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Abstract: In this paper we first show how to compute the probability thata particular candidatec out of m candidates, 1≤ c ≤ m,
wins by plurality voting an election conducted byn voters, where each voter either votes for a single candidatei, 1≤ i ≤ m, with
probabilityPi, or abstains with probabilityP0 = 1−∑m

i=1 Pi. We then show how this result is involved in the computation of the average
execution time of a set (“frame”) ofn simultaneous requests, where each request randomly asks for exclusive access to any ofm
available non-shareable resources with probabilityPi,1 ≤ i ≤ m, or for non-exclusive access to a common fully shareable resource
with probabilityP0 = 1−∑m

i=1 Pi. We also allow that each resource access has a different duration Di,0≤ i ≤ m. The formulas that we
develop have application in the analysis and evaluation of ensemble classifiers in pattern recognition and classification, and in systems
performance evaluation (critical sections in multithreaded programs with barrier synchronization, switch delay in computer networks
and interconnection networks).

Keywords: Ensemble classifiers; Plurality voting; Performance evaluation; Mutual exclusion; Critical sections; Multi-threaded
programs; Barrier synchronization; Network switching.

1 Introduction

We consider an election withm candidates andn voters.
Each voter is allowed to vote only for a single candidatei,
1 ≤ i ≤ m, or abstain. Each voter is assumed to vote for
each candidatei with a known probabilityPi (which is the
same among all voters), or abstain with probability
P0 = 1−∑m

i=1 Pi. We want to compute the probability that
a particular candidatec, 1≤ c ≤ m, wins the election by
plurality (see, e.g., [14], i.e., by receiving the maximum
number of votes over all other candidates, without
necessarily gaining the absolute majority. This problem
finds extensive application in ensemble classification in
pattern recognition (see, e.g., [6,11,9,8,7,13,5]) where
the “voters” are the classifiers and the “candidates” are
the classes that a target object should be classified in, with
the idea being that the class that receives the most votes
by the classifiers is arguably the “correct” class that the
object belongs to. In this paper, we develop a formula to
compute the winning probability under the above
plurality voting scenario and extend it also to account for

ties, i.e., for more than one candidate receiving the same
maximum number of votes.

We then show how this formula relates to another
problem, that of the computation of the average execution
time of frames of parallel mutual exclusion accesses. In
the latter problem, we consider a set (“frame”) ofn
simultaneous requests where each request asks randomly
for exclusive access to any ofm available non-shareable
(“critical”) resources Ri,1 ≤ i ≤ m, with probability
Pi,1 ≤ i ≤ m, or for non-exclusive access to a common
fully shareable (“non-critical”) resourceR0 with
probabilityP0 = 1−∑m

i=1 Pi. Any subset of these requests
can be executed in parallel, provided that they all access
the non-critical resourceR0 or they all access different
critical resourcesRi,1 ≤ i ≤ m. Otherwise, the execution
of any requests that access the same resourceR j for some
j, 1≤ j ≤ m, has to be serialized. We assume that each
access to resourcei,1 ≤ i ≤ m, takes timeDi, 0≤ i ≤ m,
to be serviced. The execution time (“frame duration”)T
of the original set of requests is the maximum time that
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any of them resources has to take in order to service its
own requests. More specifically, ifρi denotes the total
number of requests in the frame for resource
Ri,1 ≤ i ≤ m, then the total execution time or frame
durationT is given by:

T = max1≤i≤m(D0,ρi ·Di).

We want to compute the formula for theaverage
value ofT given that each of then requests in the frame
asks for resourceRi with probability Pi,0 ≤ i ≤ m. This
formula finds applications in systems performance
evaluation. For example, in computer architecture (see,
e.g., [3,4,10,15]), the set of then requests corresponds to
n “threads” of the same multithreaded program that are
executed in parallel byn separate processors or “cores.”
Them resources correspond to “critical sections” that are
protected by mutual exclusion “locks.” The shareable
resourceR0 corresponds to non-critical code executed by
the threads. The “frame” corresponds to threads executed
under “barrier synchronization.” As another example, in
computer networks ((see, e.g., [12]) and interconnection
networks (see, e.g., [2]), the frame corresponds to a set of
n (possibly empty) packets coming into a switch at the
same time to be routed to them outgoing channels of the
switch. Two or more incoming packets may request the
same outgoing channel (“critical resource”) and in that
case they have to be serialized. If a packet is empty, this
corresponds to a request for the shareable resourceR0.

In the above frame formulation, we observe that each
critical resource inRi,1 ≤ i ≤ m, can be considered as a
“candidate” and that each of then requests in the frame
can be considered as a “voter,” which “votes” for the
resource if it wants to access it (with probabilityPi,
1≤ i ≤ m). The shareable resourceR0 corresponds to the
abstention option in the voting scenario. Assuming all
durationsDi, 0 ≤ i ≤ m, are equal to 1, the probability
that a candidate (critical resource) or set of candidates
win the “election” with j votes, 1≤ j ≤ n, relates to the
probability that the duration of the frame is equal toj (the
exact relationship between the two probabilities, as well
as the effect of different durationsDi, 0≤ i ≤ m, is shown
in later sections).

An example of the assumed setup for the resource
requests in a frame is shown in Fig.1. In this example we
have a frame of 9 requests (Fig.1(a)), that ask access to
any of 3 available resourcesA,B,C. The absence of
request for any ofA,B,C is indicated byε. Assuming
DA = DB = DC = Dε = 1, the execution timeT is T = 3
(Fig. 1(b)) due to the serialization onA. Assuming
DA = 1,DB = 2,DC = 3,Dε = 1, the execution timeT is
T = 4 (Fig.1(c)) due to the serialization onB (the number
of requests forB is less than the number of requests forA,
but DB > DA). Assuming
DA = 1,DB = 2,DC = 3,Dε = 5, the execution timeT
will be T = 5 (Fig.1(b)) due to the domination ofDε .

The rest of the paper is organized as follows: We first
develop the formula (Section 2) for computing the

probability for a given candidate (or subset of candidates
in case of a tie) to win the plurality voting. Then we show
(Section 3) how this formula relates to the computation of
the average frame execution timeT in the case where all
durations Di,0 ≤ i ≤ m are equal to 1 (probabilities
Pi,1 ≤ i ≤ m are arbitrary, withP0 = 1−∑m

i=1Pi). Then
we extend the latter formula (Section 4) to account for
arbitrary critical durationsDi,1≤ i ≤ m, provided that the
non-critical durationD0 is equal to 1. Then we show
(Section 5) the modification needed to account for
arbitrary (critical or non-critical) durationsDi,0 ≤ i ≤ m.
An experimental evaluation of the formula in terms of
accuracy and time complexity is shown in Section 6 and
we conclude in Section 7.

Fig. 1: Execution of a frame with critical resourcesA,B andC: (a)
Request frame; (b) Execution assumingDA = DB = DC = Dε =
1 ; (c) Execution assumingDA = 1,DB = 2,DC = 3,Dε = 1 ; (d)
Execution assumingDA = 1,DB = 2,DC = 3,Dε = 5.

2 Computation of the winning probability for
plurality voting

In this section we deal with the problem of computing the
probability that a specific candidatec, 1 ≤ c ≤ m, wins
the election by plurality voting as described in the
Introduction. The winner candidatec has to receive a
number of votesj such that every other candidatei 6= c,
1≤ i ≤ m, receives a number of votes strictly less thanj.
In computing this probability, we actually consider first
that ties among winners are allowed, i.e., we compute the
probability that a given subsets of candidates from the set
C = {1,2, ...,m} tie as winners of the election (in an
|s|-way tie), with all other candidates receiving fewer
votes than any candidate ins. Then the probability that
the specific candidatec, 1≤ c ≤ m, is the sole winner of
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the election is simply going to be computed from the
latter formula by settings = {c}.

Consider a (nonempty) subsets ⊆C of candidates that
end up as winners in an|s|-way tie by receiving the same
maximum numberj of votes each. Since there aren
voters and each voter can vote for at most one candidate,
the product|s| · j cannot be greater thann. Given a subset
s ⊆ C, the probability that j voters vote for theith
candidate ins is (Psi)

j where Psi is the probability of
voting for the ith candidate ins. The first candidate in
subsets can receive j votes in

(n
j

)

ways, the second
candidate ins can receivej votes from the remaining
n− j voters in

(n− j
j

)

ways and theith candidate ins can
receive j votes from the remainingn− (i−1) j voters in
(n−(i−1) j

j

)

ways. Hence, the probabilityPD(s, j) that a set
of candidatess tie as winners in an|s|-way tie with each
candidate ins having receivedj votes and any other
candidate inC− s having received less thanj votes can be
written as:

PD(s, j) = (
|s|

∏
i=1

(

n− (i−1) j
j

)

{Psi
} j) ·PN(s̄, j) =

(
n!

j!(n− j)!
(n− j)!

j!(n−2 · j)!
. . .

(n− (|s|−1) j)!
j!(n−|s| · j)!

·
|s|

∏
i=1

{Psi
} j) ·PN(s̄, j)

=
n!

( j!)|s|(n−|s| · j)!

|s|

∏
i=1

{Psi
} j ·PN(s̄, j)

(1)

wherePN(s̄, j) is the probability of having at mostj − 1
votes for any candidate taken from the set ¯s = C− s, i.e.,
the probability that at mostj −1 of any remaining voters
vote for the same candidate from set ¯s, or abstain.

To compute probabilityPN(s̄, j), we proceed as
follows: the total number of remaining voters is
V = n− |s| · j. The maximum number of voters that can
vote for a candidate in set ¯s (non-winning candidate) is
min(V, j − 1). Let ik, k = 1,2, ...|s̄|, be the number of
votes that thekth candidate in ¯s receives. Since thekth
non-winning candidate can be voted by at most
min(V, j− 1) voters,ik can be at mostmin(V, j− 1). The
probability of thekth non-winning candidate receivingik
votes is{Ps̄k}

ik . The number of voters that are left to vote
for the kth non-winning candidate in ¯s is V −∑k−1

r=1 ir. So,
ik voters can vote for thek-th non-winning candidate in
(V−∑k−1

r=1 ir
ik

)

ways and each way has a probability of{Ps̄k}
ik

to occur. Therefore, the the probability ofik voters voting
for thekth non-winning candidate is:

min(V, j−1)

∑
ik=0

(

V −∑k−1
r=1 ir

ik

)

· {Ps̄k}
ik .

To account for abstention, the probability thatV −∑|s̄|
k=1 ik

voters abstain isP
V−∑|s̄|

k=1 ik
0 . Therefore, probabilityPN(s̄, j)

can be written as follows:

PN(s̄, j) =
min(V, j−1)

∑
i1=0

(

V
i1

)

{Ps̄1}
i1

min(V, j−1)

∑
i2=0

(

V − i1
i2

)

{Ps̄2}
i2

...
min(V, j−1)

∑
i|s̄|=0

(

V −∑|s̄|−1
k=1 ik

i|s̄|

)

{Ps̄|s̄|}
i|s̄|

·{P0}
V−∑|s̄|

k=1 ik

We can rewrite the above expression as:

PN(s̄, j) = ∑
0≤ik≤min(V, j−1)
i1+i2+...+i|s̄|≤V

((

(

V
i1

)(

V − i1
i2

)

. . .

(

V −∑|s̄|−1
k=1 ik

i|s̄|

)

)

·
|s̄|

∏
k=1

{Ps̄k}
ik · {P0}

V−∑|s̄|
k=1 ik )

(2)

The summation above is taken over all integer
partitions (see, e.g., [1]) of the numberV into |s̄| parts
where no part is larger thanmin(V, j − 1). After
simplification we have:

PN(s̄, j) = ∑
0≤ik≤<min(V, j−1)

i1+i2+...+i|s̄|≤V

(
V !

∏|s̄|
k=1 ik!(V −∑|s̄|

k=1 ik)!

·
|s̄|

∏
k=1

{Pk}
ik · {P0}

V−∑|s̄|
k=1 ik )

(3)

Using function f (X ,K) = XK

K! , Equation (3) can be
written as follows:

PN(s̄, j) = ∑
0≤ik≤<min(V, j−1)

i1+i2+...+i|s̄|≤V

(V ! f (P0,V −
|s̄|

∑
k=1

ik)
|s̄|

∏
k=1

f (Psi , ik))

(4)
The probability thenP TW(s) that a given nonempty

subsets of candidates from the setC = {1,2, ...,m} tie as
winners of the election, with all other candidates
receiving fewer votes than any candidate ins is given by

P TW(s) =

⌊ n
|s| ⌋

∑
j=1

PD(s, j) (5)
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Then the probabilityP W(c) that a specific candidate
c ∈ C is the sole winner of the election is computed from
the latter formula by settings = {c}, i.e.,

P W(c) = P TW({c}) =
n

∑
j=1

PD({c}, j) (6)

2.1 Computing probability P W(c) by a
recursive procedure

The complexity of the formula for probabilityP W(c) as
computed by Eqs. (6), (1), and (4) is determined by the
number of subsets ofC and the number of integer
partitions of each numberV (we exclude from this
complexity account the actual cost of the multiplications
needed for finding factorials, exponentiations, etc). A
generally faster way to compute thesame value for
P W(c) is by means of a recursive procedure
DOM(s, d, v, t), which is described below.

Given a subsets ⊆ C of candidates, a number of
received votesd, another subsetv ⊆C with v∩ s =∅, and
a number of voterst, procedure DOM(s, d, v, t)
computes recursively the probability that each candidate
in s receives exactlyd ≤ t/|s| votes and that each
candidate inv receives at mostd −1 votes. A pseudocode
of procedure DOM(s, d, v, t) is given below:

Procedure DOM(s, d, v, t)
L1: IF ((s ==∅) OR (t < 0) OR (d · |s|> t))

THEN return(0);
L2: Initialize p = 0 ;

L3: Seta = t!
(t−|σ |·d)! ∏|σ |

i=1 f (Pσi ,d);

L4: Initialize b = (P0)
t−|s|·d ;

L5: FOR each value of̂d from d −1 down to 1 DO{
L6: FOR each non-empty subsetσ of v DO {
L7: Updateb = b+DOM(σ , d̂, v−σ , t −|s| · d̂) ;
L8: }
L9: }
L10: Updatep = p+ a ·b ;
L11: Return(p);
End Procedure

Line L3 of DOM() computes the first part of Eq. (1)
and lines L4-L10 compute recursively (based on every
non-empty subsetσ of v) the part corresponding to
PN(s̄, j) and the total probabilityP TW(s) (Eq. (5)).

The initial call to procedure DOM() and the actual
computation ofP TW(s) is done by a driver procedure
TIEWIN(s, n, C) where n is the original number of
voters, andC is the original set of the candidates. The
pseudocode of procedure TIEWIN() is given below:

Procedure TIEWIN(s, n, C)
L1: Initialize p = 0;
L2: FOR each value ofj from 1 ton DO {
L3: Updatep = p+DOM(s, j, C− s, n) ;

L4: }
L5: Return(p);
End Procedure

Procedure TIEWIN() computes exactly the same
value of probabilityP TW(s) as the formula in Eq. (5). Its
complexity is the product of all numbers of subsets that
are encountered during the recursive calls. Actual
complexity counts and comparison with the complexity of
Eq. (5) are reported in the experimental results section.

3 Computation of average duration T of
frames of parallel mutual exclusion accesses

In this section we deal with the problem of computing the
average durationT of frames of parallel mutual exclusion
accesses, as described in the Introduction. We show how
the result computed in the previous section is involved in
the computation ofT . We start the computation of the
average execution timeT by assuming that all durations
Di,1 ≤ i ≤ m (whether critical or non-critical) are the
same (assumed to be 1).

We define thedominance degree j of a request frame
to be the maximum number of requests for the same
critical resource in the frame. A frame with dominance
degreej takes exactlyj time units to execute. A critical
resource that has been requestedj times in the frame is
referred to as adominant critical resource. In general,
there may be more than one dominant critical resources,
i.e., two or more critical resources may have the same
number j of occurrences in the frame. Therefore, in
general, we consider that a subsets ⊆ C of critical
resources are dominant in the frame.

Each critical resource inC can be considered as a
“candidate” and that each of the requests in the frame can
be considered as a “voter,” which “votes” for the resource
if it wants to access it. The critical resources that are
dominant in the frame correspond to the subsets of
candidates that tie as winners of the “election.” The
dominant degree of the frame corresponds to the number
of votes that each candidate ins has received. Therefore
the probability P DOM( j) that a frame has dominance
degree j > 0 and therefore experiences a duration ofj
time units is equal to the probability given by procedure
DOM(s, j,C − s,n) after this probability has been
summed over all nonempty subsetss of C. Namely,

P DOM( j) = ∑
s∈C,s 6=∅

DOM(s, j, C− s, n) (7)

The average frame durationT of a request frame is
then given by:

T =
n

∑
j=1

P DOM( j) · j+(P0)
n

(8)
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The last additive term is due to the fact that if no
request in the frame asks for a critical resource
(equivalently, the frame has dominance degreej = 0), the
duration of the frame is still 1 time unit.

A procedure TD() for the computation ofT following
equations (8) and (7) and using procedure DOM() as a
subroutine is given below:

Procedure TD (n,C)
L1: Initialize T = (P0)

n ;
L2: FOR each value ofj from 1 ton DO {
L3: FOR each non-empty subsetσ of C DO {
L4: UpdateT = T + j ·DOM(σ , j, C−σ , n) ;
L5: }
L6: }
L7: Return(T );
End Procedure

4 Computation of average T under arbitrary
critical durations when non-critical duration
is 1.

In this section, we extend the computation of the average
for the case where the durations of the service requests by
the resources are not equal to the unit time, but can take
arbitrary valuesDi,1≤ i ≤ m. We show the modifications
needed in procedures DOM() and TD(). We start by
assuming that the duration of the non-critical access is
equal to 1 (which is the smallest possible duration), i.e.,
D0 = 1, so that the non-critical access never dominates
the duration time by “hiding” the contribution of the
critical resource durations. Later in Section 4, we
eliminate that restriction too.

The primary changes needed in procedures DOM()
and TD() are the following: (a) the dominance degreej is
not anymore an integer in the range of 1 ton but is now a
multiple of some valueDi,1 ≤ i ≤ m (we keep the term
“degree” for simplicity, although this is now weighted by
the duration values); and (b) the recursion is not done
simply on subsets ofC (the set of the indicesj,
1 ≤ j ≤ m, of the critical resources) but on subsets ofC
that contain resources whose durations divide the target
dominance degree that is considered each time.

The modified driver procedure TD(), called now
TDU(), is given below:

Procedure TDU (n,C)
L1: Initialize T = (P0)

n ;
L2: Initialize setU to be the set of all distinct

critical duration valuesDi, 1≤ i ≤ m ;
L3: Initialize setV to∅ ;
L4: FOR each value ofj from 1 ton DO
L5: FOR each durationd ∈U DO {
L6: SetD = j ·d ;
L7: IF D ∈V THEN continue; ELSEV =V ∪{D} ;
L8: Construct sets such that
L9: s = {k : k ∈C andDk dividesD} ;

L10: FOR each non-empty subsetσ of s DO {
L11: UpdateT = T +D ·DOMU(σ , D, C−σ , n) ;
L12: }
L13: }
L14: }
L15: Return(T );
End Procedure

The modified recursive procedure DOM(), called now
DOMU(), is given below:

Procedure DOMU (s, d, v, t)
L1: IF ((s ==∅) OR (t < 0)) THEN return(0);
L2: Compute the sumq of the quotientsd/D j,

for all j ∈ s ;
L3: IF (q > t) THEN return(0);
L4: Initialize p = 0 ;
L5: Seta = PD(d,σ , t);
L6: Initialize b = (P0)

t−q ;
L7: FOR each value of̂D from d −1 down to 1 DO{
L8: Construct setr such that
L9: r = { j : j ∈ v andD j dividesD̂} ;
L10: FOR each non-empty subsetσ of r DO {
L11: Updateb = b+DOMU(σ , D̂, v−σ , t − q) ;
L12: }
L13: }
L14: Updatep = p+ a ·b ;
L15: Return(p);
End Procedure

5 Computation of average T under arbitrary
critical or non-critical durations

In this section, we allow the durationD0 of the
non-critical access to be arbitrary too. We note that the
recursive procedure DOMU() cannot now be called for
every value ofD as in line L5 of TDU() because the
contribution to the average durationT of DOMU() in
Line L11 of TDU() is not necessarilyD but it may beD0
instead, if D0 > D and somewhere in the recursion of
DOMU() at least one non-critical access is involved in the
computation. For this reason we proceed as follows:

We parameterize procedure DOMU() with the
probability of the non-critical accessPε and create a new
procedure DOMG(s,d,v, t,Pε ) that technically differs
from DOMU() only in the extra parameterPε . We have
then procedure DOMG() called by a new driver procedure
TDG(). For all target durationsD (line L6 of TDG()) that
are smaller than D0 we call procedure
DOMG(s,d,v, t,Pε) by settingd to D, s to the current
subsetσ , v to C − σ , t to n and Pε to 0 (line L12 of
TDG()) so that DOMG() computes the probability of
attaining the dominance degreeD without any
non-critical accesses (they are forced out of the
computation byPε = 0). The contribution to the average
T for the case where the currently targeted durationD is
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less thanD0 and non-critical accesses are absent is found
then by multiplyingD with the probability computed by
DOMG() (line L13 of TDG()). The contribution to the
averageT for the case where the currently targeted
durationD is less thanD0 and non-critical accesses are
present is found by multiplyingD0 with the probability
computed by DOMG() with parameterPε set toP0 minus
the probability computed by DOMG() with parameterPε
set to 0 (line L15 of TDU()). Otherwise, ifD ≥ D0, the
contribution is computed as in TDU(), namely by calling
DOMG() with parameterPε set toP0 (line L17 of TDG()).
Procedures TDG() and DOMG() are given below:

Procedure TDG (n,C)
L1: Initialize T = (P0)

n ·D0 ;
L2: Initialize setU to be the set of all distinct

critical duration valuesDi, 1≤ i ≤ m ;
L3: Initialize setV to∅ ;
L4: FOR each value ofj from 1 ton DO
L5: FOR each durationd ∈U DO {
L6: SetD = j ·d ;
L7: IF D ∈V THEN continue; ELSEV =V ∪{D} ;
L8: Construct sets such that
L9: s = {k : k ∈C andDk dividesD} ;
L10: FOR each non-empty subsetσ of s DO {
L11: IF D < D0 THEN
L12: Sety = DOMG(σ , D, C−σ , n, 0) ;
L13: UpdateT = T +D · y ;
L14: Setz = DOMG(σ , D, C−σ , n, P0) ;
L15: UpdateT = T +D0 · (z− y) ;
L16: ELSE
L17: UpdateT = T +D ·DOMG(σ ,D,C−σ ,n,P0);
L18: }
L19: }
L20: }
L21: Return(T );
End Procedure

Procedure DOMG (s, d, v, t, Pε )
L1: IF ((s ==∅) OR (t < 0)) THEN return(0);
L2: Compute the sumq of the quotientsd/D j,

for all j ∈ s ;
L3: IF (q > t) THEN return(0);
L4: Initialize p = 0 ;
L5: Seta = PD(d,σ , t);
L6: Initialize b = (Pε)

t−q ;
L7: FOR each value of̂D from d −1 down to 1 DO{
L8: Construct setr such that
L9: r = { j : j ∈ v andD j dividesD̂} ;
L10: FOR each non-empty subsetσ of r DO {
L11: Updateb = b+DOMG(σ , D̂, v−σ , t − q, Pε) ;
L12: }
L13: }
L14: Updatep = p+ a ·b ;
L15: Return(p);
End Procedure

Table 1: Timing comparison (sec) of Eq. (5) and TIEWIN()
n m Eq.8 TD
8 4 0 0
8 6 0 0
8 8 0.016 0.008
16 4 0.001 0
16 6 0.032 0.016
16 8 1.764 0.188
24 4 0.004 0.004
24 6 0.296 0.092
24 8 37.436 1.984
32 4 0.016 0.008
32 6 1.584 0.404
32 8 342.16 12.66

6 Experimental results

All procedures are implemented in C. The time
requirements of the procedures are computed on a Dell
Precision T7500 workstation with dual Intel Xeon Quad
core E5620 2.40GHz processors with 6GB RAM. Table1
shows the comparison of the time requirement of the
computation of the winning voting probability by Eq. (5)
vs. its computation by procedure TIEWIN(). As can be
seen, procedure TIEWIN() is significantly faster for
larger number of candidatesm and votersn.

The rest of the results concern the frame execution
time. We demonstrate by simulation the correctness of the
values computed by procedure TD() for the unit durations
case and procedure TDG() for the unequal durations case.

For the unit durations case, we consider different
values for the numbern of requests in the frame,
n = 2,4,8,16 and different values for the numberm of
critical resources,m = 1,2,3,4. For each value ofn, we
generated randomly 1000 frames for eachn, where in
each request in the frame, either non-critical code is
executed with probabilityPε (Pε = 0.5,0.6,0.7,0.8,0.9)
or one of the m critical resources is accessed with
probability PCi = (1 − Pε)/m, 1 ≤ i ≤ m. Then we
compute the averageT over 1000 frames.

Table 2 shows the average simulated value of the
completion time (assuming a left-to-right priority policy
for resolution of conflicts for the same critical resource)
(column labeled by “Sim.”) and the average value ofT
obtained by TD (column labeled by TD). As can be seen,
the values computed by TD are corroborated by the
simulation.

For the unequal durations case, we assume a value of
m = 2 critical resources with probabilities
P0 = 0.4, P1 = 0.4, P2 = 0.2 for a first scenario and
P0 = 0.4, P1 = 0.1, P2 = 0.2 for a second scenario. For
each of these cases, we vary the durations to
[D0 = 1, D1 = 4, D2 = 2], [D0 = 1, D1 = 2, D2 = 4],
[D0 = 3, D1 = 4, D2 = 2] and [D0 = 3, D1 = 2, D2 = 4].
The results (for 1000 random frames) are shown in Table
3. As can be seen again, the values computed by TDG are
corroborated by the simulation.

Finally, Table4 gives the time that procedure TDG()
takes for unequal durations whenD0, D1, D2 take values
from the set{[4,2,1], [400,4,1], [4,400,3], [4,400,100]},
while all remaining durationsDi,3 ≤ i ≤ m, are set to
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Table 2: AverageT for unit durations
n = 2 requests

m = 1 m = 2 m = 3 m = 4
Pε Sim. TD Sim. TD Sim. TD Sim. TD
0.5 1.2525 1.2500 1.1274 1.1250 1.0843 1.0833 1.0640 1.0625
0.6 1.1626 1.1600 1.0821 1.0800 1.0547 1.0533 1.0407 1.0400
0.7 1.0919 1.0900 1.0462 1.0450 1.0308 1.0300 1.0224 1.0225
0.8 1.0409 1.0400 1.0203 1.0200 1.0130 1.0133 1.0099 1.0100
0.9 1.0103 1.0100 1.0052 1.0050 1.0035 1.0033 1.0026 1.0025

n = 4 requests
m = 1 m = 2 m = 3 m = 4

Pε Sim. TD Sim. TD Sim. TD Sim. TD
0.5 2.0675 2.0625 1.6131 1.6094 1.4339 1.4329 1.3372 1.3359
0.6 1.7348 1.7296 1.4133 1.4096 1.2890 1.2868 1.2230 1.2208
0.7 1.4433 1.4401 1.2416 1.2410 1.1683 1.1665 1.1275 1.1272
0.8 1.2118 1.20.96 1.1129 1.1116 1.0765 1.0761 1.0582 1.0578
0.9 1.0556 1.0561 1.0291 10290 1.0197 1.0195 1.0149 1.0147

n = 8 requests
m = 1 m = 2 m = 3 m = 4

Pε Sim. TD Sim. TD Sim. TD Sim. TD
0.5 4.0071 4.0039 2.7939 2.7894 2.3388 2.3346 2.0923 2.0863
0.6 3.2226 3.2168 2.3180 2.3134 1.9754 1.9712 1.7872 1.7824
0.7 2.4595 2.4576 1.8542 1.8520 1.6230 1.6201 1.4937 1.4921
0.8 1.7671 1.7678 1.4375 1.4366 1.3111 1.3103 1.2423 1.2418
0.9 1.2304 1.2305 1.1252 1.1248 1.0870 1.0861 1.0664 1.0657

n = 16 requests
m = 1 m = 2 m = 3 m = 4

Pε Sim. TD simul TD Sim. TD Sim. TD
0.5 8.0020 8.0000 5.1223 5.1196 4.0796 4.0754 3.5226 3.5181
0.6 6.4039 6.403 4.2014 4.1976 3.3943 3.3918 2.9612 2.9591
0.7 4.7996 4.8033 3.2602 3.2611 2.6873 2.6896 2.3779 2.3800
0.8 3.2284 3.2281 2.3180 2.3183 1.9752 1.9749 1.7884 1.7864
0.9 1.7828 1.7853 1.4485 1.4486 1.3220 1.3205 1.2503 1.2508

Di = 1. It can be seen that the time depends also now on
the magnitude of the durations.

7 Conclusion

We have shown how to compute the probability that a
particular candidatec out of m candidates, 1≤ c ≤ m,
wins by plurality voting an election conducted byn
voters, where each voter either votes for a single
candidatei, 1 ≤ i ≤ m, with probability Pi, or abstains
with probability P0 = 1−∑m

i=1 Pi. We have then showed
how this result is involved in the computation of the
average execution time of a frame ofn simultaneous
requests, where each request randomly asks for exclusive
access to any ofm available non-shareable resources with
probabilityPi,1≤ i ≤ m, or for non-exclusive access to a
common fully shareable resource with probability
P0 = 1−∑m

i=1 Pi. Each resource access is allowed to have
a different durationDi, 0 ≤ i ≤ m. Applications of the
formulas developed include analysis of ensemble
classifiers and systems performance evaluation (critical
sections in multithreaded programs with barrier

synchronization, switch delay in computer networks and
interconnection networks).
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