
Quant. Inf. Rev.6, No. 2, 7-14 (2018) 7

Quantum Information Review
An International Journal

http://dx.doi.org/10.18576/qir/060201

Generalized Ghost Dark Energy Model in the Framework
of Quantum Cosmology for Different Scale Factor
Choices
Ayman A. Aly

Physics Department, Faculty of Science, Damanhour University, Damanhour, Egypt

Received: 2 May 2018, Revised: 22 Jun. 2018, Accepted: 27 Jun. 2018
Published online: 1 Jul. 2018

Abstract: We intend to analyze the behavior of generalized ghost dark energy model (GGDE) in the framework̄h - corrected
Friedmann Equations for three different choices of cosmological scale factor namely emergent, intermediate and logimidate scenarios.
The behavior of some cosmological parameters are studied showing some consistency with the observations. For the stability analysis,
we discuss the role of the squared speed of dark energy fluidv2

D we observe a type of fluctuation between stability and unstability
behaviors in our model Scenarios.
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1 Introduction

Recent cosmological observations show that our universe
is in accelerating mode [1,2,3,4,5]. This cosmic
acceleration can be explained by assuming a fluid with
large negative pressure denoted as dark energy (DE) or
the energy of vacuum. The simplest candidate for dark
energy is the cosmological constantΛ [6,7]. Since
mid-nineties, the behavior of dark energy is studied using
models like quintessence [8], tachyon [9], phantom [10],
dilaton [11] and quintom field [12], Holographic DE [13]
and cold dark matterΛCDM [14]. A new model of dark
energy called Veneziano ghost dark energy (GDE) is
proposed to find a solution for theU(1) Quantum
chromodynamics QCD problem [7]. Within this theory
ghosts field may be considered as a candidate for the dark
energy where no new degree of freedom or new
parameter is added to modify gravity and that what gives
this theory its power compared to the others modified
gravity models. Also, its vacuum energy can be used to
explain the time-varying cosmological constant in a
space-time, since the ghost field has no contribution to the
vacuum energy in the Minkowskian spacetime. The
energy density of the vacuum ghost field is proportional
to Λ3

QCDH, whereΛQCD is theQCD mass scale andH is
the Hubble parameter [16,17]. A correct choice ofΛQCD

can eliminate the fine tuning problem proposed by
standard cosmology. In [16,18] the GDE model is
considered to have the energy density in the form:

ρ = αH, (1)

where, α is some constant parameter,H = ȧ(t)/a(t)
represents the Hubble parameter,a(t) is the scale factor
andȧ is its first derivative with respect to cosmic timet.

The vacuum energy of the Veneziano ghost field in
QCD takes the formH +O(H2). That way Eq.(1) can be
modified to a more general form which is known as
generalized ghost dark energy GGDE [19,20,21]:

ρ = αH + δH2, (2)

where, δ is a constant parameter. The addition of the
second high order term shows a good agreement with
observational data more than the normal GDE model.

Putting the GGDE together with quantum corrected
Friedmann equations on the same frame is the aim of this
work to investigate the behavior of the equation of state
parameterω , the deceleration parameterq, square speed
of DE fluid V 2

D and state finder operatorss andr.
This work is arranged as follows. In next section the
model is considered. In section 3, we study the evolution
of the cosmological parameters. Namely, equation of state
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parameterω , deceleration parameterq and geometrical
state-finder parametersr and s for the emergent,
intermediate and logimidate scenarios and finally the
perspective is presented in section 4.

2 The Model

Effective field theory is considered to study the quantum
structure of general relativity at scales below the Planck
mass [19,20].

Effective field theory plays an important rule to
distinguish between the quantum effects of the low
energy particles from the physics at high energy. The
latter effects are represented by the most general series of
effective Lagrangians which are consistent with the
symmetry of general relativity [21]. In the effective field
theory of gravity, quantum loop calculations lead to well
defined results in the low energy limit, which for one loop
correction is proportional tōh. By using the Fourier
transform, one can write the quantum mechanical
correction to the potential in the form [23,22]:

Φ(r) =−
GM1M2

r
[1+λ

G(M1+M2)

rc2 − γ̃
Gh̄
r2c3 + ...], (3)

where,λ andγ̃ are two parameters that can take different
values depending on the authors and r is the distance
between two objects, G is the gravity constant andh̄ is the
planks constant, we redefiner −→ r′ = r(1+ aGM/r) ).
Many of the different values forγq which vary in sign are
found in the literature [17,23,22]. By considering the
gravity as an effective theory, one can write the corrected
potential as āh - corrections to the Newtonian potential
[23]:

Φ(r) =−
GM1M2

r
[1− γq

Gh̄
r2c3 + ....]. (4)

By assuming the quantum correction as mentioned
before, the total energy due to the quantum correction is
given by [23]:

E =
1
2

m(
da
dt

)2
−

GMm
a

+ γq
G2h̄Mm

a3c3 . (5)

By using the energy densityρ and plank lengthlp one can
write [23]:

2E
ma2 =

1
a2 (

da
dt

)2
−

8
3

πGρ(1−
l2
pγq

a2 ). (6)

SinceH = ˙a(t)/a(t), the first Friedmann equation with an
h̄-correction can be written as [23]:

H2+
k
a2 =

8
3

πGρ(1− γq
l2
pγq

a2 ). (7)

In this work we consider the system of units in whichG
and lp equal to 1. By using the equation of continuity,

which represents the conservation of energy, which has
the form:

ρ̇ +3Hρ(1+ω)= 0. (8)

One can write the second Friedman equation with anh̄-
correction as:

ä =
4πG

3
aρ(1+ω)−4πGργql

2
p

ρ(1+ω)

a
. (9)

Eqs. (7) and (9) are considered as the quantum
corrected Friedmann equations derived within the context
of Newtonian mechanics. The fractional energy densities
for DE, DM and curvature parameter are given by the
following quantities[4]:

ΩD =
ρD

ρcr
=

8πG(t)ρD

6H2 , (10)

Ωm =
ρm

ρcr
=

8πG(t)ρm

6H2 , (11)

Ωk =
k

a2H2 , (12)

where,ρcr indicates the critical energy density and G is
the gravitational constant.

3 GGDE in the h̄ Correction Frame for
Different Scale Factor Models

In this section, we are going to analyze our model through
studying the evolution of some cosmological parameters
for the three different choices of the cosmological scale
factor. One can write Eq.(8) for dark energy dominate
universe as:

ρ̇D +3HρD(1+ωD) = 0. (13)

For interacting case, one finds:

ρ̇D +3HρD(1+ωD) = Q, (14)

where,Q represents the interaction term which can be
considered as an arbitrary function of cosmological
parameters, like the Hubble parameterH and energy
densities of the model. We assume the formQ = bρ̇D [24]
for dark energy dominate universe, where,b is the
coupling parameter between dark matter (DM) and dark
energy (DE). Due to the unknown nature of DM and DE,
different Lagrangians have been proposed to generate this
interaction term. Actually, a suitable form ofQ can be
reconstructed using the theory of quantum gravity or
through an observation scheme using the SNIa data [25,
26].

By differentiating Eq.(7) with respect to the cosmic
time t and using Eq.(13), then after some algebraic steps,
one finds:

Ḣ −
k
a2 =

8π
3
[2(1+ωD)+

αt−2α−1γq

a2
oH

−
2γq(1+ωD)

a2
ot2α .(15)
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Adding Eq.(7) to Eq.(15) and dividing byH2 one finds:

1+
Ḣ
H2 = 1+

8πG

(

˙ρGDE−
L2

pγq

(

˙ρGDE−
2ȧρGDE

a

)

a2

)

γH3 . (16)

Now, we derive the reconstructed cosmological
quantities that we need for our model by assuming three
different scenarios for the cosmological scale factor.

3.1 Emergent Scenario of the Cosmological
Scale Factor

The emergent scenario assumes that the universe is
isotropic and homogeneous at large scales. Also the
universe is accelerating as suggested by recent
cosmological measurements. The emergent scale factor
could be written as [27]:

a = a0
(

λ + eµt)β (17)

where,a0,λ ,µ andβ are four positive parameters of the
model. In this case one can find an expression of Hubble
parameter as:

H =
ȧ
a
=

β µeµt

λ + eµt (18)

Instead, the general expression ofρEGDE could be
written, using Eq.(2), as:

ρEGDE =
αβ µeµt

λ + eµt +
β 2δ µ2e2µt

(λ + eµt)2 (19)

we assume parameters values
ao = 0.12,γq = −41

10 ,λ = 0.3,µ = 0.3,β = 0.3,0.5 and
0.7 for emergent case. In Fig. (1-a), the growth of
emergent energy density against cosmic time is
considered, showing an increasing behavior over the
given time range.

Using Eq.(10) and Eq.(8), it is possible to obtain the
derivative ofΩD with respect to the cosmic time t. Since

Ω ′

D = dΩD
dx = Ω̇D

H , we can write the mathematical
expression for the fractional DE density which is used to
study the evolution of dark energy, as:

Ω ′

D =−

4παGe−3µt (λ + eµt)3
(

β µ2eµt

λ+eµt −
β µ2e2µt

(λ+eµt)2

)

3β 3µ3 , (20)

where, we have used the fact thatH ′ = a′
a = 1. The primes

indicate derivatives with respect tox = lna. By using the
present values for the parameters, Fig.(1-b) shows that
Ω ′

D < 0.
Combining Eq.(13) and Eq.(14) together with the first
derivative ofρ in Eq.(2), we can study the evolution of
EoS parametersωD for both non-interacting and
interacting models against cosmic time as shown in
Figs.(1-c and 1-d). We observe thatω < −1. This
indicates phantom regime is started, showing that the

universe grows without bound over time.
Now, we study the behavior of the deceleration parameter
q that gives an idea about the rate at which the expansion
of the universe is slowing down due to what is called self
gravitation. It is given by:

q =−1−
Ḣ
H2 . (21)

In Fig.(1-e), the deceleration parameterq is plotted as
a function of cosmic timet . We notice thatq < 0
indicates accelerated expansion behavior of the universe
which supports recent observations. To Study the stability
of our model, we analyze the squared speed of DE fluid
which is the ratio of dark energy pressure to the energy
density of dark energy [23]. For GGDE assuminḡh
-quantum corrected universe, the squared speed of dark
fluid liquid takes the form [17,18]:

V 2
D =

ṖD

ρ̇D
, (22)

where,

ṖD = ω̇DρD + ρ̇DωD. (23)

Combining Eq.(22) with Eq.(23), yields:

V 2
D = ωD(t)−

t ˙ωD(t)
4α (ωD(t)+1)

. (24)

The sign ofV 2
D is very important to determine the

stability of the evolution of our model [26]. A positive
value indicates that the model is stable whereas instability
of a given perturbation corresponds to the negative value
of V 2

D. In Figs.(1-f and 1-g), the evolution ofV 2
D against

the cosmic time is studied for both non-interacting and
interacting cases, It can be observed that our model for
both cases, shows a type of stabilityV 2

D > 0 at low values
of β while instability is observed for high value ofβ over
the considered time range, sinceV 2

D < 0. For
completeness, we make some analyses for the
geometrical dimensionless parameters called state finder
parametersr ands. These parameters are given by [3]:

r = 2q2+ q−
q̇
H
, (25)

s =
r−1

3
(

q− 1
2

) . (26)

We can easily find a single parametric relation
betweenr ands in s− r plane as shown in Fig.(1-h). The
trajectories inr− s plane lead to different cosmological
models demonstrating different behavior over the
considered phantom regime. Actually, these types of
parameters are used to investigate the universe expansion
scenarios.
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3.2 Intermediate Scenario of the Scale Factor

In the intermediate scenario, the scale factora(t) is given
by [27]:

a = eBtm
, (27)

where,B andm are two positive constants which should
satisfy the following conditions:Bm > 0, B > 0 and
0 < m < 1 [27]. For the intermediate scenario, the
expansion of universe is faster than Power-Law form,
where the scale factor takes the form,a(t) = tn; n > 1.
Moreover, the expansion of the universe [25,26] is slower
for standard de-sitter scenario wherem = 1.

The Hubble parameter could be written as:

H = Bmtm−1. (28)
The energy density for the intermadate caseρEGDE

could be written, using Eq.(2) as:

ρIGDE = m2B2δ t2m−2+αmBtm−1 (29)
The parameters values are

B = 2,γq = −41
10 ,m = 0.3,0.5 and 0.7 are used for

intermediate case. Figure(2-a), shows the growth of
intermediate energy density against cosmic time, showing
a decreasing behavior over the given time range. To study
the evolution of GDE, we derive an expression forΩ ′

D as:

Ω ′

D =−
4παG(m−1)t1−2m

3B2m2 . (30)

Inserting the present values for the parameters, Fig(1-
b) shows thatΩ ′

D > 0, indicating that DE now is greater
than the past.

Using Eq.(13) and Eq.(14) together with the first
derivative of ρ in Eq.(2) respectively, the evolution of
EoS parametersωD for both non-interacting and
interacting model against cosmic time is considered in
Figs.(2-c and 2-d). We observe that−1 < ω < −

1
3,

indicating quintessence like behavior.

The intermediate deceleration parameter for
non-interacting case using Eq.(21), is given by:
q=−1− ((−1+m)t−m)/(Bm). (31)

In Fig.(2-e), the deceleration parameterq is plotted as
a function of cosmic time. We notice thatq starts with a
positive value showing a decreasing behavior with time
staying at a negative level indicating a type of contraction
followed by accelerated expansion of the universe.

In Figs.(2-f and 2-g), we observe a type of instability
for both scenarios; sinceV 2

D < 0.
Using Eqs. (25) and (26) together with Eqs.(28) and

(31), the trajectories ofr− s plane are plotted in Fig.(2-h)
showing a decreasing behavior over the considered time
range. It is well known that in s − r plane, a
quintessence-like behavior of dark energy corresponds to
s > 0 while a phantom-like model of dark energy
corresponds tos < 0. The transition from phantom to
quintessence or the opposite is represented by crossing
the point r = 1 and s = 0 which denotes aΛCDM
behavior.

3.3 the Logamediate Scenario of the Scale
Factor

We now consider the logamediate scenario of the scale
factor, which is defined as [27]:

a = aoeA logζ (t) (32)

where, A and ζ are two constant parameters which
satisfying the conditionsAζ > 0 andζ > 1. The Hubble
parameter is given by:

H =
Aζ logζ−1(t)

t
, (33)

and the logamediated energy density is given by:

ρLGDE =
A2δζ 2 log2ζ−2(t)

t2 +
αAζ logζ−1(t)

t
. (34)

We assume the parameters values
ao = 0.12,γq =

−41
10 ,λ = 0.3,µ = 0.3,ζ = 3,5 and 7, for

logamediate case. In Fig. (1-a), the growth of logamediate
energy density against cosmic time is considered,
showing an increasing behavior over the given time range.
Following the same method as before, one finds the
fractional energy density as:

Ω ′

D =−

4παGt3 log3−3ζ (t)
(

A(ζ−1)ζ logζ−2(t)
t2 −

Aζ logζ−1(t)
t2

)

3A3ζ 3 .(35)

By using the present values for the parameters, Fig. (1-b)
shows thatΩ ′

D < 0.

Using Eq.(13) and Eq.(14) together with the first
derivative ofρ in Eq.(2), the evolution of EoS parameters
ωD for both non-interacting and interacting model against
cosmic time is considered in Figs.(3-c and, 3-d), we
notice thatω <−1 .

The deceleration parameter, using Eq.(21) for
non-interacting case is given by:

q=−
t2 log2−2ζ (t)

(

A(ζ−1)ζ logζ−2(t)
t2

−
Aζ logζ−1(t)

t2

)

A2ζ 2 −1,(36)

In Fig.(3-e), the deceleration parameterq is plotted as
a function of cosmic timet. We notice thatq stays at a
negative level indicating an accelerated expansion of the
universe. In Figs. (3-f and 3-g), the evolution ofV 2

D
against the cosmic time is considered for both
non-interacting and interacting cases. We notice that both
cases show a type of stability over the considered time
range, sinceV 2

D > 0.

4 Perspective

The generalized ghost dark energy GGDE in framework
of h̄-quantum corrected universe is considered for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1: Emergent Scenario of the cosmological Scale Factor
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: Intermediate Scenario of the cosmological Scale Factor.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3: Logamediate Scenario of the Scale Factor.
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different choices of the cosmological scale factor namely
emergent, intermediate and logimedate scenarios. The
behavior of the reconstructed equation state parameter
(EoS) for both interacting and non-interacting dark
energy models is studied. We observe EoS stays generally
in the negative level, for intermediate casesω < −1

3
shows a type of quintessence like behavior while for
emergent and logimediate case a phantom behavior is
noticedω < −1 implies a type of negative kinetic energy
representing the necessary condition for universe
expansion and forming what is known as big rip. On
studying the evolution of the deceleration parameterq
with cosmic time for the three scenarios, we notice that
the deceleration parameter passes from decelerated to
accelerated phases in some cases but generally we found
that q < 0, leading to the fact that the universe is in
accelerated expansion mode. Through the study of the
behavior of the square of speed of DE fluid, it is noticed
that v2

D < 0 leading to a type of instability for both
emergent and intermediate cases while a type of stability
is observed for logimidate case sincev2

D > 0 over the
considered time range.
Finally, an investigation for the behavior of state finder
parameterss and r is assumed for emergent and
intermediate cases. One notices that a decreasing
behavior with the quintessence evolution of our model,
showing that our model can verify theΛCDM phase of
the universe which implies the interaction between dust
and ΛCDM phase of the universe. By considering the
most recent negativeγq [23], one finds that the considered
cosmological parameters are assumed to be strongly
dependent on time in a nonlinear manner. The assumed
model shows some good consistency with the recent
observed data [1]. Actually, the evidence for accelerating
expansion of the universe which is more significant now,
makes a progressive step to understand the nature of DE
[1].
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