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Abstract: This article considers the problem of estimating the unknown parameters of the compound Rayleigh distribution with
progressive first-failure censoring scheme during step-stress partially accelerated life tests (ALT). Progressive first-failure censoring
and accelerated life testing are performed to decrease the duration of testing and to lower test expenses. The maximum likelihood
estimators (MLEs) and Bayes estimates (BEs) for the distribution parameters and acceleration factor are obtained. Theoptimal time
for stress change is determined. Furthermore, the approximate, bootstrap and credible confidence intervals (CIs) of the parameters are
derived. Methods of Markov chain Monte Carlo (MCMC) are usedto obtain the Bayes estimates. Finally, the accuracy of the MLEs
and BEs for the model parameters is investigated through simulation studies.
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1 Introduction

Accelerated life test (ALT) is a popular experimental
strategy to obtain information on life distribution of
highly reliable products. Test units under normal
operating conditions are often extremely reliable, with
significant mean times to failure. ALT experiments may
be used to obtain reliable information on product
components within a short period by subjecting them to
higher-than-usual stress (pressure, temperature, voltage,
etc.). [1,2] introduced and studied the concept of ALT.
Data collected under such accelerated conditions are then
extrapolated through appropriate statistical model.

In the ALT, the experiment can either be started at
higher stresses than normal and continued under these
conditions or it can be stated under normal conditions.
Thus, there are two types of ALT. The first is said to be
the ordinary accelerated life test (OALT), and the second
is the partially accelerated life tests (PALTs). The major
assumption in OALT is that the mathematical model
relating the lifetime of the unit to the stress must be
known or can be assumed. In several cases, this life stress
relationships are not known and can’t be supposed, i.e.
OALT data can’t be extrapolated to normal condition. So,
PALT is the more proper test to be performed, where, the
tested units are undergone by both accelerated and normal

conditions. PALT are of two types, constant stress PALTs
(see [3,4]) and step stress PALTs (see [5]).

In constant PALTs, every unit is run at constant high
stress until either the test terminates or all units fail; for
more specifics about constant-stress ALT, see [6,7]. In
step PALTs, the stress on each unit is not fixed but is
increased step by step at personified times or
simultaneously to the appearance of a fixed number of
failures. When the test contain two levels of stress, it’s
indicated to as a simple step-stress ALT. Several authors
discuss step-stress PALTs scheme for example, see [8,9,
10,11,12]. Several studies have employed Bayesian
estimation based on ALT, for example, see [13,14,15,16,
17,18,19].

Type-I and type-II censoring are the most two
common censoring schemes in life testing, but these kind
of censoring don’t allow units to be extracted from the
experiment at any other point than the last termination
point. For this reason, the progressive censoring scheme
has been very famous for analyzing extremely reliable
data.

Progressive censoring schemes introduced by [20], or
in the review by [21]. [22] described a life test where the
experimenter units set in to different groups, each as an
component of test units, and then all of them run until the
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first failure in each cluster. This scheme is called
first-failure censoring. [23] studied a sampling experiment
for a bearing manufacturer. The bearing test engineer
wanted to reduce test time by testing 50 bearings in sets
of 10 each, where, the first failure times from each group
were observed. If an experimenter wish to take out some
sets of test units before the first failures in these sets; this
life test experiment is named as a progressive first-failure
censoring scheme, as specified by [24].

The compound Rayleigh distribution(α,β ), denoted
by CRD, supplies a population model which is valuable in
life testing and reliability. The probability density function
(pdf), and the cumulative distribution function (CDF) are
presented, respectively, by

f (x) = 2αβ αx(β + x2)−(α+1), α,β > 0, x> 0, (1)

and

F(x) = 1−β α(β + x2)−α . (2)

Also the failure rate and the reliability functions, at the
specifiedt, are

H(t) =
2αt

β + t2 , t > 0, (3)

S(t) = β α(β + t2)−α , t > 0, (4)

whereβ andα are the scales and the shape parameters.
The CRD is a particular case of the 3-parameter Burr type
XII distribution. Many authors studied the 2-parameter
CRD, including [25]. The step-stress ALT with
progressive first-failure censoring from Weibull
distribution are considered in [26]. The MLEs is given for
the distribution parameters and the acceleration factor.
The point estimation and interval estimation for Lindley
distribution parameter and the acceleration factor is
obtained with step-stress accelerated life test under
progressive first failure sample in [26].

The novelty of this study is the application of the step
stress PALT to compound Rayleigh failure time
distribution using the progressive first-failure censoring,
life test. Maximum likelihood estimators and Bayes
estimates for the parameters are then calculated using the
method of MCMC.

The paper is organized as follows: Section 2 describes
the lifetime model and test assumptions. In Section 3, the
MLEs of the model parameters with the simple step-stress
ALT are derived. Estimation of optimal time of stress
change time is given in Section 4. The Bayes estimates of
model parameters using the MCMC method are obtained
in Section 5. In Section 6, the approximate, bootstrap and
credible confidence intervals are derived. Section 7
discusses the simulation studies. Conclusions are
presented in Section 8.

2 Model Description and Basic Assumptions

2.1 A progressive first-failure-censoring scheme

In this subsection, the progressive censoring scheme is
jointed with the first-failure censoring scheme as in [24].
Let n independent groups withk items are set in a life
test,R1 groups and the group in which the first failure is
observed are randomly removed from the test when the
first failure (sayYR

1:m:n:k) has occurred,R2 groups and the
group in which the second first failure is observed are
randomly removed from the test promptly when the
second failure (sayYR

2:m:n:k) has happened, and lastly
Rm,m≤ n groups and the group in which them− th first
failure is obtained are randomly removed from the test
when the m− thfailure (YR

m:m:n:k) has happened. The
YR

1:m:n:k <YR
2:m:n:k < ... <YR

m:m:n:kare titled progressively
first-failure-censored order statistics with the progressive
censoring schemeR = (R1,R2, ...,Rm). It is clear that

n = m+
m

∑
i=1

Ri. If the failure times of then× k items

originally on the test are from a continuous distribution
with pdf f (y) and df F(y), the joint probability density
function ofYR

1:m:n:k,Y
R
2:m:n:k, ...,,Y

R
m:m:n:k is presented by

f1,2,...,m(yR
1:m:n:k,y

R
2:m:n:k, ...,y

R
m:m:n:k) =Ckm

m
∏
j=1

f (yR
j :m:n:k)×

[

1−F(yR
j :m:n:k)

]k(R j+1)−1
, (1)

0< yR
1:m:n:k < yR

2:m:n:k < ... < yR
m:m:n:k < ∞,

where

C= n
m−1

∏
j=1

(n−
j

∑
i=1

Ri − j).

Special cases:
The following four censoring schemes are special cases
from (5):
(1) The first-failure censored scheme obtained when
R= (0,0, ...,0).
(2) When k = 1, we obtained the progressive type-II
censored order statistics.
(3) In case ofR= (0,0, ...,n−m) andk = 1 we obtained
type II censored order statistics.
(4) If R= (0,0, ...,0) andk = 1, we gained the complete
sample.
From the distribution function 1− (1 − F(x))k,
YR

1;m,n,k,Y
R
2;m,n,k, ...,Y

R
m;m,n,k can be sighted as a progressive

type-II censored sample. so that, results for progressive
type-II censored can be expanded to progressive
first-failure censored order statistics. The progressive
first-failure censored order statistics are interesting
because they reduce the test time, where, many items are
utilized, where, justm of n× k items are failures.

2.2 Basic assumptions and test procedure

Throughout the paper the following assumptions are used
in the scope of step stress PALT:
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1. n identical and independent groups withk items within
each set are put on a life test; each unit has CRD.
2. The test is concluded at them− th failure, wherem is
prespecified(m≤ n).
3. The units are first put in normal condition, if it does not
fail or removed from the test by presignified timeτ, it’s
run under accelerated condition.
4. At the i − th failure, a random number of the surviving
groupsRi , i = 1,2, ...,m− 1, and the group in which the
failure YR

i;m,n,k has occurred are randomly removed from
the test. Finally, at themth failure the remaining surviving
group’sRm = n−m−∑m−1

i=1 Ri are all extracted from the
test, and the test is concluded.
5. LetN1 = ∑n1

i=1 be the number of failures before timeτκ
at normal condition, andN2 = ∑m

i=n1+1 be the number of
failures before(after) timeτκ at stress condition andN =
N1+N2, with this procedure the spotted progressive first-
failure censored data are

yR
1:m:n:k < ... < yR

n1:m:n:k < τ < yR
n1+1:m:n:k < ... < yR

m:m:n:k,

Where∑m
i=1Ri = n−mandR= (R1,R2, ...,Rm).

Then the influence of this process is to multiply the
remaining lifetime of the item by the inverse of the
acceleration factor. Where, the changing to the higher
stress level will shorten the life of test item. The total
lifetime Y passes through two stages: normal and
accelerated conditions.
Thus the total lifetimeY of the groups in SSPALT is
presented as follows:

Y =

{

T, T < τ
τ +λ−1(T − τ), T > τ, (6)

whereT is the first failure lifetime of a group under the
conditions used,λ is the acceleration factor, andτ is the
time-change stress.λ > 1 is the ratio of mean life under
the conditions used to that under accelerated conditions.
Suppose that the lifetime of the test item follows CRD.
Thus, the pdf of the total lifetimeY is presented by

f (y) =







0, y< 0
f1(y), 0< y≤ τ
f2(y), y> τ,

(7)

where f1(y), is presented by (1) andf2(y), given by

f2(y)= 2αβ αλ (τ+λ (y−τ))(β +[τ +λ (y− τ)]2)−(α+1).
(8)

is obtained by the transformation variable technique using
equations (7) and (8). The cumulative distribution
function cd f, reliability function S2(t), and hazard rate
functionh2(t) are presented by

F2(x)=1−β α(β +[τ +λ (y− τ)]2)−α , (9)

S2(t) = β α(β +[τ +λ (y− τ)]2)−α , (10)

and

h2(t) =
2αλ (τ +λ (y− τ))
(β +[τ +λ (y− τ)]2)

. (11)

In progressive first failure censoring, the test terminates
when the first failure censoring numbers reach tom< n.
From the total lifetimeY, the observed values are
y1;m,n,k < y2;m,n,k < ... < yn1;m,n,k < τ < yn1+1;m,n,k < ... <
ym;m,n,k where n1 is the number of groups failed under
normal conditions and m − n1 under accelerated
conditions. Let us determine the indicator functions

δi =

{

1 yi;m,n,k ≤ τ
0 otherwise , i = 1, 2, ..., m (12)

For simplicity let us assume the first failure lifetimesy1 <
y2 < ... < ym other thany1;m,n,k < y2;m,n,k < ... < ym;m,n,k
of m groups are identically and independent distribution,
consequently the likelihood function is presented by

L(α,β ,λ |y) = Ckm
m

∏
i=1

[

f1(yi)[S1(yi)]
k(Ri+1)−1

]δi

×
[

f2(yi)[S2(yi)]
k(Ri+1)−1

]1−δi
(2)

0< y1 < y2 < ... < yn1 < τ < yn1+1 < ... < ym < ∞,

whereC given in (5).
Special cases

1) If τ → 0, then the experiment run only under accelerate
conditions.

2) If τ → ∞, then the experiment runs only under use
conditions.

3 Maximum Likelihood Estimation

The aims of MLE is to specify the parameters which
maximize the likelihood function of the sample data. The
method of ML is used to be more robust and produces
estimators with perfect statistical properties. Numerical
techniques are used to compute them, which is based on
progressive first-failure censoring data under step stress
PALT.

Let yi,m,n,k = yi be the observed values of the lifetime
T given from the progressive first failure censoring. The
likelihood function L(α,β ,λ |y) in (13) with two
distributions (7) and (8), with censoring schemeR = (R1,
R2, ...,Rm) is given by

L(α,β ,λ |y) ∝ αmβknα λm−n1 exp

{

−
n1
∑
i=1

(αk(Ri +1)+1)× log
[

β +y2
i

]

+
m
∑

i=n1+1
log

[

τ +λ (yi − τ)
]

−
m
∑

i=n1+1
(αk(Ri +1)+1) log

[

β +
(

τ +λ (yi − τ)
)2

]







, (3)
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then the log-likelihood function ofL(α,β ,λ |y) is specified
by

ℓ(α,β ,λ |y) = mlogα + knα logβ +(m−n1) logλ −
n1

∑
i=1

(αk(Ri +1)+1) log
[

β + y2
i

]

+
m

∑
i=n1+1

log[τ +λ (yi − τ)]

−
m

∑
i=n1+1

(αk(Ri +1)+1) log
[

β +(τ +λ (yi − τ))2
]

.(4)

After calculating the first partial derivatives of (15) onα, β
andλ and equating each to zero, we obtain the likelihood
equations as

∂ℓ(α,β ,λ |y)
∂α

=
∂ℓ(α,β ,λ |y)

∂β
=

∂ℓ(α,β ,λ |y)
∂λ

= 0

(16)
hence

α (β ,λ ) =
m/k

D1+D2−nlogβ
(17)

where

D1 =
n1

∑
i=1

(Ri +1) log
[

β + y2
i

]

, (18)

D2 =
m

∑
i=n1+1

(Ri +1) log
[

β +(τ +λ (yi − τ))2
]

. (19)

Also

kn
β

−
n1

∑
i=1

k(Ri +1)+ 1
α

β + y2
i

−
m

∑
i=n1+1

k(Ri +1)+ 1
α

β +(τ +λ (yi − τ))2 = 0,

(20)
and

m−n1

λ
+

m

∑
i=n1+1

(yi − τ)
τ +λ (yi − τ)

−2
m

∑
i=n1+1

(αk(Ri +1)+1)(yi − τ)(τ +λ (yi − τ))
β +(τ +λ (yi − τ))2 = 0 (5)

Consequently, the likelihoods equations are written in the
two nonlinear equation (20) and (21). In order to solve it
numerically onβ andλ we use quasi-Newton Raphson,
to obtain the MLE,β̂ andλ̂ and the MLE ofα sayα̂ by
substituting ofβ̂ andλ̂ .

4 Estimation of Optimal Time-Change Stress

The optimal time-change stressτ∗ is determined in this
section by minimizing the asymptotic variance of MLEs
of the acceleration factor and the model parameters. The
asymptotic variance of̂α, β̂ and λ̂ is obtained using the
diagonal entries of the inverse of the Fisher information
matrix. With the assumption thatα = 0.1 ,β = 1.5 and
λ = 2.5, then fork = 3,n = 50,m= 30 andC.SI, which
are the true values of the population parameters and the

acceleration factor. The minimum option is used in
Mathematica 9 to specify the timeτ∗, τ∗ minimizes the
asymptotic variance of MLEs of the acceleration factor
and the model parameters. Soτ∗ = 1.1261. see [27].

5 Bayes Estimation of the Model Parameters

In this section, both symmetric loss (square error loss
(SEL)) function and asymmetric loss (linear exponential
(LINEX) and general entropy (GE)) loss function are
investigated to get (BEs) of the parameters (α, β , andλ )
with progressive first-failure censoring. In different
effective cases, information about the parameters is
available independently. So the independent prior is
specified forβ andα, and the noninformative prior (NIP)
for the acceleration factorλ . We used the gamma priors
for the shape and the scale parameters because it’s
wealthy to cover the previous trust of the experimenter.
The independent gamma prior forβ and α is given,
respectively, as follows:

π∗
1(α) ∝ αa−1exp(−bα),(α > 0), (22)

and
π∗

2(β ) ∝ β c−1exp(−dβ ),(β > 0), (23)

Also, the NIP for the acceleration factorλ is given by

π∗
3(λ ) ∝

1
λ
,(λ > 0), (24)

consequently, from equations (22), (23) and (24) the joint
prior can be accurate as

π∗(α,β ,λ )∝ αa−1β c−1λ−1exp(−bα−dβ ),(λ ,α,β > 0),
(25)

The joint posterior density ofβ ,α and λ , indicated by
π(α,β ,λ |y) are apparent as:

π(α,β ,λ |y)=
L(α,β ,λ |y)π∗(α,β ,λ )

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,β ,λ |y)π∗(α,β ,λ )dαdβdλ

,

(26)
Thus, the Bayes estimate ofα, β andλ , sayϕ(α,β ,λ ),
with the squared error loss function (SEL), is gained by

ϕ̂(α,β ,λ ) = Eα ,β ,λ |y(ϕ(α,β ,λ )) =
∫ ∞

0

∫ ∞
0

∫ ∞
0 ϕ(α,β ,λ )L(α,β ,λ |y)π∗(α,β ,λ )dαdβdλ

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,β ,λ |y)π∗(α,β ,λ )dαdβdλ

.

The ratio of three integrals given by (27) can’t be gained in
a closed form. In this case, we use the MCMC method to
create samples from the posterior distributions to compute
the Bayes estimator ofϕ(α,β ,λ ) with SEL function.
By choosingΦ(u(φ),δ ) = ea(δ−u(φ))− a(δ − u(φ))− 1,
we get theLINEX loss function written as

δa,Ψ ,δo(y) =−1
a

ln[E(e−au(φ)|y)], (28)
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Where a 6= 0 is the shape parameter ofLINEX loss
function. The Bayes estimate ofu(φ) gathers the form

φ̂BL =−1
a

ln[

∞
∫

0

∞
∫

0

∞
∫

0

e−aφ π∗(φ |y)dαdβdλ ]. (29)

TheGE loss function is formed as

δa,Ψ ,δo(y) = [E(u(φ)−a|y)]− 1
a , (30)

Wherea 6= 0 is the shape parameter ofGE loss function.
For which the Bayes estimate ofu(φ) takes the form

φ̂GE = [

∞
∫

0

∞
∫

0

∞
∫

0

u(φ)−aπ∗(φ |y)dαdβdλ ]−
1
a . (31)

Unfortunately, we can’t calculate the integrals in equations
(28), (29) and (31) exactly. So, the MCMC technique is
applied to approximate the integrals.

5.1 Bayesian estimation using MCMC method

The MCMC technique is a good method for parameter
estimation. Several schemes of MCMC are obtainable,
one significant sub-class of MCMC methods is Gibbs
sampling and more general Metropolis within-Gibbs
samplers. MCMC has the feature over the MLE method
that by structuring the probability intervals based on the
experimental posterior distribution, we get a appropriate
interval estimate of the parameters.
The joint posterior density function ofβ ,α, andλ are:

π(α ,β ,λy)αm+a−1β knα+c−1λ m−n1−1

e−bα−dβ−∑
n1
i=1(αk(Ri+1)+1) log[β+y2

i ]

+
m

∑
i=n1+1

log[τ +λ (yi − τ)] −
m

∑
i=n1+1

(αk(Ri +1)+1)× log
[

β +(τ +λ (yi − τ))2
]

}

.

The conditional posterior pdf’s of the parametersα,β , and
λ using the conjugate prior can be computed by

π1(α|β ,λ ,y) ∝ Gamma(m+a,b− knlogβ − k
n1

∑
i=1

(Ri +1)

× log[β + y2
i ]− k

m

∑
i=n1+1

(Ri +1) log[β +(τ +λ (yi − τ))2]

where

π2(β |α,λ ,y)β αkn+c−1e

−dβ−
n1
∑
i=1

(αk(Ri +1)+1)× log[β +y2
i ]−

m
∑

i=n1+1
(αk(Ri +1)+1)× log[β +(τ +λ (yi − τ))2]

.

and

π3(λ |α,β ,y) ∝ λm−n1−1 exp







m
∑

i=n1+1
log[τ +λ (yi − τ)]−

m
∑

i=n1+1
(αk(Ri +1)+1) log[β +(τ +λ (yi − τ))2]

(6)

Figures(1-3)shows the number of simulation of CRD
parameters generated by the MCMC method and the
corresponding histogram. The plots of (34) show that they

are identical to a normal distribution, see Figure(2).
Therefore to generate these distributions, we utilize the
Metropolis-Hastings method [28] together with normal
proposal distribution.
The algorithm of Metropolis-Hastings method is as
follows
1. Start with initial guess ofβ (0) = β ,α(0) = α and
λ (0) = λ .
2. SetI = 1.
3. Generate α(I) from Gamma distribution
π∗

1(α|β I−1,λ I−1,y).

4. Using Metropolis-Hastings, generateβ (I) from
π∗

2(β |α I−1,λ I−1,y) with the N(β (I−1),v22) proposal
distribution. Wherev22 is from the variances-covariances
matrix.
5. Using Metropolis-Hastings, generateλ (I) from
π∗

3(λ |α I−1,β I−1,y) with the N(λ (I−1),v33) proposal
distribution. Wherev33 is from the variances-covariances
matrix.
6. Computeα(I), β (I), andλ (I).
7. PutI = I +1.
8. Repeat steps 3-6 N times.
9. The approximate Bayes MCMC point estimate of
φI (φ1 = α,φ2 = β ,φ3 = λ ) underSELandLINEX loss
functions, respectively, are expressed by

E(φI |data) ∝
1

N−M

N

∑
i=M+1

φ (i)
I , (36)

E(exp[−cφI ]|data) ∝
1

N−M

N

∑
i=M+1

exp[−cφ (i)
I ], (37)

Where M is the burn-in period (that is, some iterations
before the stationary distribution is carried out) and the
posterior variance ofφI becomes

∨̂(φI |data) ∝
1

N−M

N

∑
i=M+1

(φ (i)
I − Ê(φI |data))2, (38)

6 Interval Estimation

The approximate, credible and bootstrap confidence
intervals (CIs) of the parametersα, β , and λ are
discussed in this section.

6.1 Approximate confidence intervals CIs

In this subsection, the approximate CIs of the parameters
are obtained using the asymptotic distributions of the
elements of the vectorϕ(α,β ,λ ). The asymptotic
distribution of the MLEs ofϕ is obtained by

((α̂ −α),(β̂ −β ),(λ̂ −λ )) 7→ N(0, I−1(α,β ,λ )), (39)
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whereI−1(α,β ,λ ) is the variance-covariance matrix. The
3×3 symmetric matrix of negative second partial
derivatives of the log-likelihood function onα, β , andλ
is the Fisher information matrixI (α,β ,λ ), for the MLEs
(α̂, β̂ and λ̂), see [29]. The performance of
Ii j (α,β ,λ )), i, j = 1,2,3,, which is written by
Ii j (α̂, β̂ , λ̂ )), where

Ii j (ϕ) =−
∂ 2ℓ(ϕ |y)
∂ϕi∂ϕ j

(40)

I−1
0 =









− ∂ 2ℓ(α ,β ,λ |t)
∂α2 − ∂ 2ℓ(α ,β ,λ |t)

∂α∂β − ∂ 2ℓ(α ,β ,λ |t)
∂α∂λ

− ∂ 2ℓ(α ,β ,λ |t)
∂β ∂α − ∂ 2ℓ(α ,β ,λ |t)

∂β 2 − ∂ 2ℓ(α ,β ,λ |t)
∂β ∂λ

− ∂ 2ℓ(α ,β ,λ |t)
∂λ ∂α − ∂ 2ℓ(α ,β ,λ |t)

∂λ ∂β − ∂ 2ℓ(α ,β ,λ |t)
∂λ 2









−1

(α̂ ,β̂ ,λ̂ )

.

(41)
Thus, the 100(1-γ)% approximate CIs forα,β , andλ are
obtained as

α̂ ∓ zγ
2

√
v11, β̂ ∓ zγ

2

√
v22 andλ̂ ∓ zγ

2

√
v33 (42)

Where v11, v22, and v33 are the elements on the main
diagonal of the variance-covariance matrixI−1(α̂ , β̂ , λ̂ )
and zγ

2
is the percentile of the standard normal

distribution with right-tail probabilityγ
2.

6.2 Credible confidence intervals CIs

A 100(1-γ)% Bayesian credible for a random quantityϕ
is the interval that has the posterior probability(1− γ) that
ϕ(α,β ,λ ) lies in the range such that

p(L ≤ ϕ ≤U) =

∫ U

L
π∗(ϕ |y)dϕ = 1− γ. (43)

There are several types of the credible interval, including
a central interval of posterior probability which is the
range of values between the( γ

2) and(1− γ
2) percentiles.

The following procedures are performed to get credible
CIs of α, β , andλ .
1. Set the initial guess ofβ (0) = β ,α(0) = α and
λ (0) = λ .
2. putI = 1.
3. Generate α(I) from Gamma distribution
π∗

1(α|β I−1,λ I−1,y).

4. Using Metropolis-Hastings, outputβ (I) from
π∗

2(β |α I−1,λ I−1,y) with the N(β (I−1),v22) proposal
distribution. Where v22 is possessed from the
variances-covariances matrix.
5. Using Metropolis-Hastings, generateλ (I) from
π∗

3(λ |α I−1,β I−1,y) with the N(λ (I−1),v33) proposal
distribution, where v33 is taken from a
variances-covariances matrix.
6. Computeα(I), β (I) andλ (I).

7. Repeat step (1-6), U times and sort each estimate in

ascending order as[ϕ̂ [1]
iSE, ϕ̂

[2]
iSE, ..., ϕ̂

[U]
iSE], i = 1,2,3, where

ϕ̂1SE ≡ α̂SE ,ϕ̂2SE ≡ β̂SE and ϕ̂3SE ≡ λ̂SE, Then, the
100(1-γ)% credible CIs forϕi is presented by

(ϕ̂ [γ U
2 ]

iSE , ϕ̂ [(1− γ
2 )U]

iSE ), i = 1,2,3. (44)

10. To compute the credible intervals ofφI , we commonly
choose the quartiles of the sample as the endpoints of the
interval, or as φM+1

I ,φM+2
I ,φM+3

I , ...,φN
I as

φI(1),φI(2),φI(3), ...,φI(N−M). Then the 100(1 − γ) %
symmetric credible interval is

(φI [ γ
2 (N−M)],φI [(1− γ

2 )(N−M)]), (45)

6.3 Bootstrap confidence intervals CIs

We propose to use CIs based on the parametric bootstrap
methods. It’s known that CIs with the asymptotic results
don’t implement very well for small samples. We use the
parametric percentile bootstrap(Boot-p)CIs method based
on the concept of [30]. The following procedures are
followed to obtain the progressive first-failure censoring
bootstrap sample from CRD.
1. Compute the MLEs of the parametersα, β andλ from
equations (17)-(21), using the original data set,
y≡ (y1:m:n:k, ...,yn1:m:n:k,yn1+1:m:n:k, ...,ym:m:n:k).

2. Useα̂ML, β̂ML andλ̂ML to generate a bootstrap sample
y∗ with sameRi ,(i = 1,2, ...,m) using the algorithm of
[34].
3. As in step one, usingy∗ compute the bootstrap sample
estimates of̂αML, β̂ML, andλ̂ML sayα̂∗, β̂ ∗, andλ̂ ∗.
4. Repeat steps (2)-(3), G times.
5. Sort each estimate in ascending order to gain the
bootstrap samples [α̂∗[1], α̂∗[2], ..., α̂∗[G]],
[β̂ ∗[1], β̂ ∗[2], ..., β̂ ∗[G]] and[λ̂ ∗[1], λ̂ ∗[2], ..., λ̂ ∗[G]].
Then, the 100(1-γ)% percentile bootstrap CIs forϕi is
presented by

(ϕ̂∗
iL , ϕ̂

∗
iG) = (ϕ̂∗[γ G

2 ]
i ,ϕ∗[(1− γ

2 )G]
i ), i = 1,2,3, (46)

whereϕ̂∗
1 ≡ α̂∗, ϕ̂∗

2 ≡ β̂ ∗, andϕ̂∗
3 ≡ λ̂ ∗.

7 Simulation Studies

The aim of the simulation is to see the effect of the MLEs
and BEs with SEL, LINEX and GE loss functions of the
suggested methods. Monte Carlo simulations are carried
out employing 1000 progressively first-failure censored
samples from a CRD(α,β ). We use the algorithm
described in [23] to simulate the samples. Different
effective samples of sizesm, different samples of sizesn,
and differentk has been used. The study is done to
calculate the MLEs, BEs, MSEs, and RABs, based on
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N = 11000 andM = 1000 Monte Carlo simulations,
where the computations are performed using
(MATHEMATICA ver.9). The implementation of the
resulting estimators of the acceleration factor(λ ) and the
distribution parameters(α,β ) has been discussed in
terms of their absolute relative bias (RABias); this is the
ultimate difference between the mean estimates, and its
true value divided by the true value of the parameter (i.e.

RABias(θ̂) = φ̂−φ
φ ) and mean square error MSE; which is

the sum squares of the difference between the true value
and its estimated parameter divided by the number of the
sample (i.e.MSE(φ̂ ) = E[(φ̂ − φ)2]). Table.2 includes
MSEs and RABs of the MLEs and BEs ofα,β ,λ .

Furthermore, the approximate bootstrap and credible CIs
of the acceleration factor, the scale parameter, and the
shape parameters obtained. Table 1 introduces the lengths
and the coverage probabilities of 95% and 90%
approximate, credible and percentile bootstrap CIs of the
model parameters.
The simulation procedure is performed according to the
following algorithm:
1- Specify the values ofn, m, k, andτ.
2- Specify the values ofα, β , and λ as case.1:
(α = 0.1,β = 1.5,λ = 2.5) and case.2:
(β = 0.1,α = 0.2,λ = 1.5).
3- For specific values of the prior parametersa, b, c, and
d generateπ1(α) andπ2(β ).
4- Generate a sample of size(n× k) from the random
variableY presented by equation (5) and arrange it. The
CRD can be generated easily, for instance, if U indicates a
uniform random variable from [0,1], and if
y =⇒ U62f , , then Y = [[β−α [1−U ]]−

1
α − β ]

−1
2 has

CRD with pdf specified by (13).
5- Generate progressively first-failure censored data for
specifiedn, m Using the model given by equation (14),
we consider the set of data:
YR

1;m,n,k < ... < YR
n1;m,n,k < τ < YR

n1+1;m,n,k < ... < YR
m;m,n,k,

whereR= (R1,R2, ...,Rm) and∑m
i=1Ri = n−m.

6- Use the progressive first-failure censored data to
calculate the MLEs of the model parameters; the
Newton-Raphson method is used for resolving equations
(17)-(21) to get the MLEs of the unknown parameters.
7- Compute the BEs of the unknown parameters with SE
and LINEX loss functions, where N = 11000 and M =
1000.
8- Compute the approximate CI withγ = 0.95 and
γ = 0.90 for the unknown parameters.
9- Replicate steps (4)-(9), 1000 times.
10- Find the average values of the (MSEs) and (RABs)
attached with the MLEs and BEs ofα, β , andλ .
11- Perform steps 1-10 with several values ofn, m, andτ.
Tables 1-3 summarize the simulation results. Table 1
displays the approximated CI at 95% and 90% forα, β ,
andλ .
We apply the algorithm proposed by [35] to generate
progressive first failure censored samples from CRD.

Fig. 1: Simulation number ofα obtained by MCMC method.

Fig. 2: Simulation number ofβ1 obtained by MCMC method.

Whereas the number of items setting in a life test is
(n× k) items, wheren indicates the group number andk
indicates the items number in every group. We consider
the following progressive CSs(I, II, III), for the simulation
studies, to compare the performances of the estimation
discussed in this study.
Scheme I:Rm = n−m, R1 = 0 for i 6= m.
Scheme II:R1 = n−m, R1 = 0 for i 6= 1.
Scheme III:Rm+1

2
= n−m, R1 = 0 for i 6= m+1

2 ; if m odd,

andRm+2
2

= n−m, R1 = 0 for i 6= m+2
2 ; if m even.

The three censoring schemes are coincide with the cases
of all remaining items which are extracted from the test at
the first failure point, last failure point, and midpoint,
respectively. Furthermore, it is notable that Type-II first
failure censored scheme is the scheme-I.

8 Conclusion

In this study, we have considered a progressive
first-failure censored samples, this study represents
maximum likelihood and Bayes methods for the analysis
of the SSPALT, using the compound Rayleigh failure
model. We employed the MCMC technique to obtain the
Bayes estimates and it has been shown the Bayes estimate
concerning informative prior performs very well in this
study. The simulation is performed to compare the
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Table 1: 90% and 95% approximate, credible and bootstrap CIsfor α,β andλ
m n SC Par Approximate CI L Credible CI L bootstrap CI L
15 30 I α (-0.0305, 0.2182) 0.2487 (0.0282, 0.1355) 0.1073 (0.0351, 0.1804) 0.1453

(-0.0544, 0.2421) 0.2965 (0.0237, 0.1394) 0.1157 (0.0172, 0.1946) 0.1774
β (-2.2495, 3.1147) 5.3642 (0.3165, 1.9184) 1.6019 (0.2680, 2.3851) 2.1171

(-3.0507, 3.9159) 6.9666 (0.2395, 2.1044) 1.8649 (0.1853, 2.6173) 2.4320
λ (-0.5819, 2.5748) 3.1567 (0.4230, 4.1491) 3.7189 (0.2581, 4.8039) 4.5458

(-0.8843, 2.8772) 3.7615 (0.3502, 4.5984) 4.2482 (0.1740, 3.9594) 3.7854
II α (-0.0870, 0.6859) 0.7729 (0.0567, 0.1708) 0.1141 (0.0236, 0.3813) 0.3577

(-0.1610, 0.7599) 0.9209 (0.0511, 0.1878) 0.1367 (0.0207, 0.4572) 0.4365
β (-1.0578, 5.6142) 6.6720 (0.3485, 1.4014) 1.0529 (0.1547, 2.3168) 2.1621

(-1.7084, 5.2648) 6.9732 (0.2905, 1.5451) 1.2546 (0.2083, 2.7205) 2.5122
λ (-0.1444, 1.2993) 1.4437 (0.5111, 3.9317) 3.4206 (0.3058, 3.5197) 3.2139

(-0.2827, 1.4376) 1.7203 (0.3999, 4.0930) 3.6931 (0.2507, 4.1159) 3.8652
III α (0.0257, 0.2175) 0.1918 (0.0365, 0.2048) 0.1583 (0.0316, 0.1386) 0.1070

(0.0073, 0.2359) 0.2286 (0.0332, 0.2550) .2118 (0.0271, 0.1649) 0.1448
β (-1.0120, 4.4845) 5.4965 (0.3429, 1.8725) 1.5296 (0.2057, 2.7534) 2.5477

(-2.1132, 4.5857) 6.6989 (0.2835, 1.9153) 1.6318 (0.1503, 2.6103) 2.4600
λ (-0.5689, 4.3249) 4.8938 (0.4865, 3.7296) 3.2431 (0.2179, 4.8603) 4.6424

(-0.8460, 4.6022) 5.4482 (0.3733,4.1816) 3.8083 (0.1066,5.6308) 5.5242
25 30 I α (0.0264, 0.1832) 0.1568 (0.0591, 0.1568) 0.0977 (0.0308, 0.1645) 0.1337

(0.0114, 0.1982) 0.1868 (0.0536,0.1700) 0.1164 (0.0307,0.2060) 0.1753
β (-0.4819, 4.2027) 4.6846 (0.7292, 2.2895) 1.5603 (0.6292, 2.6915) 2.0623

(-0.9306, 4.6514) 5.5820 (0.6286, 2.4790) 1.8504 (0.4893, 2.9820) 2.4927
λ (-0.4248, 4.3755) 4.8003 (0.3483, 3.2107) 2.8624 (0.2591, 3.4002) 3.1411

(-0.6929, 4.6437) 5.3366 (0.2838, 3.6524) 3.3686 (0.1906, 3.8527) 3.6621
II α (0.0339, 0.1475) 0.1136 (0.0510, 0.1321) 0.0811 (0.0447, 0.1383) 0.0936

(0.0231, 0.1583) 0.1352 (0.0464, 0.1446) 0.0982 (0.0564, 0.1531) 0.0967
β (-0.6650, 3.8668) 4.5318 (0.5153, 1.9301) 1.4148 (0.4038, 2.1435) 1.7397

(-1.0991, 4.3009) 5.4000 (0.4415, 2.0936) 1.6521 (0.3391, 2.4107) 2.0716
λ (-0.5346, 4.2067) 4.7413 (0.6675, 4.0904) 3.4229 (0.2571, 3.5300) 3.2729

(-0.9888, 4.6608) 5.6496 (0.5607, 4.6681) 4.1074 (0.0792, 3.9017) 3.8225
III α (0.0423, 0.1766) 0.1343 (0.0685, 0.1706) 0.1021 (0.0481, 0.1735) 0.1254

(0.0294, 0.1895) 0.1601 (0.0627, 0.1858) 0.1231 (0.0520, 0.1817) 0.1297
β (-0.3507, 3.3368) 2.9861 (0.8144, 2.4047) 1.5903 (0.6011, 2.5907) 1.9896

(-0.7039, 3.6900) 4.3939 (0.6907, 2.6017) 1.9110 (0.4003, 2.8164) 2.4161
λ (-0.6894, 3.9735) 4.6629 (0.4817, 3.0441) 2.5624 (0.2751, 3.4602) 3.1851

(-1.1360, 4.4202) 5.5562 (0.3762, 3.4646) 3.0884 (0.2283, 4.0715) 3.8432
30 30 α (0.0539, 0.1754) 0.1215 (0.0711, 0.1688) 0.0977 (0.0618, 0.1704) 0.1086

(0.0423, 0.1871) 0.1448 (0.0656, 0.1822) 0.1166 (0.0752, 0.1905) 0.1153
β (-0.1716, 3.6709) 3.8425 (0.8878, 2.4168) 1.2590 (0.8006, 2.2734) 1.4728

(-0.5397, 4.0389) 4.5786 (0.8009, 2.5729) 1.7720 (0.7403, 2.6279) 1.8876
λ (-0.0747, 4.24329) 4.3180 (0.7686, 4.0232) 3.2546 (0.6960, 4.3008) 3.6048

(-0.4884, 4.6569) 5.1553 (0.6517, 4.0628) 3.4111 (0.6025, 4.6671) 4.0646
50 30 I α (-0.0122, 0.2384) 0.1284 (0.0598, 0.1614) 0.1016 (0.0671, 0.1845) 0.1174

(-0.0381, 0.2624) 0.2085 (0.0552, 0.1759) 0.1207 (0.0462, 0.1903) 0.1441
β (-0.1031, 5.2501) 5.3532 (1.3419, 3.0827) 1.7408 (1.1407, 3.2550) 2.1143

(-0.0948, 4.2418) 4.3366 (1.1895, 3.4462) 2.2567 (1.1453, 3.6002) 2.4549
λ (-0.2857, 2.6819) 2.9676 (0.5837, 3.3341) 2.7504 (0.4816, 3.5131) 3.0315

(-0.5699, 2.9662) 3.5361 (0.5024, 3.5851) 3.0827 (0.4520, 3.6530) 3.2010
II α (0.0474, 0.1476) 0.1002 (0.0760, 0.1817) 0.1057 (0.0471, 0.1846) 0.1375

(0.0359, 0.1491) 0.1132 (0.0705, 0.1962) 0.1257 (0.0415, 0.2136) 0.1721
β (-0.2925, 3.0314) 3.3239 (1.0122, 2.6975) 1.6853 (1.1302, 2.9495) 1.8193

(-0.6109, 3.3499) 3.9608 (0.9231, 2.8643) 1.9412 (0.8671, 3.0651) 2.1980
λ (-0.1159, 3.5450) 3.6609 (0.9566, 3.9771) 3.0205 (1.2548, 4.0357) 2.7809

(-0.6581, 3.0872) 3.7453 (0.8056, 3.7391) 2.9335 (0.9865, 4.001) 3.0145
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Table 1 Continued
III α (0.0477, 0.2693) 0.2216 (0.0760, 0.1817) 0.1057 (0.0510, 0.1973) 0.1463

(0.0265, 0.2905) 0.2640 (0.0705, 0.1962) 0.1257 (0.0481, 0.2119) 0.1638
β (-0.2509, 3.9037) 4.1546 (1.0122, 2.6975) 1.6853 (0.9716, 2.715) 1.7434

(-1.1279, 4.7806) 5.9085 (0.9231, 2.8643) 1.9412 (0.9231, 2.7690) 1.8459
λ (-0.1137, 2.0706) 2.1843 (1.0970, 3.2647) 2.1677 (1.0566, 3.6250) 2.5684

(-0.3229, 2.2798) 2.6027 (0.9865, 3.5301) 2.5436 (1.2604, 3.8601) 2.5997
50 50 α (0.0562, 0.1316) 0.0754 (0.0884, 0.1643) 0.0759 (0.0805, 0.1729) 0.0924

(0.0490, 0.1389) 0.0899 (0.0825, 0.1733) 0.0908 (0.0937, 0.1831) 0.0894
β (0.0977, 2.6299) 2.5322 (2.0651, 3.8525) 1.7874 (1.9641, 3.7401) 1.776

(-0.1449, 2.8725) 3.0197 (1.9296, 4.0463) 2.1740 (1.8907, 4.1626) 2.2719
λ (0.5121, 3.8443) 3.3322 (1.0257, 3.1036) 2.0779 (1.0049, 3.3106) 2.3057

(0.0972, 4.2594) 4.1622 (0.9254, 4.0703) 3.1449 (0.9703, 4.0922) 3.1219

Table.2: MSEs and RABs inside the parentheses of the MLE and BEs withα = 0.1,β = 1.5 andλ = 2.5
m n SC Par ML SEL LINEX GE

c=-2 c=0.01 c=2 c=-2 c=0.01 c=2
15 30 I α 0.0713 0.0121 0.0072 0.0169 0.0257 0.0112 0.0121 0.0130

0.7132 0.1211 0.0721 0.1686 0.2569 0.1120 0.1211 0.1297
β 2.8389 0.2531 0.1780 0.3330 0.0257 0.4183 0.2540 0.0235

1.8926 0.1687 0.1186 0.2220 0.3387 0.2789 0.1694 0.0157
λ 0.5741 1.1848 1.7799 0.5381 0.7056 6.257 1.1613 0.7145

0.2297 0.4739 0.7119 0.2152 0.2822 2.5028 0.4645 0.2858
II α 0.2264 0.0366 0.0172 0.0298 0.0436 0.0347 0.0366 0.0386

2.2638 0.3660 0.1723 0.2981 0.4364 0.3468 0.3659 0.3863
β 4.1597 0.3834 0.5902 0.4506 0.3184 0.5109 0.3841 0.1959

2.7732 0.2556 0.3934 0.3004 0.2123 0.3406 0.2561 0.1306
λ 1.1837 1.0047 1.4909 0.4907 0.5893 4.9800 0.9866 0.6103

0.4735 0.4019 0.5963 0.1963 0.2357 1.992 0.3947 0.2441
III α 0.2744 0.0227 0.0186 0.0341 0.0266 0.0220 0.0233 0.0227

2.7435 0.2265 0.1858 0.3414 0.2664 0.2200 0.2329 0.2266
β 12.9007 0.4981 0.5801 0.7640 0.4221 0.4989 0.6330 0.2999

8.6004 0.3321 0.3867 0.5093 0.2814 0.3326 0.4220 0.1999
λ 1.5687 0.2642 0.0742 0.7818 0.566 0.2554 0.7837 2.0587

0.6275 0.1057 0.0297 0.3127 0.2264 0.1022 0.3135 0.8235
25 30 I α 0.0253 0.0239 0.0207 0.0270 0.0324 0.0234 0.0239 0.0244

0.2529 0.2394 0.2075 0.2697 0.324 0.2343 0.2394 0.2442
β 0.0009 0.3252 0.5605 0.4038 0.2481 0.4787 0.3261 0.0865

0.0006 0.2168 0.3737 0.2692 0.1654 0.3191 0.2174 0.0577
λ 1.2606 1.7004 2.3660 0.9941 0.1869 7.213 1.6704 0.446

0.5042 0.6802 0.9464 0.3977 0.0748 2.8852 0.6682 0.1784
II α 0.0403 0.0466 0.0450 0.0482 0.0511 0.0464 0.0466 0.0467

0.4031 0.4657 0.4496 0.4815 0.5113 0.4640 0.4658 0.4675
β 0.8029 1.7626 1.977 1.8296 1.7001 1.8465 1.7631 1.6522

0.3212 0.7051 0.7908 0.7319 0.6801 0.7386 0.7052 0.6609
λ 1.8754 2.9798 3.7172 2.1508 0.6898 8.3671 2.9443 0.4891

1.2503 1.9865 2.4781 1.4339 0.4599 5.5781 1.9628 0.3260
III α 0.0138 0.0133 0.0102 0.0164 0.0223 0.0128 0.0133 0.01390

0.1383 0.1332 0.1018 0.1643 0.2235 0.1276 0.1332 0.1387
β 0.1238 0.1969 0.132 0.2648 0.4048 0.0028 0.1978 0.3476

0.0825 0.1313 0.088 0.1766 0.2698 0.0019 0.13190 0.2318
λ 0.4329 0.3223 0.8919 0.2648 1.0148 4.0009 0.3048 0.9759

0.1732 0.1289 0.3568 0.0938 0.4059 1.6004 0.12190 0.3904
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Table 2 continued
30 30 α 0.1470 0.1476 0.0339 0.1086 0.1867 0.1386 0.1476 0.1569

0.0147 0.0148 0.0034 0.0109 0.0187 0.0139 0.0148 0.0157
β 0.1664 0.0513 0.0954 0.0055 0.0858 0.2077 0.0506 0.0717

0.2496 0.0769 0.1431 0.0082 0.1288 0.3116 0.0759 0.1075
λ 0.1663 0.1210 0.3919 0.1202 0.4133 2.0008 0.1125 0.4002

0.4157 0.3024 0.9798 0.3005 1.0332 5.0021 0.2813 1.0006
30 50 I α 0.0133 0.0302 0.0166 0.0255 0.0349 0.0290 0.0302 0.0315

0.1326 0.3020 0.1659 0.2552 0.3488 0.2898 0.3019 0.3146
β 0.0035 1.3242 1.4015 1.2421 1.0663 1.819 1.3219 0.9256

0.0024 0.8828 0.9343 0.8280 0.7109 0.6170 0.8813 1.2126
λ 0.6625 1.1663 1.4855 1.2831 1.0452 1.4056 1.168 0.7038

0.2650 0.4665 0.5942 0.5132 0.4181 0.5622 0.4672 0.2815
II α 0.0042 0.0003 0.0032 0.0038 0.0097 0.001 0.0003 0.0004

0.0417 0.0029 0.0320 0.0383 0.0967 0.0102 0.0028 0.0043
β 0.1968 0.0792 0.1525 0.1633 0.0013 0.3431 0.1272 0.0780

0.1312 0.0528 0.1017 0.1089 0.0009 0.2288 0.0848 0.0520
λ 0.4175 2.2448 3.1451 1.3384 0.0415 9.8165 2.1985 0.3276

0.1670 0.8979 1.258 0.5354 0.0166 3.9266 0.8794 0.1310
III α 0.1882 0.0305 0.0292 0.0319 0.0345 0.0304 0.0305 0.0307

1.8822 0.3054 0.2920 0.3189 0.3453 0.3035 0.3054 0.3073
β 3.0990 0.1749 0.2446 0.1034 0.0410 0.4568 0.1737 0.0264

2.0660 0.1166 0.1630 0.0689 0.0273 0.3045 0.1158 0.0176
λ 2.7225 1.3199 1.3203 1.3194 1.3185 1.3233 1.3199 1.3164

1.0890 0.5280 0.5281 0.5278 0.5274 0.5293 0.5279 0.5266
50 50 α 0.0061 0.0228 0.0164 0.0206 0.0250 0.0223 0.0228 0.0233

0.0610 0.228 0.1640 0.2063 0.2496 0.2226 0.2279 0.2334
β 0.1362 1.419 1.3657 1.3657 1.2604 1.7579 1.4174 1.1490

0.0908 0.9460 0.9105 0.9105 0.8403 1.1719 0.9450 0.7660
λ 0.1783 0.2538 0.4569 0.7783 0.4569 1.8694 0.8141 0.2592

0.0713 0.1015 0.1828 0.3113 0.1828 0.7478 0.3256 0.1037

Fig. 3: Simulation number ofλ2 obtained by MCMC method.
Simulation number ofβ1 obtained by MCMC method.

Fig. 4: Histogram ofα obtained by MCMC method.

Fig. 5: Histogram ofβ1 obtained by MCMC method.

Fig. 6: Histogram ofλ2 obtained by MCMC method.
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suggested methods for several accelerated factors, several
parameter values, several sample sizes (n,m) and three
several CSs (I, II, III). Approximate, credible and
bootstrap CIs have been determined forα, β , and λ .
From Tables (1), (2) and (3) we have realized that:
1. In most of the cases the length of approximate,
bootstrap and credible CIs are decrease when the sample
size is increases, excepting a little cases; this is probably
due to the inconstancy in the data.
2. Overall, the MCMC credible CIs ofα, β , andλ yield
good results than approximate and bootstrap CIs for the
length of CIs. While, the bootstrap CIs ofα, β , and λ
yield more convenient results than approximate CIs and
for the length of CIs, for various sample sizes, various
observed failures, and various schemes.
3. It may be noted that for fixed observed failures and
sample sizes, the first scheme-I, yield lower lengths for
the three methods of the CIs in contrast to the other two
schemes.
4. Also, the MCMC credible intervals give lower lengths
for the three schemes, in case of small sample sizes.
5. It can also be seen that the Bayes estimates ofα, β ,
andλ give better results for the MSEs and RABs than for
MLEs in most of the cases considered.
6. In general, when(caU2c6′2) the Bayes estimates ofα
under LINEX loss function and GE loss function provides
the smallest MSEs and RABs as discussed with the
estimates under SEL, LINEX loss function (c= 0.01, 2),
GE loss function (c= 0.01, 2)and MLEs.
7. In general, the Bayes estimates ofβ and λ under
LINEX loss function (c=2), and GE loss function (c=2)
have the smallest MSEs and RABs as discussed with the
estimates under SEL, LINEX loss function (c= 0.01, -2),
GE loss function (c= 0.01, -2), and MLEs.
8. For specific values of the sample and failure time sizes,
the scheme-I implements better than Scheme-II and
Scheme-III, in the concept of having smaller MSEs in
most of the cases considered.
9. In general, as sample sizem/n increases, the MSEs and
RABs of MLEs and Bayes estimates ofα, β , and λ
decrease, except for few.
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