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Abstract: The present paper investigates the exact enlarged controllability and optimal control of a fractional diffusion equation

in Caputo sense. This is done through a new definition of enlarged controllability that allows us to extend available contributions.

Moreover, the problem is explored using two approaches: a reverse Hilbert uniqueness method, generalizing the approach introduced
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1 Introduction

Calculus of fractional order began more than three centuries ago. It was first mentioned by Leibniz, in a reply to l’Hôpital,
addressing the question whether the derivative remains valid for a non-integer order. The subject has been developed
by several mathematicians, such as Euler, Fourier, Liouville, Grunwald, Letnikov and Riemann. Currently, other authors
investigate such kind of operators and propose new fractional derivatives [1,2,3,4,5]. Over the last few decades, fractional
calculus has gained more and more attention because of its applications in various fields of science, such as physics,
engineering, economics, and biology [6,7,8,9,10,11,12].

In control theory, several authors have been interested in fractional calculus since the sixties of last century. The
first contributions generalize classical analytical methods and concepts for fractional order systems, such as the transfer
function, frequency response, pole and zero analysis, and so on [13,14]. Nowadays, fractional calculus is used in the field
of automatic control to obtain better and more accurate models, to develop new control strategies, and to improve the
characteristics of control systems [15,16].

In recent years, fractional order sub-diffusion systems have grabbed the attention of several researchers because they
have outperformed the traditional integer order systems. More precisely, they can accurately characterize anomalous
diffusion processes in various real-world complex systems [17,18,19,20]. In particular, fractional anomalous diffusion
has been used to describe different physical scenarios, most prominently within crowded systems, for example protein
diffusion within cells or diffusion through porous media. Time-fractional sub-diffusion has also been proposed as a
measure of macromolecular crowding in the cytoplasm [21].

Controllability of a fractional order sub-diffusion system can be reformulated as an infinite dimensional control
problem. Moreover, not all states can be reached in case of diffusion systems [22,23,24]. Because mathematical models
of real systems are obtained from measures or approximation techniques, affected by perturbations if the solutions for
such systems are only approximately known, control problems subject to output fractional constraints are more realistic
and adapted for system analysis than the classical ones [12,25].
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Many problems in modern science are addressed with the help of optimization theory. Optimal control, as a branch
of Mathematics, aims to improve the state variables of a control system in order to maximize the benefit or minimize the
given cost. This is applicable to practical situations, where state variables can be temperature, a velocity field, a measure
of information, etc. This is the main reason why optimal control is an attractive research area for many scientists in various
disciplines. Efficient optimization and optimal control methods have been developed in order to compute the solution of
fractional optimal control problems [12,26,27].

The present paper handles the controllability problem of Caputo fractional diffusion equations in presence of
constraints on the state variables. This is related to the notion of enlarged controllability, which was first investigated by
Lions in 1988 for hyperbolic systems [28] and later developed for linear and semilinear parabolic systems [29,30,31,32].
Moreover, we create a bridge with optimal control of systems described by fractional order differential equations. For
that we prove enlarged controllability by means of a reverse Hilbert Uniqueness Method (HUM) and make use of a
penalization method, which allows us to characterize the minimum energy control. We consider the Caputo fractional
derivative because it allows traditional initial and boundary conditions to be included in the formulation of the problem
[33]. For results associated with the Caputo–Fabrizio operators, we refer the reader to the recent paper [34].

The present paper is organized as follows. Definitions and preliminaries on fractional calculus are presented in
Section 2. In Section 3, we characterize the exact enlarged controllability of the system. Section 4 is devoted to the
results of the exact enlarged controllability, in two different cases: for zone and pointwise actuators. In Section 5, an
optimization problem for a system of fractional order is solved using a penalization method. Sections 6 and 7 involve
some examples of the two cases of actuators and conclusion. A preprint of this paper is available in [35].

2 Preliminaries

Let Ω ⊂Rn be bounded with a smooth boundary ∂Ω . For T > 0, denote Q=Ω × [0,T ] and Σ = ∂Ω × [0,T ]. We consider
the following abstract fractional sub-diffusion system of order α ∈ (0,1):
{

CD
α

y(t) = A y(t)+Bu(t), t ∈ [0,T ],

y(0) = y
0

in D(A ),
(1)

where CDα denotes the Caputo fractional order derivative (for details on Caputo fractional operators, see, e.g., [1,2]). The
second order operator A is linear and with dense domain, such that the coefficients do not depend on t and generate a
C0-semi-group (S(t))

t≥0
on the Hilbert space L2(Ω). We refer the reader to Engel and Nagel [36] as well as Renardy and

Rogers [37] for properties on operator A . In the sequel, we let D(A) be the domain of the operator A ; y∈ L2(0,T ;L2(Ω))
and u ∈U = L2(0,T ;Rm), where m is the number of actuators. The initial datum y

0
is in L2(Ω), B : Rm −→ L2(Ω) is the

control operator, which is linear, possibly unbounded, and depending on the number and structure of actuators.
Several definitions and preliminary results are required to investigate the system (1). We begin with the most important

function used in fractional calculus, i.e., Euler’s gamma function, which is defined as

Γ (n) =

∫ ∞

0
tn−1e−tdt.

This function is a generalization of the factorial: if n ∈N, then Γ (n) = (n− 1)!.

Definition 1(See, e.g., [1]). The left-sided Caputo fractional derivative of order α > 0 of a function z is given by

C
0 Dα

t z(t) =











1

Γ (n−α)

∫ t

0
(t − s)n−α−1 dn

dsn
z(s)ds, n− 1 < α < n, t ≥ 0, n ∈ N,

dnz(t)

dtn
, α = n ∈ N.

(2)

The right-sided is pointwise defined. The Caputo fractional derivative is a sort of regulation in the time origin for the
Riemann–Liouville fractional derivative.

Definition 2(See, e.g., [38,39,40]). Let z : R+ →R be a continuous function on R+ and α > 0. Then the expressions

0Iα
t z(t) =

1

Γ (α)

∫ t

0
(t − s)α−1z(s)ds, t > 0, (3)

and

t I
α
T z(t) =

1

Γ (α)

∫ T

t
(s− t)α−1z(s)ds, t < T, (4)

are, respectively, called the left-sided and right-sided Riemann–Liouville integrals of order α .
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Definition 3(See, e.g., [38,39,40]). Let z : R+ → R. The left-sided and right-sided Riemann–Liouville fractional

derivatives of order α are defined by

0Dα
t z(t) =

1

Γ (n−α)

dn

dtn

∫ t

0
(t − s)n−α−1z(s)ds, t > 0, (5)

and

tD
α
T z(t) =

1

Γ (n−α)

(

− d

dt

)n ∫ T

t
(s− t)n−α−1z(s)ds, t < T, (6)

where α ∈ (n− 1,n), n ∈ N.

We always consider solutions of (1) in the weak sense. We denote that solution by y(x, t;u) and, when no possible
ambiguity, we also use the short notation yu(t) or y(u). Hence, we denote by yu(T ) the mild solution of system (1) at the
final time T .

Definition 4(See [41]). For t ∈ [0,T ] and any given u ∈U, a function y ∈ L2(0,T ;L2(Ω)) is a mild solution of system (1)
if it satisfies

yu(t) = Rα (t)y0
+

∫ t

0
(t − s)α−1Kα (t − s)Bu(s)ds, (7)

where

Rα (t) =

∫ ∞

0
φα (θ )S(t

αθ )dθ (8)

and

Kα (t) = α

∫ ∞

0
θφα (θ )S(t

αθ )dθ (9)

with φα (θ ) given by

φα (θ ) =
1

α
θ−1−1/αψα (θ

−1/α),

where ψα is the following probability density function:

ψα (θ ) =
1

π

∞

∑
n=1

(−1)n−1θ−αn−1 Γ (nα + 1)

n!
sin(nπα), θ ∈ (0,∞). (10)

Remark.The probability density function (10) satisfies the following properties:

∫ ∞

0
e−λ θ ψα (θ )dθ = e−λ α

,

∫ ∞

0
ψα (θ )dθ = 1, α ∈ (0,1), (11)

and
∫ ∞

0
θ νφα (θ )dθ =

Γ (1+ν)

Γ (1+αν)
, ν ≥ 0. (12)

Let H : L2(0,T ;Rm)→ L2(Ω) be defined as

Hu =

∫ T

0
(T − s)α−1Kα (T − s)Bu(s)ds, ∀u ∈ L2(0,T ;Rm), (13)

where m is the number of actuators. We assume that (S∗(t))
t≥0

is a strongly continuous semi-group generated by A∗ on

the state space L2(Ω). For v ∈ L2(Ω), one has

〈Hu,v〉 =
〈

∫ T

0
(T − s)α−1Kα (T − s)Bu(s)ds,v

〉

L2(Ω)

=

∫ T

0
〈(T − s)α−1Kα(T − s)Bu(s),v〉L2(Ω)ds

=

∫ T

0

〈

u(s),B∗(T − s)α−1K∗
α (T − s)v

〉

L2(0,T ;Rm)
ds

= 〈u,H∗v〉,

(14)
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where by 〈·, ·〉, we denote the duality pairing of space L2(Ω), B∗ is the adjoint operator of B, and

K
∗
α
(t) = α

∫ ∞

0
θφα (θ )S

∗(tα θ )dθ .

In order to prove our main results, the following lemmas are needed.

Lemma 1(See [42]). Let the reflection operator Q on the interval [0,T ] be defined as follows:

Qh(t) := h(T − t)

for function h that is differentiable and integrable. Then, the following relations hold:

Q0Iα
t h(t) = t I

α
T Qh(t), Q0Dα

t h(t) = tD
α
T Qh(t)

and

0Iα
t Qh(t) = Qt I

α
T h(t), 0Dα

t Qh(t) = QtD
α
T h(t).

Lemma 2(See, e.g., [43]). For t ∈ [a,b] and n− 1 < α < n, n ∈ N, the following integration by parts formula holds:

∫ b

a
f (t)C0 Dα

t g(t)dt =
k−1

∑
r=0

(−1)k−1−r
[

gr(t)tD
α−1−r
b f (t)

]t=b

t=a
+(−1)k

∫ b

a
g(t)tD

α
b f (t)dt.

In particular, if 0 < α < 1, then

∫ b

a
f (t)C0 Dα

t g(t)dt =
[

g(t)t I
1−α
b f (t)

]t=b

t=a
+

∫ b

a
g(t)tD

α
b f (t)dt.

We also recall the fractional Green’s formula:

Lemma 3(See, e.g., [39,44]). Let 0 < α ≤ 1 and t ∈ [0,T ]. Then,

∫ T

0

∫

Ω

(

C
0 Dα

t y(x, t)+A y(x, t)
)

ϕ(x, t)dxdt =

∫ T

0

∫

Ω
y(x, t)(tD

α
T ϕ(x, t)+A ∗ϕ(x, t))

+
∫ T

0

∫

∂Ω
y(x, t)t I

1−α
T ϕ(x, t)dΓ dt −

∫ T

0

∫

∂Ω
y(x, t)

∂ϕ(x, t)

∂νA
+

∫ T

0

∫

∂Ω

∂y(x, t)

∂νA
ϕ(x, t)dΓ dt

for any ϕ ∈C∞(Q).

3 Regional enlarged controllability

We extend the definition of controllability first introduced by Lions in [45] to the case of sub-diffusion fractional systems.
For that, we consider a nonempty sub-vectorial space G ⊂ L2(Ω), which is supposed to be closed and convex.

Definition 5.Given a final time T > 0, we say that system (1) is exactly enlarged controllable (i.e., G-controllable) if, for

every y
0

in a suitable functional space, there exists a control u such that

y(·,T ;u) ∈ G. (15)

Remark.Obviously, the notion of exact enlarged controllability depends on G.

Remark.If G = {0}, then we get the classical concept of exact controllability from Definition 5.

Remark.Exact controllability implies exact enlarged controllability (EEC) for every set G. The inverse is, however, untrue.

Theorem 1.System (1) is said to be exactly enlarged controllable if, and only if,

G−
{

Rα (T )y0

}

∩ ImH 6= /0. (16)
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Proof.Suppose that one has exact enlarged controllability (EEC) of (1) relatively to G, which means that yu(T ) ∈ G. Then,
yu(T ) = Rα (T )y0

+Hu and, denoting

w = yu(T )−Rα (T )y0
= Hu,

it follows that w ∈ ImH and w ∈ G−
{

Rα (T )y0

}

. Thus, (16) holds. Conversely, suppose (16) is true. Then, there exists

z∈G−
{

Rα (T )y0

}

such that z ∈ ImH. So, there exists u∈ L2(0,T ;Rm) such that z =Hu. Hence, z=Hu∈G
{

Rα (T )y0

}

,
Hu+Rα(T )y0

= yu(T ) ∈ G, and we have EEC relatively to G.

We recall that an actuator is defined by a couple (D, f ), where D is a nonempty closed part of Ω , which represents the
geometric support of the actuator, and f ∈ L2(D), which defines the spacial distribution of the action on the support D. In
the case of a pointwise actuator, D = {b} and f = δ (b−·), where δ is the Dirac mass concentrated in b. For more details
on actuators, we refer the interested reader to [46,47].

Definition 6.The actuator (D, f ) is said to be G-strategic if one has exact enlarged controllability relatively to G.

4 Extended RHUM approach

Now, we generalize the RHUM introduced by Lions in [48,49] to the fractional-order case. The aim is to find the control
steering system (1) from the initial state y

0
into the functional subspace G. Let us denote by G◦ the polar space of G.

Hence,
ϕ

0
∈ G◦ ⇐⇒ 〈ϕ

0
,φ〉= 0 ∀φ ∈ G,

where 〈·, ·〉 denotes the scalar product in L2(Ω). Let us also denote by A ∗ the adjoint operator of A and, for any ϕ
0
∈ G◦,

consider the following adjoint system:

{

tD
α
T Qϕ(t) =−A ∗Qϕ(t),

lim
t→T− t I

1−α
T Qϕ(t) = ϕ

0
∈ D(A ∗)⊆ L2(Ω). (17)

From Lemma 2, (17) can be rewritten as follows:

{

0Dα
t ϕ(t) =−A ∗ϕ(t),

lim
t→0+

0I1−α
t ϕ(t) = ϕ

0
∈ D(A ∗)⊆ L2(Ω), (18)

with solution given by ϕ(t) =−tα−1K∗
α (t)ϕ0

.

4.1 Excitation of the system with a zone actuator

We consider system (1) excited by a zone actuator Bu(t) = χ
D

f (x)u(t). Then, the system is written as follows:

{

C
0 Dα

t y(t) = A y(t)+ χ
D

f (x)u(t), t ∈ [0,T ],

y(0) = y
0
∈ D(A ).

(19)

Let wi(x) denote the eigenfunctions of operator A associated with the eigenvalues λi. For any ϕ
0
∈ G◦, we define the

following semi-norm on G◦:

‖ϕ
0
‖2

G◦ :=

∫ T

0
〈 f ,ϕ(t)〉2

L2(D)
dt. (20)

Theorem 2.The semi-norm (20) defines a norm on G◦ if 〈wi, f 〉
L2(D)

6= 0. In that case, we have exact enlarged

controllability relatively to G.

Proof.We consider the following problem:

{

C
0 Dα

t Ψ (t) = A Ψ(t)+ χ
D

f (x)u(t), t ∈ [0,T ],

Ψ(0) = y
0
∈ D(A ).

(21)

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


86 T. Karite et al.: Enlarged Controllability and Optimal Control ...

The solution Ψ : [0,T ]→ L2(Ω) of (21) is continuous. If we can find ϕ
0
∈ G◦ such that

Ψ(T ) ∈ G, (22)

then u = 〈 f ,ϕ(t)〉
L2(D)

is the control that ensures the exact enlarged controllability relatively to G and

y(u) =Ψ .

To explain (22), it is necessary to introduce the orthogonal projection P on the orthogonal of G, denoted by G⊥. Let us
define the affine operator M : G◦ → G⊥ such that

Mϕ
0
= P(Ψ(T )). (23)

Then, we need to solve equation
Mϕ

0
= 0. (24)

For that, we decompose M into two parts: a linear and a constant one. Let Ψ
0

be solution of

{

C
0 Dα

t Ψ
0
(t) = A Ψ

0
(t)+ χ

D
f (x)u(t), t ∈ [0,T ],

Ψ
0
(0) = 0,

(25)

and Ψ
1

solution of
{

C
0 Dα

t Ψ
1
(t) = A Ψ

1
(t), t ∈ [0,T ],

Ψ
1
(0) = y

0
∈ D(A ).

(26)

Then,
Mϕ

0
= P(Ψ

0
(T ))+P(Ψ

1
(T )), (27)

where we set M0ϕ
0
= P(Ψ

0
(T )) with M0 ∈ L (G◦,G⊥). From (24) and (27), we can solve

M0ϕ
0
=−P(Ψ

1
(T )). (28)

For that, we compute the scalar product
µ = 〈M0ϕ

0
,ϕ

0
〉, ϕ

0
∈ G◦, (29)

where 〈·, ·〉 is the dual pairing of G⊥ and G◦. By definition,

〈P(g̃), ḡ〉= 0, ∀ḡ ∈ G◦. (30)

Using (30), we have
µ = 〈Ψ

0
,ϕ

0
〉 (31)

for ḡ= ϕ
0
, g̃=Ψ

0
(T ). To compute the last expression (31), we multiply system (25) by ϕ , integrating over Q=Ω × [0,T ].

We obtain that

∫ T

0

∫

Ω

C
0 Dα

t Ψ
0
(t)ϕ(t)dxdt −

∫ T

0

∫

Ω
A Ψ

0
(t)ϕ(t)dxdt =

∫ T

0

∫

Ω
χ

D
f (x)u(t)ϕ(t)dxdt.

Using Lemma 3 (fractional Green’s formula), we have

−
∫ T

0

∫

Ω
A Ψ

0
(t)ϕ(t)dxdt =−

∫ T

0

∫

∂Ω

∂Ψ
0
(t)

∂νA
ϕ(t)dσdt

+

∫ T

0

∫

∂Ω
Ψ

0
(t)

∂ϕ(t)

∂νA
dσdt −

∫ T

0

∫

Ω
Ψ

0
A ∗ϕ(t)dxdt (32)

and
∫ T

0

∫

Ω

C
0 Dα

t Ψ
0
(t)ϕ(t)dxdt =

∫ T

0

∫

Ω
Ψ

0
(t)C0 Dα

t ϕ(t)dxdt +
∫

∂Ω
Ψ

0
(T ) lim

t→T
tI

1−α
T ϕ(T )dσ

−
∫

∂Ω
Ψ

0
(0) lim

t→T
t I

1−α
T ϕ(0)dσ .

(33)
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From (32) and (33), it follows that

〈M0ϕ
0
,ϕ

0
〉=

∫ T

0

(

〈 f (x),ϕ(t)〉
L2 (D)

)2

dt = ‖ϕ
0
‖2

G◦ .

Hence,

µ =

∫ T

0

(

〈 f (x),ϕ(t)〉
L2 (D)

)2

dt. (34)

The essential point now is that the previous formula (34) is a semi-norm on G◦. We prove that if 〈wi, f 〉
L2(D)

6= 0, then the

mapping (20) is a norm, which is equivalent to the norm of G◦. The mapping (20) is a norm on G◦:

‖ϕ
0
‖

G◦ = 0 ⇐⇒ 〈 f ,ϕ(t)〉2

L2(D)
= 0,

which is equivalent to

−
∞

∑
i=1

tα−1α

∫ ∞

0
θφα (θ )e

λi(t
α θ)dθ 〈 f ,wi〉〈ϕ0

,wi〉= 0. (35)

Thus, (35) gives

〈 f ,wi〉〈ϕ0
,wi〉= 0.

Using the assumption that 〈 f ,wi〉 6= 0, we deduce that 〈ϕ
0
,wi〉= 0. Therefore, ϕ

0
= 0, (20) defines a norm on G◦, and µ

is an isomorphism from G◦ to G⊥. Moreover, equation (28) admits a unique solution.

4.2 Excitation of the system with a pointwise actuator

Now, we consider system (1) excited by a pointwise actuator. In this case, the control is of type Bu(t) = δ (x− b)u(t),
where b ∈ Ω refers to the location of the actuator and u ∈U . Hence, system (1) is written as follows:

{

C
0 Dα

t y(t) = A y(t)+ δ (x− b)u(t), t ∈ [0,T ],

y(0) = y
0
∈ D(A ).

(36)

For ϕ
0
∈ G◦, we consider the adjoint system

{

tD
α
T Qϕ(t) =−A ∗Qϕ(t),

lim
t→T− t I

1−α
T Qϕ(t) = ϕ

0
∈ D(A ∗)⊆ L2(Ω), (37)

and the mapping

‖ϕ
0
‖2

G◦ :=

∫ T

0
ϕ2(b, t)dt, (38)

which defines a semi-norm on G◦. Let us consider system

{

C
0 Dα

t Φ(t) = A Φ(t)+ δ (x− b)u(t), t ∈ [0,T ],

Φ(0) = y
0
∈ D(A ),

(39)

and the operator M : G◦ → G⊥ defined by

Mϕ
0
= P(Φ(T )),

where we write M as

Mϕ
0
= P(Φ0(T )+Φ1(T ))

with Φ0 and Φ1 solutions of systems

{

C
0 Dα

t Φ
0
(t) = A Φ

0
(t)+ δ (x− b)u(t), t ∈ [0,T ],

Φ
0
(0) = 0,

(40)
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and
{

C
0 Dα

t Φ
1
(t) = A Φ

1
(t), t ∈ [0,T ],

Φ
1
(0) = y

0
∈ D(A ),

(41)

respectively. Let us set M0ϕ
0
= P(Φ

0
(T )) with M0 ∈ L (G◦,G⊥). Then, all reduces to solve

M0ϕ
0
=−P(Φ

1
(T )). (42)

Similar arguments as the ones used in Section 4.1 allow us to prove the following result:

Theorem 3.If wi(b) 6= 0, then the mapping (38) defines a norm on G◦ and one has exact enlarged controllability (EEC)

relatively to G. Moreover, the control

u = ϕ(b, t)

ensures the EEC into G.

5 Fractional optimal control

In this section, we are concerned with the following optimization problem:

{

infJ (u),

u ∈Uad,
(43)

where

J (u) =
1

2

∫ T

0
‖u‖2

U
dt

and the feasible set Uad = {u ∈U | yu(T ) ∈ G} is assumed to be non-empty.

Theorem 4.Assume that one has exact enlarged controllability relatively to G. Then, the optimal control problem (43) has

a unique solution given by u∗(t) = 〈 f ,ϕ(t)〉 in case of a zone actuator, and u∗(t) = ϕ(b, t) in case of a pointwise actuator.

Such control ensures the transfer of system (1) into G with a minimum energy cost, in the sense of J .

Proof.Suppose that we have exact enlarged controllability relatively to G. Then, we set ε > 0 and we consider the following
problem:

Jε(u,z) =
1

2

∫ T

0
u2(t)dt +

1

2ε

∫

Q

(

C
0 Dα

t z(t)−A z(t)− χ
D

f (x)u(t)
)2

dQ, (44)

where










C
0 Dα

t z(t)−A z(t)− χ
D

f (x)u(t) ∈ L2(Q),

z(0) = z0 ∈ D(A ),

zu(T ) ∈ G.

(45)

The set of pairs (u,z) that verify (45), denoted by W , is nonempty, and we consider problem

{

infJε(u,z),

(u,z) ∈W.
(46)

Let {uε ,zε} be solution of (46). Then,

0 < Jε(uε ,zε ) = infJε (u,z)< infJε (u)< ∞, u ∈Uad, (47)

where Jε (u) =
1

2

∫ T

0
u2(t)dt. Tending ε to 0, we conclude that

{

‖uε‖ ≤C,

‖C
0 Dα

t z(x, t)−A z(x, t)− χ
D

f (x)u(t)‖ ≤C
√

ε,
(48)
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where C represents different positive constants independent of ε . It follows from (48) that

‖C
0 Dα

t z(x, t)−A z(x, t)‖ ≤C(1+
√

ε).

Hence, when ε → 0, we have that uε is bounded and we can extract a sequence such that

uε ⇀ ũ weakly in U,
zε ⇀ z weakly in L2(Q).

By the semi-continuity of J , one has

J (u∗)≤ liminfJε (uε)≤ liminfJε(uε ,zε ).

Therefore,
J (u∗) = infJ (u), u ∈Uad ,

and
u∗ = ũ.

Define

pε =−1

ε

(

C
0 Dα

t zε (x, t)−A zε (x, t)− χ
D

f (x)uε (t)
)

.

The Euler equation relatively to problem (46) is given by

∫ T

0
uε(t)u(t)dt −

∫ T

0
〈pε ,

C
0 Dα

t η(t)−A η(t)〉dt =

∫ T

0
〈pε , f 〉u(t)dt

with u ∈Uad and η such that










C
0 Dα

t η(t)−A η(t) = χ
D

f (x)u(t) in Q,

η(0) = 0 on Ω ,

η(T ) ∈ G.

We deduce that pε satisfies
{

C
0 Dα

t pε(t)−A pε(t) = χ
D

f (x)〈pε , f 〉
L2(D)

in Q,

pε(0) = 0 on Ω ,

and 〈η(T ), pε(T )〉= 0 for all η with η(T ) ∈ G. Then, pε ∈ G◦. If we suppose that

∫ T

0
〈pε , f 〉2

dt ≥C‖pε(T )‖
2

H1
0 (Ω)

,

then we can switch to the limit when ε tends to 0. Moreover, because we have exact enlarge controllability relatively to
G, we obtain the following optimality problem:



























C
0 Dα

t z(t)−A z(t) = χ
D

f (x)u(t) in Q,

z(0) = z
0
(x) on Ω ,

C
0 Dα

t p(t)−A p(t) = χ
D

f (x)〈p, f 〉
L2 (D)

in Q,

p(0) = 0 on Ω ,

p(T ) ∈ G◦.

Thus, we take p(T ) ∈ G◦ and we introduce the solution ϕ of (18). Then, ψ = z if ψ(T ) ∈ G, which proves that (28) has a
unique solution for ϕ

0
∈ G◦.
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6 Examples

Two examples illustrate the obtained results as follows:

6.1 Example 1: case of a zonal actuator

Let us consider the following time fractional differential equation with a zonal actuator: Bu(t) = χ
[a,b]

u(t), 0 ≤ a ≤ b ≤ 1,











C
0 D0.4

t z(t) = ∆z(t)+ χ
[a,b]

u(t) [0,1]× [0,T ],

z(x,0) = z
0
(x) [0,1],

z(0, t) = z(1, t) = 0 [0,T ].

(49)

Here, the state space is L2(0,1). Since the operator A = ∆ =
∂ 2·
∂x2

generates a compact, analytic, self-adjoint

C
0
-semigroup, we have A = ∆ =

∂ 2·
∂x2

and

S(t)z(x) =
+∞

∑
i=1

eλit(z,wi)L2(0,1)wi(x),

where λi =−i2π2 and wi(x) =
√

2sin(iπx). Moreover,

K
0.4(t)z(x) = 0.4

∫ ∞

0
θφ

0.4(θ )S(t
0.4θ )zdθ

= 0.4

∫ ∞

0
θφ

0.4
(θ )

∞

∑
i=1

eλit
0.4θ (z,wi)L2(0,1)wi(x)dθ

= 0.4
∞

∑
i=1

(z,wi)L2(0,1)wi(x)

∫ ∞

0
θφ

0.4
(θ )eλit

0.4θ dθ .

It follows from (12) and Taylor’s expansion of the exponential that

K
0.4
(t)z(x) = 0.4

∞

∑
i=1

(z,wi)L2(0,1)wi(x)
∞

∑
j=0

∫ ∞

0

(

λit
0.4
) j

j!
θ j+1φ

0.4
(θ )dθ

=
∞

∑
i=1

(z,wi)L2(0,1)wi(x)
∞

∑
j=0

0.4( j+ 1)
(

λit
0.4
) j

Γ (1+ 0.4 j+ 0.4)

=
∞

∑
i=1

E
0.4,0.4

(λit
0.4)(z,wi)L2(0,1)wi(x),

where Ep,q(z) := ∑
i=0

zi

Γ (pi+ q)
, Re(p) > 0, q,z ∈ C, is the generalized Mittag–Leffler function (see [50]). Similarly, we

have:

R
0.4
(t)z(x) =

∫ ∞

0
φ

0.4
(θ )S(t0.4θ )zdθ

=
∞

∑
i=0

(z,w
i
)L2(0,1)E0.4,1

(λit
0.4)w

i
(x).

Since operator ∆ generates a compact, analytic, self-adjoint and continuous semigroup, it follows that

(H∗z) (t) = B∗(T − t)−0.6K∗
0.4
(T − t)z(t)

= B∗(T − t)−0.6
∞

∑
i=1

E
0.4,0.4

(

λi(T − t)0.4
)

(z,w
i
)L2(0,1)wI

(x)

= (T − t)−0.6
∞

∑
i=1

E
0.4,0.4

(

λi(T − t)0.4
)

(z,w
i
)L2(0,1)

∫ b

a
w

i
(x)dx.

= (T − t)−0.6
∞

∑
i=1

E
0.4,0.4

(

λi(T − t)0.4
)

(z,w
i
)L2(0,1)

√
2

iπ
[cos(iπx)]ba

= (T − t)−0.6
∞

∑
i=1

E
0.4,0.4

(

λi(T − t)0.4
)

(z,w
i
)L2(0,1)

√
2

iπ
sin

iπ(a+ b)

2
sin

iπ(a− b)

2
.
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Moreover, by Theorem 2, we get that if system (49) is enlarged controllable, then

ϕ
0
→‖ϕ

0
‖(L2(0,1))∗ =

∞

∑
i=1

t−0.60.4

∫ ∞

0
θφ

0.4
(θ )eλi(t

0.4θ)dθ 〈 f ,wi〉〈ϕ0
,wi〉

= t−0.6K0.4(t)〈ϕ0
,w

i
〉

= t−0.6
∞

∑
i=1

E
0.4,0.4(λit

0.4)(z,wi)L2(0,1)wi(x)〈ϕ0
,w

i
〉

defines a norm on (L2(0,1))∗. We find that the control given by

u∗(t) = t−0.6
+∞

∑
i=0

E
0.4,0.4

(λit
0.4)(z,wi)L2(0,1)〈ϕ0

,w
i
〉

steers system (49) to L2(0,1) at time T .

6.2 Example 2: case of a pointwise actuator

We now consider the following system with a pointwise control Bu(t) = u(t)δ (x− b), 0 < b < 1:










C
0 D0.4

t z(t) = ∆z(t)+ u(t)δ (x− b) [0,1]× [0,T ],

z(x,0) = z
0
(x) = 0 [0,1],

z(0, t) = z(1, t) = 0 [0,T ].

(50)

Let the position of the actuator be b = 1/3. Similar to the first example, we have:

λi =−i2π2, wi(x) =
√

2sin(iπx), x ∈ [0,1],

S(t)z(x) =
+∞

∑
i=1

eλit (z,wi)
L2(0,1)

wi(x),

and K
0.4(t)z(x) =

+∞

∑
i=1

E
0.4,0.4(λit

0.4)(z,wi)
L2(0,1)

wi(x).

Moreover, by Theorem 3, we get that if system (50) is enlarged controllable, then

ϕ
0
→ ‖ϕ

0
‖(L2(0,1))∗ =

∫ T

0

∥

∥

∥
(T − s)−0.6K∗

0.4(T − s)ϕ
0
(b)

∥

∥

∥

2

ds

=

∫ T

0

∥

∥

∥

∥

∥

(T − s)−0.6
+∞

∑
i=0

E
0.4,0.4

(λi(T − s)0.4)(z,wi)L2(0,1)ϕ0
(b)

∥

∥

∥

∥

∥

2

ds

defines a norm on (L2(0,1))∗. We also have that Mϕ
0
= P(ϕ

1
(T )) is an affine operator from (L2(0,1))∗ to (L2(0,1)),

where ϕ
1
(T ) is the solution of system











C
0 D0.4

t ϕ
1
(t) = ∆ϕ

1
(t)+ (T − t)−0.6K∗

0.4
(T − t)ϕ

0
(b),

ϕ
1
(0) = 0,

ϕ
1
(0, t) = ϕ

1
(1, t) = 0.

(51)

Then, by Theorem 4, we find that the control given by

u∗(t) = (T − t)−0.6
+∞

∑
i=0

E
0.4,0.4

(λi(T − s)0.4)(z,wi)L2(0,1)ϕ0
(b)

steers system (50) to L2(0,1) at time T , where ϕ
0

is the solution of

M0ϕ
0
=−P(Φ

1
(T )) (52)

and Φ
1
(t) solves











C
0 D0.4

t Φ
1
(t) = ∆Φ

1
(t), t ∈ [0,T ],

Φ
1
(0) = z

0
(x) = 0 ∈ D(A ),

Φ
1
(0, t) = Φ

1
(1, t) = 0.

Moreover, u∗ is the solution of the minimum problem (43).
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7 Conclusion

The present paper addressed fractional diffusion equations in the sense of Caputo. We investigated exact enlarged
controllability for such control systems using an extended Reverse Hilbert Uniqueness Method (RHUM) and a
penalization technique covering both zone and pointwise actuators. The optimal control of a minimum energy problem
has been explicitly characterized. The two methods complete each other: using the RHUM approach, we computed the
control steering the system for both cases of zone and pointwise actuators; and using the penalization method, we proved
that such control is unique. We claim that our techniques and results can be adapted to cover boundary conditions of
Dirichlet, Neumann or mixed type, and to deal with other classes of controls (e.g., distributed controls). The present
results can be extended to more recent notions of derivatives, e.g., to Atangana–Baleanu operators [51,52]. Another
research will conduct numerical experiments illustrating theoretical results.
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