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Abstract: The present article, studied about the Bayes risks of the unknown parameters of the generalized Inverted Exponential
distribution. The Optimum Step-Stress Partially Accelerated Life Test (SS-PALT) has been used under the different censoring patterns.
A comparison between Bayes risks of two different asymmetric loss functions has presented. Numerical illustration hasalso been
carried out by the help of the real and simulated data set.
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1 Introduction

Due to simple mathematical usage and interesting properties, the Exponential distribution is widely used model in
life-testing experiments. The inverted Exponential distribution was first introduced by [15]. They study the properties of
the maximum likelihood estimation, confidence limits, uniformly minimum variance unbiased estimator and reliability
function for complete sample case. Prakash [20] revisited the Inverted exponential distribution in the Bayesian view
point. The properties of the Bayes estimates of the reliability parameters under different loss functions and the Bayes
predictive interval and shift point estimation also included by Prakash [20].

Gupta & Kundu [8], generalized the Exponential distribution by appending the shape parameter, and named the
distribution as the generalized Exponential distribution. Generalized Inverted Exponential distribution was first
introduced by [3]. This distribution originated from the exponentiated Frechet distribution ([16]).

The generalized Inverted Exponential distribution on a convenient structure of the distribution function, provides many
practical applicabilities, including, in horse racing, queue theory, modeling wind speeds. [18] has explored the statistical
properties of the Generalized Inverted Generalized Exponential distribution and its parameters were estimated at both
censored and uncensored cases using the method of maximum likelihood estimation (MLE). [6] presents some
estimation and prediction of unknown parameters based on progressively censored generalized Inverted Exponential
data.

The probability density and cumulative density function ofgeneralized Inverted exponential distribution with shape
parameterβ and scale parameterα, are given respectively as

f (x;β ,α) =
β α
x2 exp

(

−
α
x

)(

1− exp
(

−
α
x

))β−1
; β > 0,α > 0,x > 0 (1)

and

F (x;β ,α) = 1−
(

1− exp
(

−
α
x

))β
; β > 0,α > 0,x > 0. (2)
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The article has the main objective to present a comparative analysis for the Bayes estimators based on different censoring
patterns, those are the special cases of the FFPC. For this the generalized Inverted Exponential distribution has designated
as the underlying model with Optimum Step-Stress PartiallyAccelerated Life Test situation. The Bayes estimators for the
unknown parameters have obtained under two different asymmetric loss functions and compared their Bayes risks on a
simulated and real data set.

2 SS-PALT under FFPC

In life testing product experiments, it is much difficult to gather lifetimes of extremely reliable products, having a very
long lifespan. Because, under the normal operating conditions, a very few or even no failures may occur within a limited
testing time interval. The partially accelerated life testcriterion is very useful test criterion in such cases and, are
provided significant reduction in the time and cost of the experiment.

In partially accelerated life test (PALT) criterion, only afew test units from all the test units are kept under severe stress
condition ([2]). There are two different methods of stress loading onto PALT, named as constant-stress and step-stress. In
the present article, the step-stress PALT is considered, and is permitting the test to be changed from the normal use
condition to the accelerated condition at a pre-assumed time.

It is also serious to find the changing times when the test to bechanged from normal stress condition to severe test
condition. [27] and [28], have suggested the optimum change time in their study on step-stress partially accelerated life
tests of the censored data. In the present article, we also have to determine the optimal stress change time, which
minimizes the generalized asymptotic variance of the ML estimates of the parameters.

The Partially accelerated life tests of step-stress schemehas studied by several authors, a little few of them are [5], [1],
[12], [11], [10], [13], [26], [9] and [22]. In SS-PALT, all the test units are run first at normal condition on given stress
change time and if they do not fail, then the test is changed from the accelerated condition and retained the test until all
the units fail. The tampered random variable model under SS-PALT for the lifetime of a unitY is defined for stress
change time (= ε) and the acceleration factor (= λ ) as

X =







Y ; 0< Y ≤ ε

ε + Y−ε
λ ; Y > ε

. (3)

Using Eq. (1) in Eq. (3), we get

f
(

xR
i ;β ,α

)

=















f1 (x) =
β α
x2 e−

α
x

(

1− e−
α
x

)β−1

f2 (x) =
β αλ
X̃2 e−

α
X̃

(

1− e−
α
X̃

)β−1
(4)

whereX̃ = ε +λ (x− ε).

In the first-failure life test procedures, the researcher divided all the test units into a number of groups and run all the
units simultaneously by first-failure occurred in each group. This procedure now combines with the Progressive
censoring scheme and named as first-failure progressive (FFP) censoring, with the advantages in term of reducing test
time, in which more items are used but only a few items are failed. See [23] for more details on the FFP censoring.

The joint probability density function under FFP censoringis defined, when the total test units divided intok independent
groups, each haven units within each group, all are putting on a life test. IfxR

1 < xR
2 < ... < xR

m are the progressively
first-failure censored order statistic of sizem, with pre assumed progressive censoring schemeR = (R1,R2, ...,Rm) , then

L ∝
m

∏
i=1

f
(

xR
i ,β ,α

) (

1−F
(

xR
i ,β ,α

))k(Ri+1)−1
. (5)
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In the present article the FFP censoring technique has combined with the SS-PALT, therefore, the Eq. (5) is now re-written
as

L ∝
m1

∏
i=1

f1 (x) (1−F1(x))
k(Ri+1)−1×

m

∏
i=m1+1

f2 (x) (1−F2(x))
k(Ri+1)−1 (6)

Here,m1 test units are kept on normal test conditions whereas remaining are on severe stress condition. Using Eq. (4) in
Eq. (6), the required joint density function based on FFPC on SS-PALT is given as

L ∝
m1

∏
i=1

{

β α
x2

i

e
− α

xi

(

1− e
− α

xi

)β k(Ri+1)−1
}

×
m

∏
i=m1+1

{

β αλ
X̃2

i

e
− α

X̃i

(

1− e
− α

X̃i

)β k(Ri+1)−1
}

⇒ L ∝ β m αm λ m−m1 T0 (x,λ )× e−α(T1(x))+T2(x,λ ) eT3(x,β ,α)+T4(x,λ ,β ,α); (7)

where T0 (x,λ ) = ∏m
i=m1+1

(

X̃i
−2
)

, T1(x) = ∑m1
i=1

(

x−1
i

)

, T2 (x,λ ) = ∑m
i=mi+1

(

X̃−1
i

)

, T3 (x,β ,α) = ∑m1
i=1

(β k (Ri +1)−1) log
(

1− exp
(

−α
xi

))

, T4 (x,λ ,β ,α) = ∑m
i=mi+1 (β k (Ri +1)−1) log

(

1− exp
(

− α
X̃i

))

and

X̃i = ε +λ (xi− ε) .

3 Bayes Estimation

The present section has studied about the Bayes estimators and their Bayes risks under two different asymmetric loss
functions by using the FFP censoring in SS-PALT. It may be noted that, no joint conjugate prior exists, if both parameters
α andβ are considered to be unknown. In such condition, the piecewise independent priors is assumed. The Gamma prior
have been selected for these parameters and given as

πα ∝ αa−1 e−α ; a > 0 (8)

and
πβ ∝ β b−1 e−β ; b > 0. (9)

A vague prior do not play any significant role in the analyses,hence for the acceleration factorλ , the vague prior is
assumed and defined as

πλ ∝ λ−1 ; λ > 0. (10)

Hence, the marginal posterior densities corresponding to the parametersα, β andλ are obtained and given respectively
as

π∗α = Ω
αm+a−1

eα(T1(x)+1)

∫

β
β m+b−1 eT3(x,β ,α)−β ×

∫

λ
λ m−m1−1T0 (x,λ ) eT4(x,λ ,β ,α)−αT2(x,λ ) dλ dβ (11)

π∗β = Ω
β m+b+1

eβ

∫

α
αm+a−1 e−α(T1(x)+1)eT3(x,β ,α)×

∫

λ
λ m−m1−1T0 (x,λ )

eT4(x,λ ,β ,α)

eαT2(x,λ )
dλ dα (12)

and

π∗λ = Ω
T0 (x,λ )
λ m1−m+1

∫

α
αm+a−1e−α(T1(x)+T2(x,λ )+1)×

∫

β
β m+b−1 eT3(x,β ,α)+T4(x,λ ,β ,α)−β dβ dα (13)

whereΩ =
{

∫

α
αm+a−1

eα(T1(x)+1)

∫

β β m+b−1 eT3(x,β ,α)−β ×
∫

λ
T0(x,λ )

λ m1−m+1 eT4(x,λ ,β ,α)−αT2(x,λ )dλ dβ dα
}−1

.

The most of the Bayesian inference procedures have been developed with the usual symmetric loss function named as
squared error loss function. The squared error loss is symmetrical and associates equal importance to the losses due to
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overestimation and underestimation. [24] discussed about the unfeasible of the squared error loss inmost of the
situations of practical importance. Hence, due to practical importance of the underlying distribution, we are going with
two different asymmetric loss functions.

Following, Prakash [21], a useful and flexible class of asymmetric loss function, named as invariant LINEX loss function
(ILLF), and defined for any estimatêθ as

LI (∂ ) = ec ∂ − c ∂ −1 ; ∂ = Φ

(

=
θ̂
θ

)

−1 ; c 6= 0. (14)

In ILLF, parameterc is termed as the shape parameter. The negative value ofc, gives more weight to overestimation and
vice versa, whereas its magnitude reflects the degree of asymmetry. The function is quite asymmetric with
overestimation being more costly than underestimation forc = 1, and for small values of|c|, the ILLF is almost
symmetric and is not far from the squared error loss function. The Bayes estimators corresponding to the parameters
α,β andλ under the ILLF are obtained by solving following equality for each parameters respectively

∫

Θ

{

1
Θ

exp

(

−c
Θ̂L

Θ

)}

π∗Θ dΘ = ec
∫

Θ

1
Θ

π∗Θ dΘ ; Θ = α,β ,λ (15)

The invariant LINEX loss function rises approximately exponentially on one side of zero and approximately linearly on
other side. A suitable alternative of ILLF, named as generalEntropy loss function (GELF) was discussed by [25] and, is
defined for any estimatêθ as

LE (Φ) = (Φ)d− d log(Φ)−1 ; d 6= 0. (16)

Here, the parameterd is called as the shape parameter of GELF ([19]). The positive error
(

θ̂ > θ
)

causes more serious
consequences than a negative error and vice versa. Further,the positive magnitude of shape parameter causes more
serious penalties than a negative one.

Now, the Bayes estimators corresponding to the parametersα,β and λ under the GELF are obtained by solving
following equality for each parameters respectively

Θ̂E =

{

∫

Θ
Θ−d π∗Θ dΘ

}− 1
d

; Θ = α,β ,λ . (17)

It is clear from above that, no close forms of the Bayes estimators and their corresponding Bayes risks occurred. For the
numerical findings, some numerical technique is applied here.

4 Optimum Stress Change Time

One of the major issue in Step-Stress PALT is that, when the experimental items will be put on from normal stress
condition to the severe stress condition. For this, the stress change timeε is optimized, based on the determinant of the
Fisher’s information matrix. Maximizing the determinant is equivalent to minimizing the generalized asymptotic variance
of the maximum likelihood estimation of the model parameters α,β and the acceleration factorλ . For obtaining the
optimum stress change timeε, the logarithm of Eq. (7) is given as

LogL = m logβ +m logα +(m−m1) logλ + log T0(x,λ )−α (T1(x)+T2(x,λ )) (18)

+T3(x,β ,α)+T4(x,λ ,β ,α) .

Differentiating Eq. (18) with respect to the parametersα,β and the acceleration factorλ respectively, we get

∂
∂α

LogL =
m
α
−T1(x)−T2(x,λ )+

m1

∑
i=1







(β k (Ri +1)−1) exp
(

−α
xi

)

xi

(

1− exp
(

−α
xi

))







+
m

∑
i=m1+1







(β k (Ri +1)−1) exp
(

− α
X̃i

)

X̃i

(

1− exp
(

− α
X̃i

))







,
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∂
∂β

LogL =
m
β
+

m1

∑
i=1

(k (Ri +1)−1)× log

(

1− exp

(

−
α
xi

))

+
m

∑
i=m1+1

(k (Ri +1)−1)× log

(

1− exp

(

−
α
X̃i

))

and

∂
∂λ

LogL =
m−m1

λ
+

m

∑
i=m1+1







xi− ε
X̃i





(

α
X̃i

)



1+
β k (Ri +1)−1

1− exp
(

α
X̃i

)



−2











.

Similarly, the second derivatives corresponding to the parametersα,β andλ are obtained respectively as

∂ 2

∂α2 LogL =−
m
α2 −

m1

∑
i=1











β k (Ri +1)−1
(

1− exp
(

−α
xi

))2 ×
exp
(

−α
xi

)

x2
i











−
m

∑
i=m1+1











(β k (Ri +1)−1)exp
(

− α
X̃i

)

X̃2
i

(

1− exp
(

− α
X̃i

))2











,

∂ 2

∂β 2 LogL =−
m
β 2 ,

∂ 2

∂λ 2 LogL =−
m−m1

λ 2 +2
m

∑
i=m1+1

(

xi− ε
X̃i

)(

1−
α
X̃i

)

+
m

∑
i=m1+1

α (xi− ε)2

X̃3
i

×





β k (Ri +1)−1

1− exp
(

− α
X̃i

)





×







α

1− exp
(

− α
X̃i

) +
α
X̃i
−2







,

∂ 2

∂α ∂β
LogL =

∂ 2

∂β ∂α
LogL =

m1

∑
i=1







(k (Ri +1)−1)exp
(

−α
xi

)

(

1− exp
(

−α
xi

))

xi







+
m

∑
i=m1+1







(k (Ri +1)−1)exp
(

− α
X̃i

)

(

1− exp
(

− α
X̃i

))

X̃i







,

∂ 2

∂α ∂λ
LogL =

∂ 2

∂λ ∂α
LogL =

m

∑
i=m1+1

xi− ε
X̃2

i











1− (β k (Ri +1)−1)×

(

X̃i−α
)

exp
(

α
X̃i

)

− X̃i

X̃i

(
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(

α
X̃i

)

−1
)2











and

∂ 2

∂β ∂λ
LogL =

∂ 2

∂λ ∂β
LogL =

m

∑
i=m1+1







xi− ε
X̃i





α
X̃i



1+
k (Ri +1)−1

1− exp
(

α
X̃i

)



−2











.

The asymptotic variance and co-variance of the parameters under the maximum likelihood estimation are obtained from
the inverse of the Fisher information matrix and it is definedas

I =















− ∂ 2

∂α2 logL − ∂ 2

∂α∂β logL − ∂ 2

∂α∂λ logL

− ∂ 2

∂β ∂α logL − ∂ 2

∂β 2 logL − ∂ 2

∂β ∂λ logL

− ∂ 2

∂λ ∂α logL − ∂ 2

∂λ ∂β logL − ∂ 2

∂λ 2 logL















−1

(α̂Ml ,β̂Ml ,λ̂Ml)

(19)

A nice close mathematical expressions are further not possible to obtain, however, a numerical method has applied here
again for the numerical findings. Following [4], the optimal stress change timeε is the value, which minimizes asymptotic
variance of maximum likelihood estimate. The asymptotic variances of these parameters are calculated from the diagonal
elements of the inverse of the Fisher information matrix given in Eq. (19), by using Wolfram Mathematica software 10.0.
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Table 1: Special Cases of PFF Censoring Scheme

Case k m Ri;1,2, ...,m Different Censoring Plans
1 5 10 121011013 1 First-Failure Progressive Type-II Censoring (FFPC)
2 1 10 110011014 1 Progressive Type-II Censoring (PC)
3 5 10 000000000 0 First-Failure Censoring (FFC)
4 1 10 000000000 20 Type-II Censoring (T-II)
5 1 10 000000000 0 Complete Sample (CS)
1 5 15 110032104 1 00 1 4 0 First-Failure Progressive Type-II Censoring (FFPC)
2 1 15 020110024 1 01 3 1 0 Progressive Type-II Censoring (PS)
3 5 15 000000000 0 00 0 0 0 First-Failure Censoring (FFC)
4 1 15 000000000 0 00 0 0 15 Type-II Censoring (T-II)
5 1 15 000000000 0 00 0 0 0 Complete Sample (CS)

5 Numerical Illustration Based On Simulated Data

A Monte Carlo simulation technique was used for generating 10,000 FFP censored samples for each simulation, for the
analysis of the proposed methods. The samples were simulated for n = 30,m = 10,15 and hyper-parametric values
a = (0.25,0.75,1.25,2.00,5.00) = b with different values ofk given in Table (1). All the special cases of FFPC have
considered in this section for the analysis.

The values of the parameters under consideration were assumed here as(α,β ) = (2.01,0.39),(3.50,3.67), (5.02,6.98).
The selection of these values meets the criterion that the variance should be unity.

Tables (2) - (4), presents the Bayes risks for the parametersα,β and λ respectively. The assumed value for the
acceleration factor and shape parameter of ILLF areλ (= 0.25(0.25)5.00) andc = ∓0.25,∓0.50,∓1.00 respectively.
Based on the numerical findings, it is observed that the Bayesrisk increases first asλ increases and reaches maximum at
λ = 1.25 and then decrease, however the magnitude is nominal for all the parameters under consideration. Hence, the
numerical findings are presented here only forλ (= 0.25,1.25,5.00).

It is further noted that, the minimum Bayes risks were found for the FFP censoring scheme over the other one, whereas
the complete sample case shows maximum Bayes risks. The second minimum Bayes risks were observed for the
Progressive censoring scheme. It is also observed that, as the censored sample size getting wider, the Bayes risks goes to
closer. An increasing trend in the Bayes risks also seen whenthe parameter(α,β ) increases. For the assumed values of
the shape parameter of ILLF, the Bayes risks were noted minimum for c = 0.50 and maximum forc =−1.00.

Tables (5) - (7), presents the Bayes risk under GELF for shape parametric valuesd = ∓0.50,∓1.00. All the properties
has seen similar as discussed above for the various selectedparametric values. It is also noted that, the Bayes risk
minimizes ford = 1.00 and maximizes ford =−1.00.

6 Numerical Illustration under the Real Data

To demonstrate the use of the methodology introduced in the present study, a dataset from [17] is explored. Nelson [17]
reports an accelerated life test of 76 times (in minutes) to breakdowns of an insulating fluid at voltage stress. Here, the
stress is defined as the natural logarithm of the ratio of voltage to insulation thickness. The validity of the model is
checked by computing the Kolmogorov - Smirnov (K - S) distance test between the empirical distribution function and
the fitted distribution function when the parameters are obtained by the method of maximum likelihood estimation. The
resultant ML estimates of the parameters are obtained asα̂Ml = 2.3424 andβ̂Ml = 1.03.1344 with the K - S distance test
valueD = 0.0674 andp = 0.442. This result shows that the generalized inverted Exponential model provides a good fit
to the data set.

From the considered real data set of 76 observations, 30 observations have used for the numerical illustration and
presents here in Table (8) - (9) for ILLF and GELF respectively. All the properties have seen similar as discussed above,
however, the magnitude of the Bayes risk getting smaller as compared to the simulated data set.
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Table 2: Bayes Risk for Parameterα under ILLF

c = 0.50 c =−1.00
m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05

(α,β )→ λ ↓ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,
0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98

0.25 0.653 0.669 0.678 0.582 0.604 0.606 0.701 0.724 0.731 0.625 0.645 0.648
FFPC 1.25 0.743 0.762 0.768 0.658 0.692 0.697 0.762 0.773 0.780 0.667 0.701 0.698

5.00 0.675 0.692 0.741 0.598 0.615 0.625 0.728 0.756 0.773 0.638 0.671 0.682
0.25 0.737 0.759 0.766 0.657 0.662 0.684 0.744 0.761 0.773 0.663 0.686 0.691

PC 1.25 0.813 0.838 0.841 0.717 0.760 0.761 0.852 0.873 0.880 0.755 0.793 0.799
5.00 0.745 0.769 0.821 0.661 0.683 0.710 0.772 0.791 0.847 0.685 0.703 0.714
0.25 0.817 0.835 0.848 0.728 0.753 0.757 0.827 0.873 0.876 0.737 0.771 0.776

FFC 1.25 0.918 0.941 0.948 0.814 0.824 0.836 0.927 0.947 0.951 0.819 0.837 0.846
5.00 0.841 0.861 0.922 0.746 0.765 0.778 0.865 0.914 0.935 0.767 0.815 0.815
0.25 0.787 0.813 0.819 0.701 0.723 0.741 0.809 0.832 0.840 0.721 0.743 0.750

T-II 1.25 0.878 0.904 0.908 0.775 0.821 0.822 0.904 0.934 0.935 0.801 0.819 0.849
5.00 0.812 0.838 0.893 0.719 0.744 0.752 0.818 0.846 0.899 0.725 0.752 0.758
0.25 0.843 0.877 0.881 0.752 0.772 0.781 0.836 0.877 0.885 0.744 0.773 0.783

CS 1.25 0.932 0.951 0.953 0.792 0.849 0.855 0.969 0.983 0.992 0.828 0.872 0.884
5.00 0.885 0.924 0.941 0.775 0.821 0.847 0.895 0.938 0.944 0.794 0.838 0.843

Table 3: Bayes Risk for Parameterβ under ILLF

c = 0.50 c =−1.00
m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05

(α,β )→ λ ↓ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,
0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98

0.25 0.732 0.749 0.759 0.653 0.677 0.679 0.784 0.809 0.817 0.701 0.722 0.726
FFPC 1.25 0.794 0.815 0.821 0.701 0.738 0.743 0.815 0.827 0.834 0.710 0.736 0.745

5.00 0.732 0.752 0.805 0.648 0.666 0.677 0.791 0.821 0.840 0.691 0.727 0.740
0.25 0.824 0.848 0.855 0.736 0.742 0.766 0.831 0.851 0.863 0.742 0.768 0.771

PC 1.25 0.870 0.899 0.901 0.766 0.813 0.814 0.914 0.937 0.944 0.807 0.849 0.855
5.00 0.809 0.836 0.892 0.715 0.741 0.771 0.839 0.861 0.922 0.743 0.763 0.776
0.25 0.912 0.932 0.946 0.814 0.841 0.846 0.922 0.973 0.976 0.824 0.861 0.866

FFC 1.25 0.987 1.011 1.021 0.872 0.883 0.896 0.997 1.018 1.023 0.878 0.898 0.907
5.00 0.914 0.937 1.005 0.811 0.831 0.846 0.942 0.995 1.018 0.833 0.887 0.887
0.25 0.879 0.908 0.913 0.784 0.809 0.827 0.902 0.928 0.937 0.806 0.830 0.838

T-II 1.25 0.942 0.972 0.975 0.830 0.879 0.881 0.971 1.004 1.005 0.857 0.878 0.910
5.00 0.883 0.911 0.973 0.781 0.808 0.817 0.890 0.921 0.979 0.788 0.818 0.824
0.25 0.941 0.978 0.982 0.840 0.862 0.871 0.932 0.978 0.987 0.832 0.863 0.874

CS 1.25 1.002 1.022 1.026 0.848 0.911 0.917 1.043 1.058 1.068 0.887 0.936 0.949
5.00 0.964 1.007 1.025 0.843 0.893 0.922 0.974 1.022 1.028 0.863 0.911 0.917

7 Conclusion

In the article we studied about some Bayes risks of the unknown parameters of generalized Inverted Exponential
distribution. The optimum Step-Stress Partially Accelerated Life Test (SS-PALT) has been adopted with different
censoring patterns. A comparison between Bayes risks have discussed under two different asymmetric loss functions
with the help of real and simulated data set. Based on selected parametric values, it has been observed from the tables
that, the minimum Bayes risks were found for the FFP censoring. Whereas the complete sample case shows maximum
Bayes risks. Similar deeds also has been seen in real data set. The data set was discussed by [17] and used hereafter
validity of the model by computing the Kolmogorov-Smirnov (K-S) distance test.
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Table 4: Bayes Risk for Parameterλ under ILLF

c = 0.50 c =−1.00
m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05

(α,β )→ λ ↓ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,
0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98

0.25 0.898 0.919 0.931 0.803 0.831 0.834 0.960 0.992 1.001 0.860 0.886 0.890
FFPC 1.25 0.937 0.962 0.971 0.823 0.869 0.875 0.963 0.976 0.985 0.835 0.879 0.877

5.00 0.875 0.899 0.963 0.773 0.796 0.808 0.946 0.983 1.006 0.826 0.869 0.885
0.25 1.009 1.039 1.047 0.903 0.911 0.939 1.018 1.041 1.056 0.910 0.941 0.946

PC 1.25 1.029 1.064 1.067 0.902 0.959 0.961 1.082 1.109 1.119 0.952 1.003 1.011
5.00 0.969 1.001 1.068 0.855 0.886 0.921 1.004 1.030 1.105 0.888 0.913 0.928
0.25 1.116 1.141 1.157 0.997 1.031 1.036 1.129 1.190 1.194 1.009 1.054 1.061

FFC 1.25 1.171 1.199 1.211 1.031 1.045 1.061 1.182 1.208 1.214 1.038 1.062 1.074
5.00 1.096 1.123 1.205 0.971 0.995 1.013 1.129 1.193 1.221 0.998 1.062 1.062
0.25 1.076 1.111 1.118 0.961 0.991 1.013 1.104 1.135 1.146 0.988 1.017 1.027

T-II 1.25 1.116 1.152 1.156 0.980 1.041 1.042 1.151 1.191 1.192 1.013 1.038 1.077
5.00 1.058 1.092 1.166 0.935 0.967 0.978 1.066 1.104 1.174 0.943 0.979 0.986
0.25 1.151 1.195 1.201 1.028 1.056 1.066 1.141 1.196 1.206 1.019 1.057 1.070

CS 1.25 1.188 1.213 1.217 1.002 1.078 1.086 1.238 1.256 1.269 1.050 1.108 1.125
5.00 1.155 1.208 1.229 1.009 1.069 1.104 1.168 1.226 1.234 1.034 1.092 1.099

Table 5: Bayes Risk for Parameterα under GELF

d = 1.00 d =−1.00
m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05

(α,β )→ λ ↓ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,
0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98

0.25 0.457 0.468 0.474 0.409 0.423 0.425 0.489 0.505 0.510 0.438 0.451 0.453
FFPC 1.25 0.482 0.495 0.499 0.424 0.447 0.451 0.495 0.502 0.507 0.431 0.452 0.451

5.00 0.449 0.461 0.494 0.397 0.408 0.414 0.485 0.504 0.516 0.423 0.446 0.454
0.25 0.514 0.529 0.534 0.460 0.463 0.478 0.519 0.531 0.538 0.464 0.481 0.482

PC 1.25 0.529 0.547 0.548 0.464 0.494 0.494 0.556 0.571 0.575 0.491 0.516 0.521
5.00 0.496 0.513 0.547 0.438 0.454 0.472 0.515 0.528 0.566 0.455 0.468 0.476
0.25 0.569 0.581 0.59 0.508 0.525 0.528 0.575 0.607 0.609 0.514 0.537 0.541

FFC 1.25 0.601 0.616 0.622 0.531 0.537 0.545 0.607 0.621 0.623 0.534 0.546 0.552
5.00 0.561 0.575 0.617 0.497 0.511 0.519 0.578 0.611 0.626 0.511 0.544 0.544
0.25 0.548 0.566 0.57 0.489 0.505 0.516 0.563 0.579 0.584 0.503 0.518 0.523

T-II 1.25 0.574 0.592 0.594 0.504 0.535 0.536 0.591 0.612 0.612 0.521 0.534 0.554
5.00 0.542 0.560 0.597 0.479 0.496 0.501 0.546 0.565 0.601 0.483 0.502 0.505
0.25 0.586 0.609 0.612 0.524 0.538 0.543 0.581 0.609 0.615 0.519 0.538 0.545

CS 1.25 0.610 0.623 0.625 0.515 0.554 0.558 0.636 0.645 0.652 0.540 0.569 0.578
5.00 0.592 0.619 0.63 0.517 0.548 0.566 0.598 0.628 0.632 0.530 0.560 0.563
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Table 6: Bayes Risk for Parameterβ under GELF

d = 1.00 d =−1.00
m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05

(α,β )→ λ ↓ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,
0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98

0.25 0.574 0.588 0.595 0.514 0.532 0.534 0.604 0.613 0.641 0.522 0.542 0.548
FFPC 1.25 0.586 0.602 0.607 0.524 0.543 0.547 0.612 0.621 0.637 0.551 0.567 0.571

5.00 0.552 0.567 0.597 0.487 0.501 0.509 0.597 0.621 0.635 0.521 0.548 0.558
0.25 0.645 0.664 0.669 0.578 0.582 0.601 0.651 0.665 0.675 0.582 0.602 0.605

PC 1.25 0.655 0.666 0.678 0.586 0.601 0.601 0.678 0.695 0.701 0.596 0.628 0.633
5.00 0.611 0.632 0.674 0.539 0.558 0.581 0.634 0.651 0.697 0.561 0.575 0.585
0.25 0.713 0.728 0.739 0.637 0.658 0.662 0.721 0.761 0.762 0.645 0.673 0.678

FFC 1.25 0.734 0.752 0.759 0.646 0.665 0.665 0.742 0.768 0.772 0.65 0.666 0.673
5.00 0.692 0.709 0.751 0.612 0.628 0.639 0.713 0.754 0.771 0.629 0.671 0.675
0.25 0.687 0.709 0.714 0.614 0.633 0.647 0.705 0.725 0.732 0.631 0.651 0.656

T-II 1.25 0.701 0.722 0.735 0.613 0.651 0.653 0.722 0.747 0.748 0.634 0.658 0.675
5.00 0.668 0.689 0.726 0.589 0.611 0.617 0.673 0.697 0.741 0.594 0.617 0.622
0.25 0.734 0.761 0.764 0.627 0.675 0.681 0.729 0.763 0.771 0.651 0.675 0.684

CS 1.25 0.746 0.763 0.766 0.657 0.676 0.681 0.777 0.789 0.797 0.657 0.695 0.705
5.00 0.729 0.743 0.756 0.637 0.675 0.697 0.737 0.774 0.779 0.652 0.689 0.694

Table 7: Bayes Risk for Parameterλ under GELF

d = 1.00 d =−1.00
m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05

(α,β )→ λ ↓ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,
0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98

0.25 0.641 0.659 0.665 0.561 0.593 0.597 0.661 0.669 0.676 0.569 0.601 0.599
FFPC 1.25 0.651 0.665 0.673 0.582 0.602 0.604 0.694 0.717 0.723 0.623 0.641 0.645

5.00 0.611 0.627 0.673 0.539 0.554 0.563 0.661 0.687 0.704 0.576 0.607 0.618
0.25 0.707 0.731 0.733 0.617 0.657 0.658 0.735 0.752 0.762 0.649 0.671 0.684

PC 1.25 0.729 0.751 0.756 0.653 0.658 0.679 0.744 0.764 0.771 0.652 0.688 0.694
5.00 0.677 0.731 0.748 0.596 0.618 0.644 0.702 0.721 0.764 0.621 0.637 0.648
0.25 0.805 0.822 0.834 0.702 0.744 0.748 0.814 0.834 0.838 0.713 0.731 0.739

FFC 1.25 0.807 0.828 0.835 0.708 0.752 0.759 0.815 0.857 0.861 0.729 0.761 0.765
5.00 0.767 0.787 0.825 0.678 0.696 0.708 0.791 0.837 0.857 0.698 0.743 0.744
0.25 0.769 0.794 0.797 0.672 0.714 0.716 0.786 0.819 0.813 0.704 0.724 0.731

T-II 1.25 0.776 0.801 0.826 0.694 0.716 0.732 0.793 0.822 0.822 0.726 0.743 0.751
5.00 0.741 0.765 0.818 0.653 0.676 0.684 0.746 0.773 0.821 0.659 0.684 0.689
0.25 0.821 0.837 0.841 0.727 0.745 0.749 0.822 0.861 0.869 0.736 0.763 0.772

CS 1.25 0.829 0.861 0.865 0.743 0.762 0.769 0.855 0.868 0.877 0.721 0.763 0.775
5.00 0.811 0.847 0.862 0.706 0.749 0.774 0.819 0.861 0.865 0.724 0.765 0.771
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Table 8: Bayes Risk Under ILLF

c = 0.50 c =−1.00
n = 30 m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05
← (α,β )→ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,

0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98
FFPC 0.625 0.641 0.646 0.555 0.573 0.587 0.659 0.668 0.674 0.579 0.587 0.605
PC 0.683 0.704 0.706 0.604 0.639 0.642 0.734 0.752 0.757 0.653 0.685 0.691

α FFC 0.771 0.788 0.795 0.659 0.692 0.702 0.797 0.814 0.817 0.706 0.721 0.739
T-II 0.737 0.758 0.762 0.635 0.689 0.691 0.777 0.801 0.803 0.691 0.706 0.731
CS 0.782 0.797 0.799 0.666 0.713 0.718 0.832 0.844 0.851 0.714 0.751 0.761

FFPC 0.667 0.685 0.692 0.593 0.621 0.625 0.693 0.703 0.709 0.605 0.627 0.634
PC 0.731 0.754 0.756 0.644 0.683 0.684 0.776 0.795 0.801 0.686 0.721 0.726

β FFC 0.827 0.847 0.854 0.732 0.741 0.752 0.845 0.863 0.867 0.746 0.762 0.771
T-II 0.791 0.815 0.817 0.697 0.738 0.739 0.824 0.851 0.852 0.728 0.746 0.747
CS 0.842 0.856 0.859 0.752 0.764 0.769 0.884 0.896 0.905 0.753 0.794 0.805

FFPC 0.786 0.806 0.813 0.691 0.729 0.734 0.817 0.828 0.835 0.712 0.747 0.745
PC 0.862 0.891 0.893 0.757 0.804 0.806 0.917 0.939 0.948 0.808 0.854 0.857

λ FFC 0.979 1.003 1.012 0.864 0.875 0.888 1.011 1.022 1.027 0.882 0.965 0.913
T-II 0.934 0.964 0.967 0.821 0.871 0.873 0.974 1.008 1.009 0.859 0.885 0.912
CS 0.994 1.014 1.018 0.841 0.902 0.909 1.047 1.062 1.073 0.893 0.938 0.953

Table 9: Bayes Risk Under GELF

d = 1.00 d =−1.00
n = 30 m1 = 05 m1 = 10 m1 = 05 m1 = 10

m−m1 = 05 m−m1 = 05 m−m1 = 05 m−m1 = 05
← (α,β )→ 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02, 2.01, 3.50, 5.02,

0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98 0.39 3.67 6.98
FFPC 0.401 0.412 0.413 0.353 0.371 0.374 0.433 0.436 0.442 0.375 0.393 0.393
PC 0.438 0.452 0.453 0.385 0.409 0.409 0.482 0.493 0.498 0.426 0.448 0.451

α FFC 0.496 0.508 0.513 0.438 0.444 0.451 0.525 0.536 0.538 0.463 0.473 0.478
T-II 0.474 0.488 0.491 0.417 0.442 0.443 0.511 0.529 0.529 0.452 0.463 0.481
CS 0.503 0.513 0.515 0.426 0.458 0.461 0.549 0.557 0.563 0.468 0.493 0.532

FFPC 0.495 0.508 0.513 0.444 0.462 0.463 0.523 0.532 0.544 0.472 0.485 0.489
PC 0.552 0.561 0.571 0.495 0.508 0.508 0.578 0.592 0.597 0.509 0.536 0.542

β FFC 0.618 0.633 0.638 0.545 0.561 0.561 0.632 0.654 0.657 0.555 0.568 0.574
T-II 0.592 0.608 0.619 0.518 0.549 0.551 0.615 0.636 0.637 0.541 0.561 0.576
CS 0.628 0.642 0.644 0.554 0.573 0.574 0.661 0.671 0.678 0.561 0.592 0.601

FFPC 0.549 0.561 0.567 0.492 0.508 0.512 0.592 0.611 0.616 0.532 0.547 0.551
PC 0.614 0.632 0.636 0.551 0.555 0.572 0.633 0.652 0.656 0.556 0.587 0.592

λ FFC 0.678 0.696 0.701 0.596 0.633 0.638 0.693 0.728 0.731 0.621 0.648 0.651
T-II 0.653 0.673 0.694 0.585 0.603 0.616 0.675 0.699 0.699 0.618 0.633 0.639
CS 0.696 0.723 0.726 0.625 0.641 0.647 0.726 0.737 0.745 0.614 0.649 0.659
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