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Abstract: In this paper, a new generalized version of the Pareto distribution, which is called cubic transmuted Pareto
distribution (CTPD), is introduced and studied. Most of the mathematical and statistical properties are studied and the
model parameters are estimated by the maximum likelihood method. Finally, an application of CTPD to some real data sets
and compare it with some distributions based on Pareto distribution is illustrated.
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1 Introduction

The Pareto distribution is named after an Italian-born Swiss professor of economics, Vilfredo Pareto (1848-1923). It is used
in modelling the distribution of incomes and other financial variables, and in the description of social and other phenomena.
More recently, attempts have been made to explain many empirical phenomena using the Pareto distribution or some
closely related form. For more detail see [5]. Shaw and Buckley [9] proposed the transmutation maps to solve financial
mathematics problems. Merovci and Puka [6] studied the transmuted Pareto distribution using the quadratic rank
transmutation map studied by Shaw and Buckley [9]. Salma [8] developed L-Quadratic (LQ) distribution by generalizing
U-Quadratic distribution using the quadratic rank transmutation map. Granzottoa et al. [4] developed the cubic ranking
transmutation map, or the transmuted distributions of order 2. This new parametric family offers tractable distributions and
is able to fit complex data sets such as ones with bimodal distribution or bimodal hazard rates. They focused on the cubic
ranking on Weibull and log-logistic distributions. Al-Kadim and Mohammed [1] proposed cubic transmuted Weibull
distribution (CTWD), and discussed some of its statistical properties.

In this article we use cubic ranking transmutation map suggested by Al- Kadim [2] to propose a new model which
generalizes the Pareto model. This new version of the Pareto distribution called cubic transmuted Pareto distribution
(CTPD). Most of the mathematical and statistical properties are studied and the model parameters are estimated by the
maximum likelihood method. Moreover, an application to some real data sets is illustrated.

1.1 Pareto Distribution

Let X be a random variable with the Pareto distribution. The probability density function (pdf) and the cumulative
distribution function (cdf) are defined, respectively, as

ax§
g0 = M
and
Gx) =1 (x) a>0, x>x 2)

where x,, is the (necessarily positive) minimum possible value of X, and « is a shape parameter.
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1.2 Cubic Ranking Transmutation Map

A random variable X is said to have a cubic transmuted distribution Al- Kadim [2], if its cdf is given by
F(x) =1+ D)6 (x) — 21G%(x) + 1G3(x), A <1 3)

and the pdf is given by

f) =1+ Dgx) —42g(x)G(x) + 3162 (x)g(x) (4)
where G(x) is the cdf of the base distribution. Observe thatat A = 0, F(x) = G(x).
The rest of this paper is organized as follows. The new proposed distribution, the CTPD and its mathematical and statistical
properties are presented in Section 2. An application of the CTPD to two real datasets for the purpose of illustration is
conducted in Section 3. Finally, in Section 4, we present some concluding remarks.
2 Cubic Transmuted Pareto Distribution
In this Section, the new proposed distribution, CTPD and its mathematical and statistical properties are demonstrated.
Theorem 2.1. Let X be a random variable with the cubic transmuted Pareto distribution. The cdf and pdf are defined,
respectively, as

X\ X X\ & X, 2a

F(x)=1—(7°) (1—,1(;") +,1(;°) ) a>0, x>x, [Al<1 (5)

and
axy X0\ % Xo\ 2%
fx) = xa—+01<1 —22 (;0) +32 (;") ) (6)
Proof. Part 1.
Consider the cdf of cubic transmuted distribution of Eq. (3) namely
F(x) = (1 +A1)G(x) —2AG%(x) + 1G3(x)

=G)[(1+ 1) —2A6(x) + 16*(x)] @)
Substitute G (x) of Eq. (2) into Eq. (7), we get

peo= (1= () en-22(- () w2 (- ()]

= (1)) n-2 (- ()) ra(+ ()" -2(2))
_ (1 - (%)a) :1 +A—20+22 (%)a Y (%)Za ~22 (%)a]

- (1 - (%)a) (1 +1 (%)za)

_ 1_(% a+1(%)2a—,1(%)3a

)
-G (-6 ()
P =1- () (140" +2(2)")

and this complete the proof.

Proof. Part 2.
To prove part 2 we use the following

fl) =2
Recall Eqg. (5) namely

e =1- () (-2 (5)" 1))
() G )

Hence
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Directly
dF(x)
dx

= ax&x~ %1 — 22axZ%x 72471 4+ 3lax3%x 301

= axgrot (1-22(2) 1 31(2) )
Hence
f(x) = ax§x~o1 <1 - 22 (%)a + 32 (%)za)

and this completes the proof.

The shape of pdf with selected parameter values are shown in Figure 1 and Figure 2.
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Fig.1. The pdf of the CTPD at a« = 1,2,3,100 ,4A =1 Fig. 2.The pdf of CTPD at « = 1, 4=0, 0.5, 1, -0.5, -1.

Remark 1. To prove that f(x) in Eq. (6) is pdf we need to prove f_iof(x) dx =1and f(x) = 0.

2.1 Limits of the Probability Density and Distribution Functions

a(1+1)
Xo

Proposition 2.1. The limit of the density function f(x) for CTPD as x — x, is and the limit as x - o is 0.

Proof.

: . _ ay-a-1(1_ 27 ()" @2)]
’Cllrilof(x,a,xo,l)—Jcllrilo[axox (1 2/1(x) +3A(x)

a 2a
ax§xy @t <1 -2 (?) + 31 (%) )
0 0

a
— (1 -=-22+32
Xo

a(1+2)

Xo

Since @ > 0,x, > 0,]|A]| < 1 then 20+ 5 ).

X0
and

lim £ (x; a,%,4) = lim [axé"x‘“‘l (1 -2 (%)a +34 (9;_0)2“)]
exgeo (124 (2 +91(2)”)

=0
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(1) Proof of [* f(x)dx =1
f fx; axg.l)dx—f [ax“x‘“ 1 1—21(x) +3A %o Za)]dx

=f [(ax&x~*1 — 2aAx2%x 271 4+ 3adx3*x 3% 1) dx
X0

2 (X e x 2%\ o0 2a x73\] o0
=a[x0 (——a>] xo_yﬂx0 —2a x0+3laxo —3a /| %o

= [~ (], + A — A

= [-x5(0 — x5 “)] + Ax§*[(0 — xg 2"‘)] Axgé[0 — x53%]
=1+A-1=1
(2) Proof of f(x) =0

f(x) = ax§x—o71 (1 -2 (%)a + 31 (%)za)

ax§ 2Ax§  3Ax3®
=xa+1 - x« + xz:x

a(1+1)
x

now f(x,) = >0; a>0,x,>01 <1 and f() =0, impliesthat f(x) = 0.

From 1 and 2 we conclude that f(x) is pdf.

Proposition 2.2 .The limit of the distribution function F(x) for CTPD as x — x, is 0 and the limitas x — oo is 1.

Proof.
lim F(x; a,xo,A) = lim [1 _ (3;_0)“ +1 (x_o)z"‘ . (%)3,,,]

X—Xg X—Xg X
X\ & Xa\ 2X Xn\ 3%
<G G )
Xo Xo Xo
=(1-1+1-2)
=0

and

iﬂ?’o F(x;a,x9,4) = ,%ll?o [1 — (%)a + A (%)Za _3 (%)30;]

_ X a X0 2a X 3a _
=1-(3) +2(3) -2(3) =1
Hence F(x) is a cumulative distribution function.
Reliability Analysis
2.1.1 Reliability Function

Proposition 2.3. The reliability function of CTPD is given as

R = (9" (1-2(2)"+2(2)") ®
Proof.

The reliability function for a given distribution is
R(x)=1-F()
Substitute the cdf of CTPD of Eq. (5) in Eq. (8) we get

R@ =1-[1-(2) (1-2 (%)a; A (%)m)]
=) (126 +2())
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2.1.2 Hazard Function

Proposition 2.4. The Hazard function of CTPD is given as

a (1-22(2) +m(2)"

h(x) = m a 9
X X0 Xo
1-a(2) +2(3)
Proof. The proof is simple.
Hint. Use the formula
s
D) =1"Fm
2.1.3 Reverse Hazard Function
Proposition 2.5. The Reverse Hazard function of CTPD is given as
2
(1 ~22(2)" +32(2) “)
1 (x) = ax&x=1 (10)

NONGLORICN

The Reverse Hazard function for a given distribution is

f&)

F(x)

Substitute the f(x) and F(x) of CTPD of Eq.(6) and Eq.(5) respectively in the above equation to directly

(-2 +32(3)")
NONGLORUON

m(x) =

—a-1

R (x) = ax§x

2.1.4 Odds Function

Proposition 2.6. The Odds function of CTPD is given as
— -1
- () (-2 ﬁz")}l_

O(x)_[{1 (x) 1 A(x) +,1(x) 1 (11)
Proof. The proof is simple.
Hint. Use the formula

F(x)
0 =1 —F

2.2 The Moments

Proposition 3.1. If X has the CTPD with |4| < 1 then the r** moment of X about the origin is
6a?—ra(5+ D) +r?2(1+2)

™y — r
EQX") = axg (a—r)QRa—-r)Ba-—r1) (12
Proof.
We know that
E(X™) = J x" f(x) dx
Substitute f(x) in above equation by its value in Eq. (6) to get
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E(X") = fm [xr(xxg‘x“"‘1 (1 -2 (x ) + 31 )] dx

oo X Xy 20
- afng [xf—“—l (1 - 2/1( ) +31(=2) )] dx
X0

(0]
= ax(‘]"f (x77% 1 — 2Ax§xT72%7 1 4 3Ax2%x 397 ) dx

= ax§ U x"e 1 dx — ZAx(‘j‘f x"2e gy + 3/1x2“f x"3em1 dx]
X0 Xo
x‘r—a r-=2a
= ax¥ — 2Ax§ + 34
**o [r — a] o %o [r - Za] o xO — 30(]
2
_ ax§ [xr_a]oo B 2 ax§® [xr_m]oo 31ax3® R
r—a o r—2a o r—3a *o
axy  2xaxi 3lax]
T r—a r—-2a r-3a
L 1 4 21 31 ] . <
S T T Ty —2a r=3al’ rsa

by performing some algebra calculation we get

~__,|6a?=Tra(5+2) +7r3(1+2)
E(X)—axo[ (a—7r)QRa—-7r)Ba—r1) ]

when r = 1 we get the mean
6a?—a(5+AD)+(1+2)
(a—1D)Ra—-1)Ba-1)

px = E(X) = axg

when r = 2 we get the E(X?)

E(X?) = 2ax [3a —aG+)+2(1+ /1)]

( 2)2a —2)(3a — 2)
and Var(X) = E(X?) — [E(X)]? is

Var(X) = 2ax?

3¢ —a(5+A) +2(1+ 1) 6a2—a5+ 1)+ 1+
(@ —2)(2a - 2)(3a — 2) _{ 0[(a—1)(2a—1)(3a—1)]}

2.3 The Moment Generating Function

Proposition 4.1. If X is a random variable has the CTPD with |A] < 1 then the moment generating function of X is

tm
My(t) = E _ —22 § m-2a
x(O) = axg m'(a—m) axg _Om!(Za—m)xo
[ee] tm
3a m-3a 1
+3Aax; E mlGa—m) xg , m<a (13)

Proof.
We know that

MA@ =B = [ e ) dx
Substitute f(x) in above equation by its value in Eq. (6) to get

My(t) = f:) [ax"‘x'“ 1 (1 - 22 (x ) + 31 )] dx

[ee)]
= axg‘f e (x7* 1 — 2Ax§x 721 + 3AxZ¥x 3% V) dx

X0

© 2018 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 7, No. 3, 443-455 (2018) / http://www.naturalspublishing.com/Journals.asp NS N 449
= axg‘f e x e tdx — ZAaxg‘zJ- e x 2 dx + 3laxg“f eXx 39 dx
Xo X0 X0
Let I, = f;:etx x™ldx I, = f:: e*x~2% dxand, I; = f;: et x73%71dx then
My (t) = ax{ly; — 2daxi®l, + 31ax3%I,
L = J- e™ x~ % ldx
X0
oo tx m
= f y” ¢ ) x~ % ldx
X0
= Z o 0oxm a1y
]
m=0 *o
e
= — X
m! (a —m) °
m=0
Following the same way we get
I =Z—xm 2¢ and I =Z—x
z m! Qa—m) ° 3 m! Ba—m) °
m=0 m=0
therefore,
t" t" t" m-3a

MX(t) = axg‘ z mx(’)”‘“ - Zlaxga Z m —2a 4 3).(1)( Z
m=0 m=0

2.4 Median and Mode

m! (3a —m) X0

2.4.1 Median
Proposition 5.1. The median of CTPD is calculated using the following formula
Am=38x3% — Am 292 4+ xfm™% — % =0 (14)
Proof.
The following formula used to get median of a given distribution
m 1
f_wf(x) dx = >
Where m is median.
Substitute the pdf of CTPD of Eq. (6) in the above equation we get
X Xo\ 2% 1
a,—a-1 _ 0 _ =
fxo[axx (1 2/1( ) +3/1( ) )]dx—z
m 1
axg‘f (x7% 1 — 22x&x 2071 4 3Ax2%%x73¢71) dx = >
m m m 1
axg‘f x™* ldx — 2daxd* | x72% ldx + 3/1ax§“j x73¢ 1dx = =
X X X 2
0 0 0
-q M —2q1™M -3a1™
1
ax§ [x—] — 2ax® ad + 3ax3” ad ==
— xo —2a o —3a o 2
—x§ [x‘“] .t AxE%[x~ 2“]:: - Axg“[x‘w]:; = %
Am—Sax3a Am—za 2a x&m=% — 1_
2
Another formula can be obtained after performing some algebra calculation that is
m3% — 2m29x% + 2Am%x2% — 22x3* = 0 (15)
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2.4.2 Mode

Proposition 5.2. The Mode of CTPD is given as

1/a
/—4/12(20( +1)%x3% + xg\/(4/1(4/1 - 9a? + 1611 —3a + 411 — 3))\
x = \ 2@+ 1) / (e

Proof.
The mode or modal value of a continuous random variable X with a probability density function f(x) is the value of x for
which f(x) takes a maximum value that is,
flx)=0
Recall Eqg. (6) namely

fx) = axfx—*1 (1 - 22 (%)a + 32 (%)Za)

= ax&x~ %1 — 22axZ®x2%71 4+ 3Ax3%ax 31

Differentiate f(x) to get
f'(x) = —ala + Dxfx~ 2+ 20aRa + 1)xZ%x72%72 = 3la(Ba + 1)x3*x 3472

= axfx " ?[—(a+ 1) + 22Qa + Dxfx~* — 3A(Ba + 1)x2%x~2%]
Equate

ax§x ?[—(a+ 1) + 2AQa + Dxfx™* —31(Ba + Dxfx~2%] =0

a 2a
et D)+ 2/1(20;1- Dx§ 3 3/1(3ax-2|-a1)x0 _o
—(a + 1)x2* + 22Qa + Dx{x* —31(Ba + 1)x3% =

we know that
Ax?>*+Bx+C=0

_ —B +VB% —4AC
x= 2a
LetA=—(a+1) B =2AQa + 1)x§ C = —313a + 1)x2*

B? — 4AC = [2AQa + 1)x&]? — 4(a + 1)(32(3a + 1)x2%)
42%(2a + 1)%x3 — 122(a + 1)((Ba + 1)x3%)
x3%(4222a + 1)? — 12A(a + D (3a + 1))
x3%(42%(4a® + 4a + 1) — 12A(3a? + 4a + 1))
x2*(162%a? + 162%a + 42% — 361a? — 48a — 121)
x2*(162%a% — 361a? + 161%a — 481a + 41% — 121)
x2%(4A(42 — 9)a? + 1641 — 3)a + 4A(1 — 3))

_B++vB?—4Ac ~—Qa+ 1)%x2% + xg\/(4,1(4,1 —9a?+ 16A(A — 3)a + 41(1 — 3))
2a - —2(a+1)

—422(2a + 1)%x2* + ng\/(4,1(4,1 —9a?+ 16A(A — 3)a + 41(A — 3))
—2(a+1)

x%* =

1/a

—422Qa + 1)%x3* + xg\/(4/1(4,1 —9a?+ 16A(1 — 3)a + 41(A — 3))
—2(a+1)

X =
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2.5 Geometric and Harmonic Mean

Proposition 6.1. The Geometric Mean of CTPD is given as

) 6—21
G = Antilog <logx0 + (WD (17)

Proof.
The logarithm of Geometric mean of a continuous random variable X with a probability density function f(x) is,

(oo}

logG = f logx f(x) dx
Substitute the pdf of CTPD of Eg. (6) in the above equation to get

logG = fx :ologx (axfj‘x‘“‘l (1 Y (%)a +32 (’;—°)2a>> dx

= ax(‘,"f logx (x™% 1 = 22x§x~2%"1 4+ 3Ax3%%73%71) dx
X0

[oe]

= ax§ U (logx)x~*1dx — 2,1ng (logx)x2 1dx + 3/1x§"‘j (logx)x—3% dx
X0

X0 X0
Let logG = ax§(l, — 2Ax§1, + 3Ax¢%15)
where I, = f;:(logx)x'“‘ldx = f;:(logx)x‘z"“ldx and I; = f;:(log x)x 3% 1dx

now

L =f (logx)x~% 1dx
X0

[(1 )x_a] i f 1y
= [Qogx)=—| - = x
—al,, X

X —a
0

1 o 1 (®
= ——[(ogx) x™%]_ + —f x~ % ldx
a Yo al,

[oe]

X

1 1
- ax§ (log o+ E)

1 g _ L o
= ——[(logx) x™], ~—[x™],,

Following the same way we get
1 1 1 1
I, =— (log Xo + 5) and I; = Py (log Xo + g)

2ax3®
1 1 1 1 1 1
“l|—(1 —) — 22x8 —(1 —) 32x2¢ (1 _>
axg [(axg‘ ( 0gxo - ) x5 <2ax§“ 0gxo +5 | | +34x5 3ax3® 0gXo 5

1 1 1
(logx0 + E) -1 (logx0 + Z) + A (logx0 + g)
6—21

Therefore

log G

=1
ogxy + oa

and

G = Antilog| 1 +(6_'1>
= Antilog|( log x, r

Proposition 6.2. The Harmonic Mean of CTPD is given as
Xo < (a+1)Ra+1)Ba+1) )

H= s v+ Dar A+

a

(18)
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Proof.
The inverse of Harmonic mean of a continuous random variable X with a probability density function f(x) is,

H™! = foo ! (x)d
=) % f(x)dx
Substitute the pdf of CTPD of Eq. (6) in the above equation to get

Ht = Lj%(ax“x‘“ d (1 —22 (’;—‘))a +31 (%)m)) dx
:0:ng00< -a-2 (1—2/1( ) +3A(%)2a)>dx

0
[oe] (oo} (o0}
= ax(‘)"f x~*2dx — 2/1ax§“f X727 2dx + 3/1ax3“f x73¢72(x
X X0

Xo

x—a—1 o yx—2a-1 o yx—3a-1 o
= ax§ —20ax?® |———| +3%axi*|———
axo [ ]xo axo [_za - 1 ] X0 axo _3a - 1 X0

—a—1 —2a-1 -3a-1
a Xo 2a Xo 3a Xo
=axo \ gy ) e \ gt ) e \ 3T

-2 lGw) -2 ) + 9 Garr)
Cxol\a+1 2a + 1 3a+1

After performing some algebra calculation we get
g8 6a’+(G+Da+(1+2)
T xo\(@+1DRa+1)Ba+1)

Therefore

" X (a+1D)Ra+1)Ba+1)
__(6a2+(5+/1)a+(1 +/1))

2.6 Parameters Estimation

Maximum likelihood approach can be used for the estimation of model parameters. The maximum likelihood estimates
MLE of the parameters that are inherent within the CTPD is given by the following.
Let X;, X5, ..., X,, be a random sample of size n from a cubic transmuted Pareto distribution. Then the likelihood function is
given by

a 2a
L= f s @ x0,4) = ™« [T, x; Y] [ (1 -22 (J;—") +32 (’;—") )]

s0, the log likelihood function is
InL=nha+nalnx, — (a + 1)Zlnxl + Zln(l — 2Ax8x; % + 3Ax3%x; 2 (19)

Therefore, the maximum likelihood estlmates of a and A which maximize Eq. (19), must satisfy the following normal
equations,

x0)\* (1 _ ()
alanmi(xi) (1-3(¢ ) Zn: X+ +nlnx, =0 (20)
da i=1 1—2,1(2—‘;) +3/1 L i=1 “
L < (x_o) (2‘3(96_(:))
oA :Z ; 5 =0 P

2o\ & X 2a
=1-21 (x—ﬂ) +31 (x—")
The maximum likelihood estimates 6 = (&, /1) of 8 = (a, A) is obtained by solving the above nonlinear system of Eq. (20)

and Eqg. (21). It is more convenient to use nonlinear optimization algorithms such as the quazi-Newton or Newton-Raphson
to numerically maximize the log-likelihood function in Eq. (19).
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2.7 Order Statistics

Let X, X;, ..., X, be a random sample of size n from a CTPD. Then the pdf of the jt* order statistic is given by
n!
fin(x) = (]Tf(x)(f’(x)) (1 - F(x))

The pdf's of smallest and largest order statistic respectively are
-1
fay() = nf)(1 = F()"

fay () = nf(FG))"
Using pdf and cdf of CTPD we get

o) =225 (122 (2 33 (22 () -2 (2) " +2(2)) -
=25 ) - 1)) -

3 Application of Transmuted Pareto Distribution

In this section, we provide an application of CTPD . Moreover, compare CTPD with the Pareto distribution and
Transmuted Pareto distribution. For this purposes we consider two real data sets.

3.1 Wheaton River Flood Peaks Data Set (WRFP)

The data are the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada. The
data consist of 72 exceedances for the years 1958-1984, rounded to one decimal place. This data were analyzed by
Choulakian and Stephens [3] and Merovci and Puka [6]. For purpose of the analysis we set x, = 0.1. Table 1, shows
values of the parameter estimates, standard errors (SE), - log likelihood (-LL), and 95% confidence intervals (Cl) for
Pareto, TP and CTP distributions. In order to compare the CTPD with Pareto and TPD we use some different comparison
measures includes -2xlog-likelihood (-2log(L)), Akaike’s information criterion (AIC), Corrected Akaike’s information
criterion (AICC) and Schwarz’s Bayesian information criterion (BIC). Table 2 represents -2log(L), AIC, AICC and BIC
for Pareto, TPD and CTPD.

Table 1: Parameter estimates, SE, -LL and CI for Pareto, TPD and CTPD for WRFP data set

Parameter estimates SE -LL 95% ClI
Pareto @ = 0.243863 0.028751 | 303.0642 (0.1875, 0.3002)
@ = 0.349941 0.031068 | 286.2009 (0.289, 0.443)
Transmuted Pareto A =-0.952417 0.047477 (-1.0133, -0.8594)
. @ = 0.256395 0.02426 289.8275 (0.2088, 0.3851)
Cubic Transmuted Pareto T = 0.933943 0.065645 (-0.9815 , -0.80153)

Table 2: 2log (L), AIC, AICC and BIC for Pareto, TPD and CTPD for WRFP data set

Distribution -2log(L) AIC AlICC BIC
Pareto 606.1283 610.1283 610.3022 614.6816
Transmuted Pareto 572.4018 578.4018 578.7547 585.2318
Cubic Transmuted Pareto 579.655 585.655 586.008 592.485

From Table 2, concerning the WRFP data set, we observe that the calculated values of the four comparison criteria (the
smaller the better) all reveal that the cubic transmuted Pareto distribution is the most appropriate model than Pareto
distribution while transmuted Pareto is the best one.

© 2018 NSP
Natural Sciences Publishing Cor.


http://www.naturalspublishing.com/Journals.asp

454 NS e S. I. Ansari, H. Eledum An Extension of Pareto...

3.2 Floyd River Flood Data Set (FRF)

The second data set is for the Floyd River located in James, lowa, USA. The Floyd River flood data set consist of 39 annual
flood discharge rate for the years 1935-1973. This data were analyzed by Mudholkar and Hutson [7] and Merovci & Puka
[6]. For purpose of the analysis we set x, = 318 . Table 3, explains values of the parameter estimates, standard errors
(SE), - log likelihood (-LL), and 95% confidence intervals (CI) for Pareto, TPD and CTPD. Table 4 represents -2log(L),
AIC, AICC and BIC for Pareto, TPD and CTPD.

Table 3: Parameter estimates, SE, -LL and CI for Pareto, TPD and CTPD for FRF data set.

Distribution Parameter estimates SE -LL 95% ClI
Pareto a = 0.412471 0.066064 392.8099 (0.283, 0.542)
a = 0.585919 0.072021 385.3491 (0.4448 ,0.761)
Transmuted Pareto 3 = 091024 0.089307 (-1.0514 , -0.7352)
. a = 0.435662 0.056971 387.0518 (0.324 , 0.6757)
Cubic Transmuted Pareto 3 — 0875966 0122455 (-0.9876 , 0.636)

Table 4: 2log (L), AIC, AICC and BIC for Pareto, TPD and CTPD for FRF data set.

Distribution -2log(L) AlC AlICC BIC
Pareto 785.6199 789.6199 789.9532 792.947
Transmuted Pareto 770.6983 776.6983 777.384 781.689
Cubic Transmuted Pareto 774.1036 780.1036 780.7893 785.0943

Regarding the FRF data set, from Table 4, we observe that the calculated values of the four comparison criteria (the smaller
the better) all reveal that the cubic transmuted Pareto distribution is the more appropriate model than Pareto distribution
while transmuted Pareto is the best one.

4 Conclusions

In this paper, a new model called the Cubic Transmuted Pareto distribution (CTPD) which based on the Pareto distribution
is proposed. Some mathematical and statistical properties for CTPD is obtained such: reliability function, hazard function,
inverse hazard function, odd function, moments, expectation, variance, mode, median, geometric and harmonic mean,
moment generating function, MLE of the unknown parameters. An application of the cubic transmuted Pareto distribution
to real data shows that the new distribution can be used quite effectively to provide better fits than the Pareto distribution.
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