1−λ +2λ

(

1+
ηx(ηx+2)

η3 +2

)

e−ηx
]

×
j−1

∑
l=0

n+l− j

∑
k=0

(

n+ l − j

k

)(

j−1

l

)

(−1)l(1−λ )n+l− j−kλ k

(

1+
ηx(ηx+2)

η3 +2

)n+l− j+k

e−ηx(n+l− j+k+1) (17)

Thus, the pd f of the first-order statistics X(1) = min(X1, X2, . . . Xn) is defined as:

fT ID(1)(x) =
nη3(η + x2)

η3 + 2

[

1−λ + 2λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]

×
n−1

∑
k=0

(

n− 1

k

)

(1−λ )n−1−kλ k

(

1+
ηx(ηx+ 2)

η3 + 2

)n−1+k

e−ηx(n+k)

Furthermore, the pd f of the nth order statistic X(n) = max(X1, X2, . . . Xn), is given by:

fT ID(n)(x) =
nη3(η + x2)

(η3 + 2

[

1−λ + 2λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]

×
n−1

∑
l=0

l

∑
k=0

(

l

k

)(

n− 1

l

)

(−1)l(1−λ )l−kλ k

(

1+
ηx(ηx+ 2)

η3 + 2

)l+k

e−ηx(l+k+1).

6 Moments

The rth moment of the TID random variable is derived in this section. Also, the mean, variance, coefficient of kurtosis,
coefficient of skewness, coefficient of variation, and moment-generating function are presented.

6.1 rth Moment

Theorem 6.1. The rth moment of the TID random variable is defined as:

E(X r)=
1

2r+4ηr(η3 + 2)2

{

(η3 + 2)

(

2r+4(1−λ )(η3Γ (r+ 1)+Γ (r+ 3))+ 4λ (4η3Γ (r+ 1)+Γ (r+ 3))

)

+λ

(

4η3(4Γ (r+ 2)+Γ (r+ 3))+ 4Γ (r+ 4)+Γ (r+ 5)

)}

, (18)

where Γ (r) = (r− 1)!.
Proof. The rth moment of the TID random variable, with pd f fT ID(x) in (8), can be proved as:

E(X r) =

∫ ∞

0
xr fT ID(x)dx =

∫ ∞

0
xr η3

η3 + 2
(η + x2)e−ηx

[

1−λ + 2λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]

dx

=
η3

η3 + 2
(1−λ )

∫ ∞

0
xr(η + x2)e−ηxdx+

η3

η3 + 2
(2λ )

∫ ∞

0
xr(η + x2)e−2ηxdx

+
η3

η3 + 2
(2λ )

∫ ∞

0
xr ηx(ηx+ 2)

η3 + 2
(η + x2)e−2ηxdx

=
η3(1−λ )

η3 + 2

(

Γ (r+ 1)

ηr
+

Γ (r+ 3)

ηr+3

)

+
η3(2λ )

η3 + 2

(

ηΓ (r+ 1)

(2η)r+1
+

Γ (r+ 3)

(2η)r+3

)

+
η5(2λ )

(η3 + 2)2

(

ηΓ (r+ 3)

(2η)r+3
+

Γ (r+ 5)

(2η)r+5

)

+
η4(4λ )

(η3 + 2)2

(

ηΓ (r+ 2)

(2η)r+2
+

Γ (r+ 4)

(2η)r+4

)

Then, we have

E(X r) =
1

2r+4ηr(η3 + 2)2

{

(η3 + 2)

(

2r+4(1−λ )(η3Γ (r+ 1)+Γ (r+ 3))+ 4λ (4η3Γ (r+ 1)+Γ (r+ 3))

)

+λ

(

4η3(4Γ (r+ 2)+Γ (r+ 3))+ 4Γ (r+ 4)+Γ (r+ 5)

)}

.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


74 M. M. Gharaibeh, A.I. Al-Omari: Transmuted Ishita Distribution...

6.1.1 Mean, Variance, Skewness, Kurtosis and Coefficient of Variation

From (18), the mean and second moment can be obtained as follows:

E(X) =
(η3 + 2)

[

4(1−λ )(η3+ 6)+λ (2η3+ 3)
]

+λ
[

7η3 + 27
]

4η(η3 + 2)2
(19)

E(X2) =
(η3 + 2)

[

4(1−λ )(2η3+ 24)+λ (2η3+ 6)
]

+λ
[

12η3 + 75
]

4η2(η3 + 2)2
(20)

Thus, the variance of the TID random variable is defined as

σ2 = var(X) = E(X2)− (E(X))2

=
1

16η2(η3 + 2)4

[

4(η3 + 2)2
(

(η3 + 2)
[

4(1−λ )(2η3+ 24)+λ (2η3+ 6)
]

+λ
[

12η3 + 75
]

)

−
(

(η3 + 2)
[

4(1−λ )(η3 + 6)+λ (2η3+ 3)
]

+λ
[

7η3 + 27
]

)2]

. (21)

The coefficient of variation (C.V ) is defined as C.V = σ
E(X) . Therefore,

C.V =







4(η3 + 2)2
(

(η3 + 2)
[

4(1−λ )(2η3+ 24)+λ (2η3+ 6)
]

+λ
[

12η3 + 75
]

)

−
(

(η3 + 2)
[

4(1−λ )(η3+ 6)+λ (2η3+ 3)
]

+λ
[

7η3 + 27
]

)2







1/2

(η3 + 2)
[

4(1−λ )(η3+ 6)+λ (2η3+ 3)
]

+λ
[

7η3 + 27
] .

Using (18), the third and fourth moments of the TID random variable X are given, respectively, by

E(X3) =
(η3 + 2)

[

48(1−λ )(η3+ 20)+ 6λ (η3+ 5)
]

+ 9λ
[

6η3 + 55
]

8η3(η3 + 2)2
, (22)

E(X4) =
3(η3 + 2)

[

32(1−λ )(η3+ 30)+λ (2η3+ 15)
]

+ 15λ
[

5η3 + 63
]

4η4(η3 + 2)2
. (23)

The skewness and the kurtosis of a random variable are defined as:

sk(X) =
E(X3)− 3E(X)E(X2)+ 2(E(X))3

σ3

ku(X) =
E(X4)− 4E(X)E(X3)+ 6(E(X))2E(X2)− 3(E(X))4

σ4

Based on these formulas, the skewness and the kurtosis of the TID random variable are given, respectively, by:

SkTID(X) =









8(η3 +2)4
(

(η3 +2)
[

48(1−λ )(η3 +20)+6λ (η3 +5)
]

+9λ
[

6η3 +55
]

)

−12(η3 +2)2
(

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

)

×
(

(η3 +2)
[

4(1−λ )(2η3 +24)+λ (2η3 +6)
]

+λ
[

12η3 +75
]

)

+2
[

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

]3









[

4(η3 +2)2
(

(η3 +2)
[

4(1−λ )(2η3 +24)+λ (2η3 +6)
]

+λ
[

12η3 +75
]

)

−
(

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

)2

]3/2
,

kuT ID(X) =

















64(η3 +2)6
(

3(η3 +2)
[

32(1−λ )(η3 +30)+λ (2η3 +15)
]

+15λ
[

5η3 +63
]

)

−32(η3 +2)6
(

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

)

×
(

(η3 +2)
[

48(1−λ )(η3 +20)+6λ (η3 +5)
]

+9λ
[

6η3 +55
]

)

+24(η3 +2)2
[

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

]2

×
[

(η3 +2)
[

4(1−λ )(2η3 +24)+λ (2η3 +6)
]

+λ
[

12η3 +75
]

]

−3
[

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

]4

















[

4(η3 +2)2
(

(η3 +2)
[

4(1−λ )(2η3 +24)+λ (2η3 +6)
]

+λ
[

12η3 +75
]

)

−
(

(η3 +2)
[

4(1−λ )(η3 +6)+λ (2η3 +3)
]

+λ
[

7η3 +27
]

)2

]2
.

The mean, variance, skewness, kurtosis and the coefficient of variation of the TID for different values of λ and η are
given in Tables 1 and 2.

It can be seen from Table 1 that the mean increases as the value of λ decreases. The other values in the table depend
on λ and η . Table 2 indicates that the mean and variance decrease as η increases. The positive values of skewness in both
tables mean that the TID is skewed to the right.
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Table 1: The mean, variance, skewness, kurtosis and the coefficient of variation of the TID for η = 1, 3, and variant values of λ

η = 1 η = 3

λ E(X) var(X) C.V skT ID(X) kuT ID(X) λ E(X) var(X) C.V skT ID(X) kuT ID(X)
0.9 1.4583 1.5149 0.8440 1.4390 6.3699 0.9 0.2046 0.0516 1.1103 2.8179 17.3188

0.8 1.5556 1.7803 0.8577 1.5274 6.7492 0.8 0.2240 0.0661 1.1477 2.9114 17.4041

0.7 1.6528 2.0267 0.8613 1.5333 6.6425 0.7 0.2434 0.0799 1.1608 2.8490 16.1948

0.6 1.7500 2.2542 0.8579 1.5014 6.3728 0.6 0.2628 0.0928 1.1593 2.7407 14.8413

0.5 1.8472 2.4627 0.8496 1.4519 6.0615 0.5 0.2823 0.1051 1.1485 2.6218 13.6058

0.4 1.9444 2.6525 0.8376 1.3948 5.7566 0.4 0.3017 0.1166 1.1318 2.5053 12.5370

0.3 2.0417 2.8233 0.8230 1.3353 5.4770 0.3 0.3211 0.1273 1.1112 2.3956 11.6276

0.2 2.1389 2.9752 0.8064 1.2762 5.2295 0.2 0.3405 0.1373 1.0882 2.2945 10.8573

0.1 2.2361 3.1081 0.7884 1.2193 5.0153 0.1 0.3599 0.1465 1.0635 2.2021 10.205

-0.1 2.4306 3.3174 0.7493 1.1154 4.6826 -0.1 0.3987 0.1627 1.0116 2.0425 9.1841

-0.2 2.5278 3.3937 0.7288 1.0698 4.5607 -0.2 0.4181 0.1697 0.9851 1.9746 8.7880

-0.3 2.6250 3.4510 0.7077 1.0291 4.4661 -0.3 0.4376 0.1759 0.9585 1.9141 8.4543

-0.4 2.7222 3.4895 0.6862 0.9940 4.3973 -0.4 0.4570 0.1813 0.9319 1.8607 8.1752

-0.5 2.8194 3.5091 0.6644 0.9651 4.3532 -0.5 0.4764 0.1860 0.9054 1.8145 7.9445

-0.6 2.9167 3.5097 0.6423 0.9434 4.3327 -0.6 0.4958 0.1900 0.8791 1.7752 7.7573

-0.7 3.0139 3.4915 0.6200 0.9300 4.3354 -0.7 0.5152 0.1932 0.8531 1.7430 7.6099

-0.8 3.1111 3.4543 0.5974 0.9263 4.3608 -0.8 0.5346 0.1956 0.8273 1.7181 7.4995

-0.9 3.2083 3.3983 0.5746 0.9346 4.4084 -0.9 0.5540 0.1973 0.8018 1.7009 7.4238

Table 2: The mean, variance, skewness, kurtosis and the coefficient of variation of the TID for λ = 0.3, 0.8 and variant values of η

λ = 0.3 λ = 0.8
η E(X) var(X) C.V skT ID(X) kuT ID(X) η E(X) var(X) C.V skT ID(X) kuT ID(X)

0.1 27.1769 264.0670 0.5979 1.2999 5.6021 0.1 22.4885 168.8420 0.5778 1.4102 6.6754

0.2 13.5517 66.1934 0.6004 1.2951 5.5889 0.2 11.2042 42.3695 0.5810 1.4029 6.6510

0.3 8.9689 29.6232 0.6069 1.2831 5.5552 0.3 7.3983 19.0127 0.5894 1.3851 6.5892

0.4 6.6337 16.8661 0.6191 1.2639 5.4971 0.4 5.4483 10.8719 0.6052 1.3576 6.4864

0.5 5.1907 10.9747 0.6382 1.2415 5.4203 0.5 4.2339 7.1093 0.6298 1.3288 6.3591

0.6 4.1919 7.7623 0.6646 1.2241 5.3414 0.6 3.3867 5.0465 0.6633 1.3119 6.2442

0.7 3.4496 5.7945 0.6978 1.2205 5.2849 0.7 2.7532 3.7676 0.7050 1.3196 6.1891

0.8 2.8729 4.4769 0.7365 1.2371 5.2766 0.8 2.2603 2.8966 0.7530 1.3587 6.2376

0.9 2.4131 3.5328 0.7789 1.2760 5.3369 0.9 1.8689 2.2621 0.8048 1.4296 6.4197

1 2.0417 2.8233 0.8230 1.3353 5.4770 1 1.5556 1.7803 0.8577 1.5274 6.7492

2 0.5924 0.4224 1.0972 2.1545 9.4830 2 0.4130 0.2249 1.1484 2.6645 14.2412

3 0.3211 0.1273 1.1112 2.3956 11.6276 3 0.2240 0.0661 1.1477 2.9114 17.4041

4 0.2249 0.0606 1.0949 2.3765 11.6775 4 0.1577 0.0317 1.1290 2.8611 17.1760

5 0.1751 0.0361 1.0846 2.3366 11.3982 5 0.1231 0.0190 1.1188 2.8062 16.6390

6 0.1442 0.0242 1.0790 2.3094 11.1800 6 0.1015 0.0128 1.1136 2.7723 16.2717

7 0.1228 0.0175 1.0759 2.2928 11.0395 7 0.0866 0.0092 1.1107 2.7523 16.0466

8 0.1070 0.0132 1.0741 2.2825 10.9507 8 0.0755 0.0070 1.1091 2.7402 15.9076

9 0.0949 0.0104 1.0730 2.2760 10.8933 9 0.0670 0.0055 1.1080 2.7326 15.8190

10 0.0853 0.0084 1.0722 2.2716 10.8550 10 0.0602 0.0044 1.1074 2.7276 15.7604

6.2 Moment-Generating Function

Theorem 6.2. The moment-generating function of the TID random variable is given by

MX (t) =
(1−λ )η3

[

η(η − t)2 + 2
]

(η3 + 2)(η − t)3
+

2λ η3
[

η(2η − t)2 + 2
]

(η3 + 2)(2η − t)3

+
4λ η4

[

η2(2η − t)2 + 12η +η(2η − t)3 + 6(2η − t)
]

(η3 +2)2(2η − t)5

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


76 M. M. Gharaibeh, A.I. Al-Omari: Transmuted Ishita Distribution...

Proof. The moment-generating function can be proved as

MX(t) = E(etX )

=

∫ ∞

0
etx fT ID(x)dx

=
∫ ∞

0
etx η3

η3 + 2
(η + x2)e−ηx

[

1−λ + 2λ

(

1+
ηx(ηx+ 2)

η3 + 2

)

e−ηx
]

dx

=
η3(1−λ )

η3 + 2

[

η

∫ ∞

0
etxe−ηxdx+

∫ ∞

0
x2etxe−ηxdx

]

+
η3(2λ )

η3 + 2

[

η

∫ ∞

0
etxe−2ηxdx+

∫ ∞

0
x2etxe−2ηxdx

]

+
η3(2λ )

(η3 + 2)2

[

η3

∫ ∞

0
x2etxe−2ηxdx+η2

∫ ∞

0
x4etxe−2ηxdx

]

+
η3(4λ )

(η3 + 2)2

[

η2
∫ ∞

0
xetxe−2ηxdx+η

∫ ∞

0
x3etxe−2ηxdx

]

Therefore,

MX(t) =
η3(1−λ )

η3 + 2

[

η

∫ ∞

0
e−(η−t)xdx+

∫ ∞

0
x2e−(η−t)xdx

]

+
η3(2λ )

η3 + 2

[

η

∫ ∞

0
e−(2η−t)xdx+

∫ ∞

0
x2e−(2η−t)xdx

]

+
η3(2λ )

(η3 + 2)2

[

η3
∫ ∞

0
x2e−(2η−t)xdx+η2

∫ ∞

0
x4etxe−2ηxdx

]

+
η3(4λ )

(η3 + 2)2

[

η2

∫ ∞

0
xe−(2η−t)xdx+η

∫ ∞

0
x3e−(2η−t)xdx

]

Thus, we have

MX(t) =
η3(1−λ )

η3 + 2

[

η

(

1

η − t

)

+
2

(η − t)3

]

+
η3(2λ )

η3 + 2

[

η

(

1

2η − t

)

+
2

(2η − t)3

]

+
η3(2λ )

(η3 + 2)2

[

η3

(

2

(2η − t)3

)

+η2

(

24

(2η − t)5

)]

+
η3(4λ )

(η3 + 2)2

[

η2

(

1

(2η − t)2

)

+η

(

6

(2η − t)4

)]

=
(1−λ )η3

[

η(η − t)2 + 2
]

(η3 + 2)(η − t)3
+

2λ η3
[

η(2η − t)2 + 2
]

(η3 + 2)(2η − t)3

+
4λ η4

[

η2(2η − t)2 + 12η +η(2η − t)3 + 6(2η − t)
]

(η3 +2)2(2η − t)5

7 Maximum Likelihood Estimates

Let X1,X2, . . . ,Xn be a random sample from the TID with pd f fT ID(x) in (8) and parameters η and λ , then the likelihood
function is given by

L(η ,λ |x1,x2, . . . ,xn) =
n

∏
i=1

fT ID(xi|η ,λ )

=
n

∏
i=1

[

η3

η3 + 2
(η + x2

i )e
−ηxi

[

1−λ + 2λ

(

1+
ηxi(ηxi + 2)

η3 + 2

)

e−ηxi

]

]

=

(

η3

η3 + 2

)n
[

n

∏
i=1

(η + x2
i )

]

e−η ∑n
i=1 xi

n

∏
i=1

[

1−λ + 2λ

(

1+
ηxi(ηxi + 2)

η3 + 2

)

e−ηxi

]

.
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Hence, the log-likelihood function is given by

L∗ = ln L(η ,λ |x1,x2, . . . ,xn)

=n ln

(

η3

η3 + 2

)

+
n

∑
i=1

ln(η + x2
i )−η

n

∑
i=1

xi +
n

∑
i=1

ln
[

1−λ + 2λ

(

1+
ηxi(ηxi + 2)

η3 + 2

)

e−ηxi

]

.

The derivatives of the log-likelihood function with respect to the parameters η and λ are:

∂L∗

∂η
=

6n

η(η3 + 2)
+

n

∑
i=1

1

(η + x2
i )

−
n

∑
i=1

xi +
n

∑
i=1

−2λ η2xie
−ηxi

(

η4 +η3x2
i + 3η2xi + 8η + 2x2

i

)

(η3 + 2)2
[

1−λ + 2λ
(

1+ ηxi(ηxi+2)
η3+2

)

e−ηxi

] , (24)

∂L∗

∂λ
=

n

∑
i=1

−1+ 2
(

1+ ηxi(ηxi+2)

η3+2

)

e−ηxi

1−λ + 2λ
(

1+ ηxi(ηxi+2)
η3+2

)

e−ηxi

. (25)

The maximum likelihood estimators for the distribution parameters η and λ can be found by equating the derivatives in
Equations (24) and (25) to zero and solving the resulting equations simultaneously by using numerical methods.

8 Generalized Entropy

The entropy of a random variable X is a measure of variation of the uncertainty. A large entropy value indicates greater
uncertainty in the data. For more details about entropy, see Zamanzade (2015), Zamanzade and Arghami (2012), and
Zamanzade and Arghami (2011). In this section, the Generalized Entropy (GE) of the TID is given. It is defined as

GE(α) =
∆α µ−α − 1

α(α − 1)
,α 6= 0,1, (26)

where ∆α =
∫ ∞
−∞ xα f (x)dx and µ = E(X), (see Biewen and Jenkins (2003)).

By plugging (19) and (18) in (26), the generalized entropy of the TID is given by

GE(α) =(α(α − 1))−1

(

[

(

(η3 + 2)
[

32(1−λ )(η3+ 6)+ 4λ (4η3+ 6)
]

+λ
[

56η3 + 216
]

)−α

×

{

(η3 + 2)

(

2α+4(1−λ )(η3Γ (α + 1)+Γ (α + 3))+ 4λ (4η3Γ (α + 1)+Γ (α + 3))

)

+ λ

(

4η3(4Γ (α + 2)+Γ (α + 3))+ 4Γ (α + 4)+Γ (α + 5)

)}

(4(η3 + 2))2(α−1)
]

− 1

)

Table 3 provides generalized entropy values of the TID with variant values of the distribution parameters. From Table 3,
we can note that the generalized entropy, GE(α), increases in α for η = 0.1 and λ = 0.5,−0.5,−0.9. No such conclusion
can be deduced for η = 3,4,5,6,7,8,9,10 with α = 3 and λ = 0.5,−0.5,−0.9.

9 Quantile Function

The qth quantile value, xq, is a value of the random variable, X , with cdf F(x) such that

F(xq) = p(X ≤ xq) = q ;0 < q < 1. (27)

The following lemma gives the qth quantile of the TID.

Lemma 1.The qth quantile ,xq, of the TID is the solution of

(

1+
ηxq(ηxq + 2)

η3 + 2

)

e−ηxq =
λ − 1+

√

(1+λ )2− 4λ q

2λ
;xq > 0. (28)
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Table 3: Generalized entropy values with variant values of the distribution parameters

α η = 0.1, λ = 0.5 η = 0.1, λ =−0.5 η = 0.1, λ =−0.9
3 0.2310 0.1582 0.1222

4 0.3482 0.2091 0.1557

5 0.6237 0.3129 0.2207

6 1.3305 0.5333 0.3506

7 3.3540 1.0363 0.6259

8 9.8396 2.2872 1.2620

9 33.0082 5.6912 2.8484

10 124.5950 15.8115 7.1581

η α = 3, λ = 0.5 α = 3, λ =−0.5 α = 3, λ = 0.9
3 1.0363 0.5734 1.2591

4 1.2646 0.6343 1.1953

5 1.2246 0.5969 1.1539

6 1.2024 0.5866 1.1398

7 1.1899 0.5807 1.1294

8 1.1826 0.5771 1.1234

9 1.1780 0.5749 1.1196

10 1.1750 0.5734 1.1172

proof. Using the cd f of TID in (7) and plugging it in (27), we have

(1+λ )
[

1−

(

1+
ηxq(ηxq + 2)

η3 + 2

)

e−ηxq

]

−λ
[

1−

(

1+
ηxq(ηxq + 2)

η3 + 2

)

e−ηxq

]2

= q.

Let y =
[

1−
(

1+
ηxq(ηxq+2)

η3+2

)

e−ηxq

]

, then we have

(1+λ )y−λ y2 = q,

λ y2 − (1+λ )y+ q = 0.

To solve the above quadratic equation for 0 ≤ y ≤ 1, the general formula can be used to get

y =
1+λ −

√

(1+λ )2− 4λ q

2λ
.

By replacing y by its value 1−
(

1+
ηxq(ηxq+2)

η3+2

)

e−ηxq , we have

1−

(

1+
ηxq(ηxq + 2)

η3 + 2

)

e−ηxq =
1+λ −

√

(1+λ )2− 4λ q

2λ

Therefore, the qth quantile xq is the positive solution of

(

1+
ηxq(ηxq + 2)

η3 + 2

)

e−ηxq =
λ − 1+

√

(1+λ )2− 4λ q

2λ
,

which can be found by numerical methods.

10 Applications

In this section, the TID is used to fit a real-life data set. The data set (given in Table 4) is from Andrews and Herzberg
(1985) which represents the life of fatigue fracture of Kevlar 373/epoxy subjected to constant pressure at 90% stress level
until all had failed. The goodness of fit of the TID to this data set is compared with Ishita distribution (given in (1)) in
addition to the following distributions:

–Rama distribution (see Shanker (2017)): f (x) = α4

α3+6
(1+ x3)e−αx ;x > 0,α > 0.

–Akash distribution (see Shanker (2015)): f (x) = θ 3

θ 2+2
(1+ x2)e−θx ;x > 0,θ > 0.
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Table 4: The life of fatigue fracture of Kevlar 373/epoxy subjected to constant pressure at 90% stress level until all had failed

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 0.6566 0.6748 0.6751 0.6753

0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 0.9120 0.9836 1.0483 1.0596 1.0773 1.1733

1.2570 1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460

1.7630 1.7746 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903

2.1093 2.1330 2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 2.4951 2.5260 2.9911 3.0256 3.2678

3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.0960

Table 5: −2logL, AIC, AICC, K-S Statistics and its p-value of the fitted distributions.

Distribution -2 log L AIC CAIC KS Statistic P-value

Rama 254.9094 256.9093 256.9634 0.1431 0.0805

Akash 249.1510 251.1510 251.2050 0.1231 0.1836

Ishita 249.6816 251.6815 251.7356 0.1293 0.1440

Transmuted Ishita 246.3972 250.3971 250.5615 0.1181 0.2214

based on −2logL , Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Kolmogorov
Smirnov (KS) statistic and its p-value. The results are presented in Table 5. It turns out that the Transmuted Istha
distribution has the lowest values of the −2logL, AIC, CAIC, and KS statistic in comparison with the other fitted
distributions. Therefore, the TID is better than Rama, Akash, and Ishita distributions for fitting this real-life data set. The
Maximum Likelihood Estimates (MLEs) of the parameters of the fitted distributions and their Confidence Intervals (CI)
are computed and given in Table 6.

Table 6: The MLEs of the parameters of the fitted distributions and their confidence intervals

95% CI

Distribution Parameters MLE Standard Error Lower Limit Upper Limit

Rama α 1.4944 0.0767 1.3441 1.6447

Akash θ 1.1324 0.0729 0.9894 1.2754

Ishita η 1.1050 0.0621 0.9833 1.2266

η 0.8702 0.0668 0.7392 1.0012

Transmuted Ishita λ 0.8152 0.1875 0.4477 1.1827

11 Conclusion

In this paper, the Ishita distribution is modified using the quadratic rank transmutation map to suggest the Transmuted
Ishita Distribution (TID). We have studied several properties of this distribution including moments, mean, variance,
skewness, kurtosis, coefficient of variation, moment-generating function, order statistics and maximum likelihood
estimates of the distribution parameters. Also, we have obtained the reliability, hazard rate, cumulative hazard, reversed
hazard rate, odds functions, generalized entropy and the quantile function. The proposed distribution (TID) is used to fit
a real lifetime data set. The results of this application have revealed that the proposed distribution can be a better fit than
Ishita distribution and some other competitive distributions considered in this study.

Acknowledgement

The authors are grateful to the Editor and the anonymous referees for valuable comments and suggestions which greatly
improved the quality of the paper.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


80 M. M. Gharaibeh, A.I. Al-Omari: Transmuted Ishita Distribution...

References

[1] W. Shaw and I. Buckley. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic normal

distribution from a rank transmutation map, presented at the First IMA Computational Finance Conference, London, UK, (2007).

[2] G. R. Aryal and C. P. Tsokos. Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution. European

Journal of Pure and Applied Mathematics, 4(2), 89-102, (2011).

[3] G. R. Aryal and C. P. Tsokos. On the Transmuted Extreme Value Distribution with Application. Journal of Statistical Applications

& Probability, 2(1), 11-20, (2013).

[4] F. Merovci. Transmuted Lindley Distribution. International Journal of Open Problems in Computer Science and Mathematics, 6(2),

63-72, (2013).

[5] F. Merovci. Transmuted Rayleigh Distribution. Austarian Journal of Statistics, 42(1), 21-31, (2013).

[6] G. M. Cordeiro and E. M. Ortega and D. C. da Cunha. The exponentiated generalized class of distributions. Journal of Data Science,

11, 1-27, (2013).

[7] M. Bourguignon and I. Ghosh and G. Cordeiro. General Results for the Transmuted Family of Distributions and New Models.

Journal of Probability and Statistics, 2016, (2016), http://dx.doi.org/10.1155/2016/7208425.

[8] S. K. Ashour and M. A. Eltehiwy. Transmuted Lomax distribution. American Journal of Applied Mathematics and Statistics, 1(6),

121-127, (2013).

[9] F. Merovci and I. Elbatal. Transmuted Lindley-Geometric Distribution and its Applications. Journal of Statistics Applications &

Probability, 3(1), 77-91, (2014), http://dx.doi.org/10.12785/jsap/030107.

[10] I. Elbatal and G. Asha and A. V. Raja. Transmuted Exponentaited Frêchet Distribution: Properties and Applications. Journal of
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