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Abstract: In this paper we first show how to compute the probability thgiarticular candidate out of m candidates, K ¢ < m,
wins by plurality voting an election conducted byoters, where each voter either votes for a single candiddteC i < m, with
probability R, or abstains with probabilitfp = 1— ", R. We then show how this result is involved in the computatibthe average
execution time of a set (“frame”) afl simultaneous requests, where each request randomly askgdoisive access to any af
available non-shareable resources with probabRityt <i < m, or for non-exclusive access to a common fully shareableures
with probabilityPy = 1— zi";l R. We also allow that each resource access has a differerttatuis, 0 < i < m. The formulas that we
develop have application in the analysis and evaluatiomsémble classifiers in pattern recognition and classifinaand in systems
performance evaluation (critical sections in multithrecgbrograms with barrier synchronization, switch delayamputer networks
and interconnection networks).

Keywords: Ensemble classifiers; Plurality voting; Performance eaédn; Mutual exclusion; Critical sections; Multi-thresutl
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1 Introduction ties, i.e., for more than one candidate receiving the same

. . . . maximum number of votes.
We consider an election witin candidates and voters.

Each voter is allowed to vote only for a single candidate We then show how this formula relates to another
1 <i < m, or abstain. Each voter is assumed to vote forproblem, that of the computation of the average execution
each candidatewith a known probability? (which isthe time of frames of parallel mutual exclusion accesses. In
same among all voters), or abstain with probability the latter problem, we consider a set (“frame”) wof
Py=1-3";PR. We want to compute the probability that simultaneous requests where each request asks randomly
a particular candidate, 1 < ¢ < m, wins the election by for exclusive access to any af available non-shareable
plurality (see, e.g.,14], i.e., by receiving the maximum (“critical”) resourcesR;,1 < i < m, with probability
number of votes over all other candidates, withoutP,1 <i < m, or for non-exclusive access to a common
necessarily gaining the absolute majority. This problemfully shareable (“non-critical”’) resourceRy with
finds extensive application in ensemble classification inprobabilityPy = 1— y{"; R. Any subset of these requests
pattern recognition (see, €.96,11,9,8,7,13,5]) where  can be executed in parallel, provided that they all access
the “voters” are the classifiers and the “candidates” arethe non-critical resourc&y or they all access different
the classes that a target object should be classified in, witleritical resource®;,1 < i < m. Otherwise, the execution
the idea being that the class that receives the most votesf any requests that access the same resdrjréar some

by the classifiers is arguably the “correct” class that thej, 1 < j < m, has to be serialized. We assume that each
object belongs to. In this paper, we develop a formula toaccess to resourgel < i < m, takes timeD;, 0 <i < m,
compute the winning probability under the above to be serviced. The execution time (“frame duratiom”)
plurality voting scenario and extend it also to account forof the original set of requests is the maximum time that
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any of them resources has to take in order to service itsprobability for a given candidate (or subset of candidates
own requests. More specifically, ffi denotes the total in case of a tie) to win the plurality voting. Then we show

number of requests in the frame for resource(Section 3)how this formula relates to the computation of
R,1 <i < m, then the total execution time or frame the average frame execution tifiein the case where all

durationT is given by: durationsD;,0 < i < m are equal to 1 (probabilities
R.,1 <i < mare arbitrary, withhp = 1— ", R). Then
T = maxg<i<m(Do, pi - Di). we extend the latter formula (Section 4) to account for

arbitrary critical duration®;,1 < i < m, provided that the

We want to compute the formula for thaverage  non-critical durationDg is equal to 1. Then we show
value of T given that each of tha requests in the frame (Section 5) the modification needed to account for
asks for resourc® with probability R,0 <i <m. This  arbitrary (critical or non-critical) duratior®;,0 < i < m.
formula finds applications in systems performanceAn experimental evaluation of the formula in terms of
evaluation. For example, in computer architecture (seeaccuracy and time complexity is shown in Section 6 and
e.g., B,4,10,15]), the set of then requests corresponds to we conclude in Section 7.
n “threads” of the same multithreaded program that are
executed in parallel by separate processors or “cores.”
Them resources correspond to “critical sections” that are
protected by mutual exclusion “locks.” The shareable
resourceRy corresponds to non-critical code executed by [AT=TATATTe]-TcTe] [A]= LI
the threads. The “frame” corresponds to threads executed = =
under “barrier synchronization.” As another example, in
computer networks ((see, e.glZ]) and interconnection
networks (see, e.g.2]), the frame corresponds to a set of
n (possibly empty) packets coming into a switch at the
same time to be routed to tme outgoing channels of the rlr2r3rdr5r6r7r8r9 rlr2r3rd 5617 18 19
switch. Two or more incoming packets may request the [A]e ele]lecl | [A
same outgoing channel (“critical resource”) and in that A B ]
case they have to be serialized. If a packet is empty, this A B
corresponds to a request for the shareable resérce B

In the above frame formulation, we observe that each
critical resource iIrR;,1 <i < m, can be considered as a
“candidate” and that each of therequests in the frame () ()
can be considered as a “voter,” which “votes” for the
resource if it wants to access it (with probabili§y,  rig 1: Execution of a frame with critical resourcasB andC: (a)
1 <i < m). The shareable resourBg corresponds to the Request frame: (b) Execution assumbg = Dg = D¢ = Ds =
abstention option in the voting scenario. Assuming all 1 ; (c) Execution assuminga = 1,Dg = 2,D¢ = 3,D¢ = 1 ; (d)
durationsD;, 0 <i < m, are equal to 1, the probability Execution assumin®a = 1,Dg = 2,D¢ = 3,D¢ = 5.
that a candidate (critical resource) or set of candidates
win the “election” with j votes, 1< j < n, relates to the
probability that the duration of the frame is equaljt@ihe
exact relationship between the two probabilities, as well
ﬁ]s&gresfgi%tocg;;!ﬁerem duratiofy, <1< m, Is shown 2 Computati on of the winning probability for

An example of the assumed setup for the resourcédlurality voting
requests in a frame is shown in Fig.In this example we
have a frame of 9 requests (Fiifa)), that ask access to In this section we deal with the problem of computing the
any of 3 available resourced,B,C. The absence of probability that a specific candidatge 1 < ¢ < m, wins
request for any ofA,B,C is indicated bye. Assuming the election by plurality voting as described in the
Da = Dg = D¢ = D¢ = 1, the execution tim& isT = 3 Introduction. The winner candidate has to receive a
(Fig. 1(b)) due to the serialization oM. Assuming number of voteg such that every other candiddte c,
Da = 1,Dg = 2,Dc = 3,D, = 1, the execution timd is 1 <i < m, receives a number of votes strictly less thjan
T =4 (Fig. 1(c)) due to the serialization d& (the number  In computing this probability, we actually consider first
of requests foB is less than the number of requestsAor  that ties among winners are allowed, i.e., we compute the

rlr2r3rdr57r6r7 r81r9 rlr2r3rdr57r6r7 r8 r9

(a) (b)

e|B| ¢
B

A

mfofofo]n
>

mimgmim

but Dg > Da). Assuming  probability that a given subsebf candidates from the set
Da = 1,Dg = 2,Dc = 3,D¢ = 5, the execution timer C={1,2,...,m} tie as winners of the election (in an
will be T =5 (Fig. 1(b)) due to the domination d.. |s-way tie), with all other candidates receiving fewer

The rest of the paper is organized as follows: We firstvotes than any candidate 8 Then the probability that
develop the formula (Section 2) for computing the the specific candidate 1 < ¢ < m, is the sole winner of
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the election is simply going to be computed from the To account for abstention, the probability thvat- Zk 1k
latter formula by setting= {c}.

Consider a (nonempty) subset C of candidates that
end up as winners in gs|-way tie by receiving the same
maximum numberj of votes each. Since there are
voters and each voter can vote for at most one candidate,

voters abstain iE’O % e, Therefore, probability\ (s, j)
can be written as follows:

the products| - j cannot be greater than Given a subset A _mm(v’j_l) V . ilmi”(w_l) V—i B iz
s C C, the probability thatj voters vote for theith (51) = iZO P} iZO [ P}
candidate ins is (Py)! wherePs is the probability of = S
voting for theith candidate ins. The first candidate in mn(VI=h v g8, .
subsets can receivej votes in () ways, the second 2 is {Psg ¥
candidate ins can receivej votes from the remaining 5=
n— j voters in(”*‘) ways and theth candidate irs can AP}V Sk
receivej votes from the remaining — (i — 1)j voters in
(”*(J Di ') ways. Hence, the probabilifih(s, j) that a set We can rewrite the above expression as:
of candidates tie as winners in ams|-way tie with each
candidate ins having receivedj votes and any other
candidate irC — shaving received less thgnvotes can be
written as: _ . VY /V —i1
as= s ()L
O<i<min(v,j-1) N1 12
i1+io+.. +i§<V
, S m—(i—1)j i _
PD<s,J>=<_|'l( TR A - (- 5 .k>) @
= , , g
( n! (n—j)! m(n—(|s|—1)J)! § _ .
jiin=jtjt(n=2-Hr  ji(n—|s-j)! O TP {Ro}Y il
Is| _ k=1
'I_l{Pq}J)'PN(S_aj) . : :
i= The summation above is taken over all integer
Is| partitions (see, e.g.1]) of the numberV into |§ parts
‘S‘ rl{ MRy where no part is larger thamin(V,j — 1). After
( |S| ML simplification we have:
whereP\(S, j) is the probability of having at mogt— 1 RG] = ( V!
votes for any candidate taken from the setC—s, i.e., ) 0cie gnv " ﬂ ik'(V—Z‘ST i)!
the probability that at most— 1 of any remaining voters |1Jkr.2i +<. 71<v ' k=1Tem
vote for the same candidate from sgor abstain. (3)
To compute probabilityPy(s,j), we proceed as ) k. (P Vos ik
follows: the total number of remaining voters is Ijl{Pk} (R} )

V =n—|g-]j. The maximum number of voters that can

vote for a candidate in set (non-winning candidate) is . . XK .

min(V,j — 1). Let iy, k = 1,2,...|§], be the number of ~Using functionf(X,K) = %, Equation §) can be
votes that thekth candidate irs Teceives. Since theth ~ Written as follows:

non-winning candidate can be voted by at most

min(V, j — 1) voters,ix can be at mosmin(V, j—1). The . &l Sl
prot(>abjility )of thekth I(non—winning candicgaté rec?aivirig A )) = > (VI (Ro,V — Z k) IT P ik))
votes is{Ps }'k. The number of voters that are left to vote Ofl[‘ﬁ;im:(l\éi\,l)

for the kth non-winning candidate inisV — zr 1|r So, 4)
ik voters can vote for th&th non-winning candidate in The probability therPy(s) that a given nonempty

(V—Zi:r:;iir) ways and each way has a probability{&, }'x subses of candidates from the s€t= {1,2,...,m} tie as
to occur. Therefore, the the probability igfvoters voting ~ Winners of the election, with all other candidates

for thekth non-winning candidate is: receiving fewer votes than any candidatesis given by
Vi ke, | L)
z < Er 1 r) '{Ps}}lk- PTw(S) = PD(Sal) (5)
=) =
(@© 2018 NSP
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Then the probabilityP(c) that a specific candidate L4: }
c € C is the sole winner of the election is computed from L5: Return();
the latter formula by setting= {c}, i.e., End Procedure

n . Procedure TIEWIN() computes exactly the same

Pw(c) =Prw({c}) = ;%({C}’J) (6)  value of probabilityPrw(s) as the formula in Eq.5). Its
1= complexity is the product of all numbers of subsets that
are encountered during the recursive calls. Actual
. - complexity counts and comparison with the complexity of
2.1 Computing probability PW(C) by a Eq. 6) are reported in the experimental results section.

recursive procedure

The complexity of the formula for probabilitw(c) as : :
computed by Eqgs.g), (1), and @) is determined by the 3 Computation of averageduration T of

number of subsets o€ and the number of integer framesof parallel mutual exclusion accesses

partitions of each numbe¥ (we exclude from this

complexity account the actual cost of the multiplications In this section we deal with the problem of computing the

needed for finding factorials, exponentiations, etc). Aaverage duratiofi of frames of parallel mutual exclusion

generally faster way to compute tteame value for  accesses, as described in the Introduction. We show how

Pw(c) is by means of a recursive procedure the result computed in the previous section is involved in

DOM(s, d, v, t), which is described below. the computation off. We start the computation of the
Given a subses C C of candidates, a number of average execution timé by assuming that all durations

received votesd, another subsetC C with vns= &, and Di,1 < i < m (whether critical or non-critical) are the

a number of voterst, procedure DOM§ d, v, t) same (assumed to be 1).

computes recursively the probability that each candidate We define thelominance degree j of a request frame

in s receives exactlyd < t/|s| votes and that each to be the maximum number of requests for the same

candidate inv receives at mosd — 1 votes. A pseudocode critical resource in the frame. A frame with dominance

of procedure DOM§, d, v, t) is given below: degreej takes exactlyj time units to execute. A critical
resource that has been requesidimes in the frame is
Procedure DOM(s, d, v, t) referred to as alominant critical resource. In general,
L1:IF ((s==2)OR t <0)OR " s| > 1)) there may be more than one dominant critical resources,
_THEN return(0); i.e., two or more critical resources may have the same
L2: Initialize p=0 ; number j of occurrences in the frame. Therefore, in
L3: Seta= W"m!ﬂi‘ilf(%,d); general, we consider that a subset C of critical
L4: Initialize b = (Po)t—\s\-d : resources are dominantin 'ghe frame. _
L5: FOR each value of fromd — 1 down to 1 DO ) Each c,fmcal resource i€ can be coq5|dered as a
L6: FOR each non-empty subsebf v DO { candldgte and thaaeach"of the rfques'f:s in the frame can
L7:  Updateb—b+DOM(c, d, v—ao, t—|s -d) be considered as a “voter,” which “votes” for the resource
L8 } » ’ if it wants to access it. The critical resources that are
ng} dominant in the frame correspond to the subsetf

candidates that tie as winners of the “election.” The
dominant degree of the frame corresponds to the number
of votes that each candidate srhas received. Therefore
the probability Ppom(j) that a frame has dominance

Line L3 of DOM() computes the first part of Eqr)(  degreej > 0 and therefore experiences a durationjof
and lines L4-L10 compute recursively (based on everylime units is equal to the probability given by procedure
non-empty subsetr of V) the part corresponding to DOM(s,j,C —s,n) after this probability has been
P (S, j) and the total probabilitPrw (s) (Eq. 6)). summed over all nonempty subsstsf C. Namely,

The initial call to procedure DOM() and the actual
computation ofPtw(s) is done by a driver procedure . .

TIEWIN(s, n, C) wﬁwgren is the original number of Poow(j) = DOM(s, j,C—s n) (7
voters, andC is the original set of the candidates. The seC.s£e
pseudocode of procedure TIEWIN() is given below:

le: Updatep=p+a-b;
L11: Returnf);
End Procedure

The average frame duratioh of a request frame is

Procedure TIEWIN(s, n, C) then given by:
L1: Initialize p=0;

L2: FOR each value of from 1 ton DO { T—
L3: Updatep=p+DOM(s, j, C—s, n);

3 Ppom(j) - j+ (Py)" (8)

=1
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The last additive term is due to the fact that if no L10:
request in the frame asks for a critical resourcelL11:

(equivalently, the frame has dominance degree0), the
duration of the frame is still 1 time unit.

A procedure TD() for the computation @f following
equations § and () and using procedure DOM() as a
subroutine is given below:

Procedure TD (n,C)

L1: Initialize T = (Py)" ;

L2: FOR each value of from 1 ton DO {

L3: FOR each non-empty subsetof C DO {
L4: UpdateT =T+ j-DOM(ag, j,C—0, n);
L5: }

L6: }

L7: Return{);

End Procedure

4 Computation of average T under arbitrary
critical durations when non-critical duration
isl.

In this section, we extend the computation of the averadg 11: Updateb = b+DOMU(o, D, v— 0, t —q)

FOR each non-empty subsebf sDO {
UpdateT =T +D-DOMU(o, D, C—0, n);

L12:

L13:}

L14:}

L15: Return();

End Procedure

The modified recursive procedure DOM(), called now
DOMUY(), is given below:

Procedure DOMU (s, d, v, t)

L1: IF ((s== @) OR (t < 0)) THEN return(0);

L2: Compute the sum of the quotientsl/Dj,
forall j €s;

IF (g >t) THEN return(0);

Initialize p=0;

Seta=PD(,o,t);

L3:
L4:
L5:

L6: Initialize b= (Py)t~9;

L7: FOR each value d fromd — 1 down to 1 DO{
L8: Construct set such that

L9: r={j:je€vandD; dividesD} ;

L10: FOR each non-empty subseof r DO {

for the case where the durations of the service requests by1 . }
the resources are not equal to the unit time, but can take 1 3-

arbitrary value®;, 1 < i < m. We show the modifications

L14: Updatep=p+a-b;

needed in procedures DOM() and TD(). We start by 15: Returnp);
assuming that the duration of the non-critical access iSsnd Procedure

equal to 1 (which is the smallest possible duration), i.e.

Do = 1, so that the non-critical access never dominates

the duration time by “hiding” the contribution of the

critical resource durations. Later in Section 4, we

eliminate that restriction too.

5 Computation of average T under arbitrary
critical or non-critical durations

The primary changes needed in procedures DOM()

and TD() are the following: (a) the dominance degjeg
not anymore an integer in the range of Intbut is now a
multiple of some valu®;,1 <i < m (we keep the term
“degree” for simplicity, although this is now weighted by

In this section, we allow the duratioy of the
non-critical access to be arbitrary too. We note that the
recursive procedure DOMU() cannot now be called for
every value ofD as in line L5 of TDU() because the

the duration values); and (b) the recursion is not donefOntribution to the average duratioh of DOMU() in

simply on subsets ofC (the set of the indicesj,
1 < j < m, of the critical resources) but on subsetsOof

Line L11 of TDU() is not necessarilp but it may beDg
instead, ifDg > D and somewhere in the recursion of

that contain resources whose durations divide the targdp©@MU() at least one non-critical access is involved in the

dominance degree that is considered each time.
The modified driver procedure TD(), called
TDU(), is given below:

Procedure TDU (n,C)

L1: Initialize T = (Py)" ;

L2: Initialize setU to be the set of all distinct
critical duration value®;, 1<i <m;

L3: Initialize setV to & ;

L4: FOR each value of from 1 ton DO

L5: FOR each duratiod € U DO {

now

L6: SetD=j-d;

L7: IFD eV THEN continue; ELSEV =V U{D} ;
L8: Construct sessuch that

L9: s={k:ke C andDy dividesD} ;

computation. For this reason we proceed as follows:

We parameterize procedure DOMU() with the
probability of the non-critical acce$% and create a new
procedure DOM& d,v,t,P;) that technically differs
from DOMUY() only in the extra parametd,. We have
then procedure DOMG() called by a new driver procedure
TDG(). For all target duration® (line L6 of TDG()) that
are smaller than Dy we call procedure
DOMG(s,d,Vv,t,P) by settingd to D, s to the current
subsetg, vio C— g, t ton andP: to 0 (line L12 of
TDG()) so that DOMG() computes the probability of
attaining the dominance degre® without any
non-critical accesses (they are forced out of the
computation byP; = 0). The contribution to the average
T for the case where the currently targeted durafiois
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less tharDy and non-critical accesses are absent is found Table1: Timing comparison (sec) of Eg5Xand TIEWIN()
then by multiplyingD with the probability computed by
DOMG() (line L13 of TDG()). The contribution to the
averageT for the case where the currently targeted
durationD is less tharDg and non-critical accesses are
present is found by multiplyingpg with the probability
computed by DOMG() with parameték set toPy minus
the probability computed by DOMG() with parametr
set to 0 (line L15 of TDU()). Otherwise, D > Dy, the
contribution is computed as in TDU(), namely by calling
DOMG() with parameteP; set toPy (line L17 of TDG()).
Procedures TDG() and DOMG() are given below:

Procedure TDG (n,C)

L1
L2

L3
L4

> Initialize T = (Py)"- Do ;

: Initialize setU to be the set of all distinct
critical duration value®;, 1 <i <m;

: Initialize setV to & ;

: FOR each value of from 1 ton DO

L5: FOR each duratiod € U DO {

L6: Setb=j-d;

L7: IFD eV THEN continue; ELSE/ =V U{D};
L8: Construct ses such that

L9: s={k: ke CandDy dividesD} ;

L10: FOR each non-empty subsebf sDO {

L11: IFD < Dg THEN

L12: Sety=DOMG(g, D, C—0, n, 0);

L13: UpdateT =T+D-y;

L14: Setz=DOMG(o, D,C—o0o, n, Ry) ;
L15: UpdateT =T +Dg- (z—Y) ;

L16: ELSE

L17: UpdateT =T +D-DOMG(0,D,C— a,n,R);
L18: }

L19:}

L20:}

L21: Return();

End Procedure

Procedure DOMG (s, d, v, t, P;)

L1:
L2:

L3:
L4:
L5:
L6:
L7:
L8:
L9:

L1
L1
L1
L1

IF ((s== o) OR { < 0)) THEN return(0);
Compute the sum of the quotientsl/Dj,
forall j €s;

IF (g >t) THEN return(0);
Initialize p=0 ;
Seta=PD({, o,t);
Initialize b = (P;)t9;
FOR each value dd fromd — 1 down to 1 DO{

Construct set such that

r={j:j€vandD; dividesD} ;

0: FOR each non-empty subseof r DO {
1: Updateb=b+DOMG(a, D, v—0,t—q, P;) ;
2:}
3:}

L14: Updatep=p+a-b;

L1

5: Return);

End Procedure

n
8
8
8
16
16
16
24
24
24
32
32
32

m | Eqs8

0

0
0.016
0.001
0.032
1.764
0.004
0.296
37.436
0.016
1584
342.16

TD
0
0
0.008
0

0.016
0.188
0.004
0.092
1.984
0.008
0.404
12.66

OO BROOE®OON®O N

6 Experimental results

All procedures are implemented in C. The time
requirements of the procedures are computed on a Dell
Precision T7500 workstation with dual Intel Xeon Quad
core E5620 2.40GHz processors with 6GB RAM. Table
shows the comparison of the time requirement of the
computation of the winning voting probability by Ed)(

vs. its computation by procedure TIEWIN(). As can be
seen, procedure TIEWIN() is significantly faster for
larger number of candidatesand votersn.

The rest of the results concern the frame execution
time. We demonstrate by simulation the correctness of the
values computed by procedure TD() for the unit durations
case and procedure TDG() for the unequal durations case.

For the unit durations case, we consider different
values for the numbem of requests in the frame,
n= 2,4,8,16 and different values for the number of
critical resourcesmn = 1,2,3,4. For each value of, we
generated randomly 1000 frames for eathwhere in
each request in the frame, either non-critical code is
executed with probability?: (P: = 0.5,0.6,0.7,0.8,0.9)
or one of them critical resources is accessed with
probability P, = (1 - P;)/m, 1 <i < m. Then we
compute the averageover 1000 frames.

Table 2 shows the average simulated value of the
completion time (assuming a left-to-right priority policy
for resolution of conflicts for the same critical resource)
(column labeled by “Sim.”) and the average valueTof
obtained by TD (column labeled by TD). As can be seen,
the values computed by TD are corroborated by the
simulation.

For the unequal durations case, we assume a value of
m 2 critical resources with  probabilities
Py=04, PL =04, P, =0.2 for a first scenario and
Py =0.4, PL=0.1, P, = 0.2 for a second scenario. For
each of these cases, we vary the durations to
[Do=1, D1 =4, D2=2], [Dp=1, D; =2, Dy =4],
[D0=37 D, =4, D2:2]and “30237 D=2, D2=4].

The results (for 1000 random frames) are shown in Table
3. As can be seen again, the values computed by TDG are
corroborated by the simulation.

Finally, Table4 gives the time that procedure TDG()
takes for unequal durations whéxp, D41, D, take values
from the set{[4,2,1],[400,4,1],[4,400,3],[4,400 100},
while all remaining duration®;,3 <i < m, are set to
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Table 2: AverageT for unit durations
n= 2 requests

m=1 m=2 m=3 m=4

Pe Sim. TD Sim. TD Sim. TD Sim. TD
0.5 ] 1.2525 1.2500| 1.1274 1.1250| 1.0843 1.0833| 1.0640 1.0625
0.6 | 1.1626 1.1600| 1.0821 1.0800f 1.0547 1.0533| 1.0407 1.0400
0.7 | 1.0919 1.0900| 1.0462 1.0450| 1.0308 1.0300| 1.0224 1.0225
0.8 | 1.0409 1.0400| 1.0203 1.0200f 1.0130 1.0133] 1.0099 1.0100
0.9 | 1.0103 1.0100| 1.0052 1.0050f 1.0035 1.0033| 1.0026 1.0025
n= 4 requests
m=1 m=2 m=3 m=4

Pe Sim. TD Sim. TD Sim. TD Sim. TD
0.5 ] 2.0675 2.0625| 1.6131 1.6094| 1.4339 1.4329 1.3372 1.3359
0.6 | 1.7348 1.7296| 1.4133 1.4096| 1.2890 1.2868| 1.2230 1.2208
0.7 | 1.4433 1.4401| 1.2416 1.2410f 1.1683 1.1665 1.1275 1.1272
0.8 | 1.2118 1.20.96| 1.1129 1.1116| 1.0765 1.0761] 1.0582 1.0578
0.9 | 1.0556 1.0561| 1.0291 10290( 1.0197 1.0195 1.0149 1.0147
n = 8 requests
m=1 m=2 m=3 m=4

Pe Sim. TD Sim. TD Sim. TD Sim. TD
0.5 ] 4.0071 4.0039| 2.7939 2.7894| 2.3388 2.3346| 2.0923 2.0863
0.6 | 3.2226 3.2168| 2.3180 2.3134| 1.9754 1.9712| 1.7872 1.7824
0.7 | 24595 2.4576| 1.8542 1.8520| 1.6230 1.6201] 1.4937 1.4921
0.8 | 1.7671 1.7678| 1.4375 1.4366| 1.3111 1.3103| 1.2423 1.2418
0.9 | 1.2304 1.2305| 1.1252 1.1248 1.0870 1.0861] 1.0664 1.0657
n= 16 requests
m=1 m=2 m=3 m=4

Pe Sim. TD simul TD Sim. TD Sim. TD
0.5 | 8.0020 8.0000| 5.1223 5.1196| 4.0796 4.0754| 3.5226 3.5181
0.6 | 6.4039 6.403 | 4.2014 4.1976| 3.3943 3.3918 2.9612 2.9591
0.7 | 47996 4.8033| 3.2602 3.2611f 2.6873 2.6896| 2.3779 2.3800
0.8 | 3.2284 3.2281| 2.3180 2.3183| 1.9752 1.9749| 1.7884 1.7864
0.9 | 1.7828 1.7853| 1.4485 1.4486| 1.3220 1.3205| 1.2503 1.2508

D; = 1. It can be seen that the time depends also now orsynchronization, switch delay in computer networks and
the magnitude of the durations. interconnection networks).
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