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Abstract: In this study, a five-stage fourth-order Runge-Kutta type method for directly solving general third-order ordinary differential
equations (ODEs) of the formy′′′ = f (x,y,y′,y′′) which is denoted as RKTGG method is constructed. The order conditions of RKTGG
method up to order four are derived. Based on the order conditions developed, five-stage fourth-order explicit Runge-Kutta type method
is constructed. Zero-stability of the current method is shown. The various type of general third-order ODEs has been solved using new
method and numerical comparisons are made when the same problem is reduced to the first-order system of equations which are solved
using existing Runge-Kutta methods. The numerical study ofa third-order ODE arising in thin film flow of viscous fluid in physics is
also discussed. Numerical results show that the new method is more efficient in terms of accuracy and number of function evaluations.
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1 Introduction

In this paper, we are considering to the general third-order
ordinary differential equations (ODEs) of the form

y′′′(x) = f
(

x,y(x),y′(x),y′′(x)
)

, (1)

y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0

where y,y′,y′′ ∈ R
d, f : R× R

d → R
d is a continuous

vector-valued function. Specifically, third order
differential equations emerge in numerous physical
problems, for example, thin film flow, gravity-driven
flows and electromagnetic wave. The general solution of
(1) is done by reducing it to an equivalent first-order
system which is three times and can be using standard
Runge-Kutta method or multi-step method. A lot of
researches have being solved problem (1) by converting
the problem to a system of first-order equations.
Furthermore, there are several authors who study on
numerical methods which solve problem (1) directly, for
instance Jator [1], Awoyemi and Idowu [2], proposed a

class of hybrid collocation methods for the direct solution
of higher-order ODEs. You and Chen [3], constructed
direct integrations of RK type for special third-order
ODEs. Waeleh et al. [4], proposed a new algorithm for
solving higher-order IVPs of ordinary differential
equations. Jator [5], constructed hybrid multi-step method
for solving second-order IVPs without predictors. Samat
and Ismail [6], developed a block multi-step method
which can directly solve general third-order equations.
Furthermore, Ibrahim et al. [7], found a way using
multi-step method that can directly solve stiff third-order
differential equations. Mechee et al. [8], constructed a
three-stage fifth-order RK method for directly solving
special third-order ODEs. Kasim et al. [9], proposed
integration for special third-order ODEs using improved
Runge-Kutta direct method. Mechee et al. [10], suggested
a new four-stage sixth order Runge-Kutta method for
direct integration of special third-order (ODEs).
Subsequently, Senu et al. [11] constructed embedded
explicit Runge-Kutta methods for directly solving special
third-order differential equations. In this paper, the main
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aim is to construct a one-step method of order four to
solve third-order ODEs directly. The derivation of order
conditions are given in Section 2. In Section 3, the
zero-stability of the new method is given. Five-stage
fourth-order are constructed in Section 4. The efficiency
of the new method, when compared with existing method
is given in Section 5. The thin film flow problem is
discussed in Section 6.

2 Derivation of the New Method

The general form of RKTGG method withm-stage for
solving the IVPs (1) can be expressed as follows:

yn+1 = yn+hy′n+
h2

2
y′′n +h3

m

∑
i=1

biki , (2)

y′n+1 = y′n+hy′′n+h2
m

∑
i=1

b′iki , (3)

y′′n+1 = y′′n +h
m

∑
i=1

b′′i ki , (4)

where

k1 = f
(

xn,yn,y
′
n,y

′′
n

)

,

ki = f

(

xn+ cih, yn+ ci hy′n+
h2

2
c2

i y′′n +h3
i−1

∑
j=1

ai j k j ,

y′n+ ci hy′′n +h2
i−1

∑
j=1

āi j k j ,y
′′
n +h

i−1

∑
j=1

¯̄ai j k j

)

(5)

for i = 2,3, ... ,m. The parametersbi,b′i ,b
′′
i ,ai j , āi j , ¯̄ai j and

ci of the RKTGG method assumed to be real and used for
i, j = 1,2, ...,m. This method is an explicit form ifai j =
āi j = ¯̄ai j = 0 for i ≤ j and it is an implicit one ifai j 6=
0, āi j 6= 0 and ¯̄ai j 6= 0 for i ≤ j. The new method can be
represented by Butcher tableau as follows:

c A Ā ¯̄A

bT b′T b′′T
(6)

To determine the parameters of the new method given by
(2)-(5), the RKTGG method expression is expanded using
Taylor’s series expansion. After performing a few
algebraic manipulations, this expansion is equated to the
true solution that is given by Taylor’s series expansion.
The direct expansion of the local truncation error utilized
to derive the general order conditions for the new method.
This idea based on the derivation of order conditions for

the RK method suggested by Dormand [12]. The new
method RKTGG can be expressed as follows:

yn+1 = yn+hΦ(xn,yn,y
′
n,y

′′
n),

y′n+1 = y′n+hΦ ′(xn,yn,y
′
n,y

′′
n),

y′′n+1 = y′′n +hΦ ′′(xn,yn,y
′
n,y

′′
n). (7)

where the increment functions are

Φ(xn,yn,y
′
n,y

′′
n) = y′n+

h
2

y′′n +h2
m

∑
i=1

biki ,

Φ ′(xn,yn,y
′
n,y

′′
n) = y′′n +h

m

∑
i=1

b′iki ,

Φ ′′(xn,yn,y
′
n,y

′′
n) =

m

∑
i=1

b′′i ki . (8)

whereki is given in (5). If we assume that∆ , ∆ ′ and∆ ′′

are the Taylor series increment function. Thus, the local
truncation errors ofy(x), y′(x) andy′′(x) can be obtained
by substituting the accurate solution of (1) into (8) as
follows:

τn+1 = h[Φ −∆ ],

τ ′n+1 = h[Φ ′−∆ ′],

τ ′′n+1 = h[Φ ′′−∆ ′′]. (9)

Definition 1.A RKTGG method(2) - (4) has order p if for
sufficiently smooth problems(1)

y(xn + h) − yn+1 = O(hp+1), y′(xn + h) − y′n+1 =

O(hp+1), y′′(xn+h)− y′′n+1 = O(hp+1).

In the terms of elementary differentials, the expressions
(9) are best given and the Taylor series can be expressed as
follows:

∆ = y′+
1
2

hy′′+
1
6

h2F (3)
1 +

1
24

h3F (4)
1 +O(h4),

∆ ′ = y′′+
1
2

hF(3)
1 +

1
6

h2F (4)
1 +

1
24

h3F (5)
1 +O(h4),

∆ ′′ = F (3)
1 +

1
2

hF(4)
1 +

1
6

h2F (5)
1 +O(h3). (10)

The first few elementary differentials for the scalar case
are

F (3)
1 = f ,

F (4)
1 = fx+ fyyx+ fy′ yxx+ fy′′ f ,

F (5)
1 = fxx+ yx fxy+ fxy′yxx+ fxy′′ f + y2

xx fyy+ yx fy′y′′ f

+ fy′y′y
2
xx+ fy′y′′ f + fy′ f + fy′′y′′ f

2+ fy′′ fx

+ fy′′ fyyx+ fy′′ fy′yxx+ fy′′y′′ f (11)
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Substituting (11) into (8), the increment functionsΦ,Φ ′

andΦ ′′ for new method becomes
m

∑
i=1

biki =
m

∑
i=1

bi f +
m

∑
i=1

bici
(

fx+ fyyx+ fy′ yxx+ fy′′ f
)

h

+
1
2

m

∑
i=1

bic
2
i

(

fxx+ yx fxy+ fxy′yxx+ fxy′′ f

+ y2
xx fyy+ yx fy′y′′ f + fyyxx+ fy′y′y

2
xx+ fy′y′′ f

+ fy′ f + fy′′y′′ f
2+ fy′′ fx+ fy′′ fyyx

+ fy′′ fy′yxx+ fy′′y′′ f
)

h2+O(h3),
m

∑
i=1

b′iki =
m

∑
i=1

b′i f +
m

∑
i=1

b′ici
(

fx+ fyyx+ fy′ yxx+ fy′′ f
)

h

+
1
2

m

∑
i=1

bic
2
i

(

fxx+ yx fxy+ fxy′yxx+ fxy′′ f

+ y2
xx fyy+ yx fy′y′′ f + fyyxx+ fy′y′y

2
xx+ fy′y′′ f

+ fy′ f + fy′′y′′ f
2+ fy′′ fx+ fy′′ fyyx

+ fy′′ fy′yxx+ fy′′y′′ f
)

h2+O(h3),
m

∑
i=1

b′′i ki =
m

∑
i=1

b′′i f +
m

∑
i=1

b′′i ci
(

fx+ fyyx+ fy′ yxx+ fy′′ f
)

h

+
1
2

m

∑
i=1

bic
2
i

(

fxx+ yx fxy+ fxy′yxx+ fxy′′ f

+ y2
xx fyy+ yx fy′y′′ f + fyyxx+ fy′y′y

2
xx+ fy′y′′ f

+ fy′ f + fy′′y′′ f
2+ fy′′ fx+ fy′′ fyyx

+ fy′′ fy′yxx+ fy′′y′′ f
)

h2+O(h3). (12)

From (10) and (12), the local truncation error (9) can be
expressed as follows:

τn+1 = h3

[

m

∑
i=1

biki −
(

1
6

F (3)
1 +

1
24

hF(4)
1 + ...

)

]

,

τ ′n+1 = h2

[

m

∑
i=1

b′iki −
(

1
2

F (3)
1 +

1
6

hF(4)
1 + ...

)

]

,

τ ′′n+1 = h

[

m

∑
i=1

b′′i ki −
(

F (3)
1 +

1
2

hF(4)
1 +

1
6

h2F(5)
1 + ...

)

]

.

(13)

Substituting (12) into (13) and expanding as a Taylor
expansion using Maple package (see [13]), the local
truncation errors or the order conditions form-stage up to
order four for new method can be expressed as follows:

Order conditions for y:

Order 3

∑bi =
1
6

(14)

Order 4

∑bici =
1
24

, ∑bi ¯̄ai j =
1
24

(15)

Order conditions for y ′:

Order 2

∑b′i =
1
2

(16)

Order 3

∑b′ici =
1
6
, ∑b′i ¯̄ai j =

1
6

(17)

Order 4

∑b′ic
2
i =

1
12

, ∑b′ici ¯̄ai j =
1
12

(18)

∑b′i āi j =
1
24

,
1
2 ∑b′i ¯̄a2

i j +∑b′i ¯̄aik ¯̄ai j =
1
24

(19)

∑b′i ¯̄ai j c j =
1
24

,∑b′i ¯̄ai j ¯̄a jk =
1
24

(20)

Order conditions for y ′′:

Order 1
∑b′′i = 1 (21)

Order 2

∑b′′i ci =
1
2
, ∑b′′i ¯̄ai j =

1
2

(22)

Order 3

∑b′′i c2
i =

1
3
, ∑b′′i ci ¯̄ai j =

1
3

(23)

∑b′′i ¯̄ai j c j =
1
6
, ∑b′′i āi j =

1
6

(24)

1
2 ∑b′′i ¯̄a2

i j +∑b′′i ¯̄aik ¯̄ai j =
1
6
, ∑b′′i ¯̄ai j ¯̄a jk =

1
6
. (25)

Order 4

∑b′′i āi j c j =
1
24

, ∑b′′i ¯̄ai j ¯̄a jkck =
1
24

, (26)

∑b′′i ci ¯̄ai j c j =
1
8
, ∑b′′i ¯̄ai j c

2
j =

1
12

(27)

∑b′′i c3
i =

1
4
, ∑b′′i c2

i ¯̄ai j =
1
4
, (28)

∑b′′i āi j ci =
1
8
, ∑b′′i āi j ¯̄a jk +∑b′′i ¯̄ai j ā jk =

1
12

(29)

1
2 ∑b′′i ci ¯̄a2

i j +∑b′′i ci ¯̄aik ¯̄ai j =
1
8
, ∑b′′i ¯̄a2

i j c j

+∑b′′i ¯̄aik ¯̄ai j ck =
1
8

(30)

∑b′′i ¯̄ai j c j ¯̄a jk +∑b′′i ci ¯̄ai j ¯̄a jk =
5
24

,
1
2 ∑b′′i ¯̄ai j ¯̄a jL ¯̄a jk

+∑b′′i ¯̄aik ¯̄ai j ¯̄a jL =
1
6

(31)
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∑b′′i ai j =
1
24

, ∑b′′i ¯̄ai j āi j =
1
8

(32)

1
6 ∑b′′i ¯̄aiL ¯̄aik ¯̄ai j =

1
24

, ∑b′′i ¯̄ai j ¯̄a jk ¯̄akL =
1
24

(33)

All indexes are run from one tom. To obtain the
higher-order RKTGG method, the following simplifying
assumption is used in order to reduce the number of
equations to be solved:

∑ ¯̄ai j =ci ,

b′i =b′′i
(

1− ci
)

,

bi =b′′i

(

1− ci
)2

2
. i = 1, ... ,m. (34)

3 Zero-Stability of the New Method

In this section, we discuss the concept of zero-stability of
new method to be convergent. Zero-stability is one of
significant tool to prove the convergence of multi-step
methods and stability (see [14,15]). Hairer et al. [16],
discussed zero-stability to determine an upper bound on
the order of convergence of linear multi-steps methods.
Now, the first characteristic polynomial for the RKTGG
method (2)-(5) is based on the following equation:





1 0 0
0 1 0
0 0 1









yn+1
hy′n+1
h2y′′n+1



=





1 1 1
2

0 1 1
0 0 1









yn
hy′n
h2y′′n



 ,

where I =





1 0 0
0 1 0
0 0 1



 is the identity matrix coefficient of

yn+1,hy′n+1 andh2y′′n+1

and A =





1 1 1
2

0 1 1
0 0 1



 is matrix coefficient ofyn,hy′n and

h2y′′n, respectively.

Then, the first characteristic polynomial of new method is

ρ(ζ ) = det[Iζ −A] =

∣

∣

∣

∣

∣

∣

ζ −1 −1 − 1
2

0 ζ −1 −1
0 0 ζ −1

∣

∣

∣

∣

∣

∣

.

thus,
ρ(ζ ) = (ζ −1)3.

Hence, the method is zero stable since the roots,ζ1,2,3 are
equal to one.

4 Construction of the RKTGG Methods

In this section, based on the order conditions which have
been derived in Section 2, we proceed to construct explicit
RKTGG methods. The global local truncation error for the
p order RKTGG method is defined as follows:

‖ τ(p+1)
g ‖2=

(

np+1

∑
i=1

(

τ(p+1)
i

)2
+

n′p+1

∑
i=1

(

τ ′i
(p+1))2

+

n′′p+1

∑
i=1

(

τ ′′i (p+1))2

)
1
2

(35)

whereτ(p+1),τ ′(p+1) andτ ′′(p+1) are the local truncation
error terms fory,y′ and y′′ respectively,τg

(p+1) is the
global local truncation error.
We then focus on the derivation of five-stage RKTGG
method of order four and the algebraic conditions
(

(14)–(15), (16)–(20), (21)–(33)
)

are used because of the
high number of the resulting system of equations which
consists of 37 nonlinear equations. Therefore, we use the
simplifying assumption (34) reducing the system of
equations to 25 equations with 34 unknowns and left with
9 degree of freedom. Solving the system simultaneously
and the family of solution in term of
a21, a31, a42, a43, a54, ā42, ā54, ¯̄a32 and c2 are given as
follows:

a32=−
(

−1+ c2
)

12
(

6c2
2+1−4c2

) , a41= 0,a51 = 0, a52 = 0,

a53=− 1

18
(

6c2
2+1+4c2

)(

−1+ c2
)(

−1+4c2
)

(

2+

15a31−12a42−12a43−324a42c4
2+162a54c2

−540a54c2
2−432a54c4

2+828a54c3
2−39c3

2+33c2
2

−18a54+18c4
2+648a43c3

2−3a21−14c2−648a31

c3
2−648a31c3

2+432a31c2
2−132a31c2+324a31c4

2

+120a43c2−432a43c2
2−324a43c4

2+12a21c2

+120a42c2−432a42c2
2+648c3

2

)

,

ā31= 0, ā32 =
1

6
(

6c2
2+1−4c2

) , ā41 = 0,

ā42=− 1

48
(

−1+ c2
)2(

3c2−1
)4

(

648c5
2

−3456̄a54c5
2−1566c4

2+7488c4
2+7488ā54c4

2

+1512c3
2−5976ā54c3

2+2376ā54c2
2−771c2

2

+144c2
2ā21−84c2 ā21+196c2−468ā54c2

−19+12ā21+36ā54
)

,

c© 2018 NSP
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ā43 =− 1

48
(

9c2
2−6c2+1

)(

−1+ c2
)2(

3c2−1
)2

(

−324

c6
2+432c5

2+3456ā54c5
2+144c4

2+216c4
2ā21

−7488ā54c4
2−576c3

2ā21+5976ā54c3
2−552c3

2

+384c2
2 ā21−411c2

2−2376ā54c2
2−108ā21c2−124

c2+468ā54c2−36ā54+13+12ā21
)

,

ā51 = 0, ā52= 0,

ā53 =
1

36
(

−1+4c2
)(

−1+ c2
)(

6c2
2+1−4c2

)

(

−864

ā54c4
2+90c4

2+1656ā54c3
2−168c3

2−1080ā54c2
2

+123c2
2+36ā21c

2
2+324ā54c2−54c2−24ā21

−36ā54+8+6ā21
)

, ¯̄a21 = c2, ¯̄a31= 1− ¯̄a32, ¯̄a41 = 0,

¯̄a42 =− 18c2
2−16c2+3

(

−1+ c2
)(

9c2
2−6c2+1

) ,

¯̄a43 =
1

8
(

−1+ c2
)(

9c2
2−6c2+1

) ,

¯̄a51 =−−108c4
2+108¯̄a32c4

2+216c3
2−216¯̄a32c2

2

6
(

6c2
2+1−4

)(

−1+ c2
)(

−1+4c2
) +

144¯̄a32c2
2−44 ¯̄a32c2+45c2+5¯̄a32

6
(

6c2
2+1−4

)(

−1+ c2
)(

−1+4c2
) ,

¯̄a52 =
216¯̄a32c4

2+54c3
2−432¯̄a32c3

2−58c2
2+288¯̄a32c2

2

12
(

−1+4c2
)(

6c2
2+1−4c2

)(

−1+ c2
) +

+15c2−88 ¯̄a32c2+10 ¯̄a32−1

12
(

−1+4c2
)(

6c2
2+1−4c2

)(

−1+ c2
) ,

¯̄a53 =− 72c4
2−102c3

2+50c2
2−11c2+1

12
(

6c2
2+1−4c2

)(

−1+ c2
)(

−1+4c2
) ,

¯̄a54 =
9c2

2−6c2+1

3
(

6c2
2+1−4c2

) , b′1 = 0, b′3 = 0, b′5 = 0,

b′2 =
1

6
(

6c2
2+1−4c2

) , b′4 =
9c2

2−6c2+1

3
(

6c2
2+1−4c2

) ,

c1 = 0, c3 = 1, c4 =
−1+2c2

2
(

3c2−1
) , c5 = 1,

b1 = 0, b2 =− −1+ c2

12
(

6c2
2+1−4c2

) , b3 = 0,

b4 =
12c2

2−7c2+1

12(6c2
2+1−4c2)

,b5 = 0, b′′1 = 0,

b′′2 =− 1

6
(

−1+ c2
)(

6c2
2+1−4c2

) ,

b′′3 =− 18c2
2−24c2+5

6
(

−1+ c2
)(

−1+4c2
) ,

b′′4 =
2
(

3c2−1
)3

3
(

−1+4c2
)(

6c2
2+1−4c2

) , b′′5 = 1.

By letting a21 = 1
2, a31 = 1

4, a42 = 1
6, a43 = 1

8, a54 =
1
10, ā42 = 1

3, ā54 = 1
5, ¯̄a32 = 3

4, c2 = 1
6 . Then, the

coefficients of five-stage fourth-order RKTGG method
denoted by RKTGG4 can be represented as follows (see
Table 1):

Table 1: The RKTGG4 Method
0 0 0 0

1
6

1
2 0 61

144 0 1
6 0

1 1
4

5
36 0 0 1

3 0 1
4

3
4 0

2
3 0 1

6
1
8 0 0 1

3 − 67
72 0 0 1

2
1
6 0

1 0 0 − 13
240

1
10 0 0 0 19

48
1
5 0 19

120
91
120 − 1

12
1
6 0

0 5
36 0 1

36 0 0 1
3 0 1

6 0 0 2
5 − 9

10
1
2 1

5 Numerical Experiments

In this segment, all the problems including
y′′′ = f (x,y,y′,y′′) are tested upon. The numerical
outcomes are compared with the results obtained when
the same set of problems is reduced to a system of
first-order equations and is solved utilizing the existing
Runge-Kutta of the same order.
(i) RKTGG4: The new fourth-order five-stage RKTGG
method derived in this paper.
(ii) RKS4: The four-stage fourth-order RK method as in
Butcher [14].
(iii) RKZ4: The five-stage fourth-order RK method given
in Hairer et al.
[16].
(iv) RKE4: The six-stage fourth-order RK method given
in Lambert [15].

Problem 1(Homogeneous Linear Problem)

y′′′(x) =−6y′′(x),

y(0) =1,y′(0) =−1,y′′(0) = 2,

Theoretical solution :

y(x) =
17
18

− 2
3

x+
1
18

e−6x.

Problem 2(Inhomogeneous Linear Problem)

y′′′(x) =y′′(x)+ cos2(x)+ sin(x)+1,

y(0) =0,y′(0) = 1,y′′(0) = 0,
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Theoretical solution :

y(x) =
1
2

cos(2x)− 1
20

sin(2x)+
1
2

cos(x)

+
1
2

sin(x)+
21
10

ex− 3
4

x2− 3
2

x− 21
8
.

Problem 3(Homogeneous Linear Problem)

y′′′(x) =− y(x)+2y′′(x),

y(0) =0,y′(0) = 1,y′′(0) = 0,

Theoretical solution :

y(x) =
1
5

√
5e

1
2 (

√
5+1)x− 1

5

√
5e−

1
2 (

√
5−1)x.

Problem 4(Homogeneous Nonlinear Problem)

y′′′(x) =− 3y′′(x)
2(y(x))2 ,

y(0) =1,y′(0) =
1
2
,y′′(0) =−1

4
,

Theoretical solution :

y(x) =
√

x+1.

Problem 5(Nonlinear System)

y′′′1 (x) =−1
4

e4x y3(x)y′′2(x),

y1(0) = 1, y′1(0) =−1, y′′1(0) = 1,

y′′′2 (x) =−8
9

e2x y1(x)y′′3(x),

y2(0) = 1, y′2(0) =−2, y′′2(0) = 4,

y′′′3 (x) =−27y2(x)y′′1(x),

y3(0) = 1, y′3(0) =−3, y′′3(0) = 9,

Theoretical solution :

y1(x) =e−x,

y2(x) =e−2x,

y3(x) =e−3x.

6 An Application to a Problem in Thin Film
Flow

In this part, we use the suggested method to a well-known
problem in physics regarding the thin film flow of a
liquid. Several researchers have discussed this problem.
Momoniat and Mahomed [17], constructed symmetry
reduction and numerical solution of a third-order ODE
from thin film flow. Tuck and Schwartz [18], discussed
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Fig. 1: Comparison for RKTGG4, RK4, RKZ4 and RKE4
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Fig. 2: Comparison for RKTGG4, RK4, RKZ4 and RKE4
Problem 2 with Xend=2
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Fig. 3: Comparison for RKTGG4, RK4, RKZ4 and RKE4
Problem 3 with Xend=4

the flow of a thin film of viscous fluid over a solid
surface. Tension and gravity, as well as viscosity, are
taken into account. The problem was formulated using
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Fig. 5: Comparison for RKTGG4, RK4, RKZ4 and RKE4
Problem 5 with Xend=2

third-order ODE as follows:

d3y
dx3 = f (y) (36)

for the film profiley(x) in a coordinate frame moving with
the fluid. The form off (y) varies according to the physical
context. Different forms of the functionf are studied in
[18]. For drainage down a dry surface, the form off (y) is
given as:

d3y
dx3 =−1+

1
y2 . (37)

When the surface is pre-wetted by a thin film with
thicknessξ > 0 (whereξ > 0 is very small), the function
f is given by

f (y) =−1+
1+ ξ + ξ 2

y2 − ξ + ξ 2

y3 . (38)

Problems concerning the flow of thin films of viscous
fluid with a free surface in which surface tension effects

play a role typically lead to third-order ordinary
differential equations governing the shape of the free
surface of the fluid,y= y(x). According to [18], one such
equation is

y′′′ = y−k, x≥ x0 (39)

Table 2: Table comparing values of the numerical solution, a
fourth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method atx ∈ [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.1 and k = 2 with the initial conditionsy(0) = y′(0) =
y′′(0) = 1.

x Exact solution RK4 RKE4 RKTGG4

0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000
0.2 1.221211030 1.2212105060 1.2212107764 1.2212093404
0.4 1.488834893 1.4888356990 1.4888512316 1.4888322182
0.6 1.807361404 1.8073626884 1.8074900091 1.8073559531
0.8 2.179819234 2.1798208831 2.1803395852 2.1798100221
1.0 2.608275822 2.6082768844 2.6097383193 2.6082610510

Table 3: Table comparing values of the numerical solution, a
fourth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method atx ∈ [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.01 andk = 2 with the initial conditionsy(0) = y′(0) =
y′′(0) = 1.

x Exact solution RK4 RKE4 RKTGG4

0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000
0.2 1.221211030 1.2212100046 1.2212103652 1.2212100045
0.4 1.488834893 1.4888347800 1.4888507105 1.4888347796
0.6 1.807361404 1.8073613978 1.8074895517 1.8073613971
0.8 2.179819234 2.1798192341 2.1803393119 2.1798192330
1.0 2.608275822 2.6082748678 2.6097383271 2.6082748662

Table 4: Table comparing values of the numerical solution, a
fifth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method atx ∈ [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.1 and k = 3 with the initial conditionsy(0) = y′(0) =
y′′(0) = 1.

x RK4 RKE4 RKTGG4

0.0 1.0000000000 1.0000000000 1.0000000000
0.2 1.2211559590 1.2211564251 1.2211541652
0.4 1.4881067401 1.4881307936 1.4881016329
0.6 1.8042645823 1.8044430234 1.8042548878
0.8 2.1715254210 2.1721919823 2.1715098965
1.0 2.5909615178 2.5927033256 2.5909389202
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Table 5: Table comparing values of the numerical solution, a
fifth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method atx ∈ [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.01 andk = 3 with the initial conditionsy(0) = y′(0) =
y′′(0) = 1.

x RK4 RKE4 RKTGG4

0.0 1.0000000000 1.0000000000 1.0000000000
0.2 1.2211551425 1.2211557726 1.2211551423
0.4 1.4881052844 1.4881300313 1.4881052839
0.6 1.8042625484 1.8044424292 1.8042625474
0.8 2.1715227984 2.1721917529 2.1715227969
1.0 2.59095825948 2.5927036287 2.5909582573

with initial conditions

y(x0) = δ , y′(x0) = ζ , y′′(x0) = λ , (40)

where δ , ζ , and λ are constants, is of particular
importance because it describes the dynamic balance
between surface and viscous forces in a thin fluid layer in
the neglect of gravity. For comparison purposes, we use
Runge-Kutta methods which are fourth-order (RK4 and
RKE4) methods, respectively. To use Runge-Kutta
methods we write (1) as a system of three first-order
equations. Following [19], we can write (39) as the
following system:

dy1

dx
= y2(x),

dy2

dx
= y3(x),

dy3

dx
= y−k

1 (x), (41)

where

y1(0) = 1, y2(0) = 1, y3(x) = 1, (42)

we have takenx0 = 0 andδ = ζ = λ=1. Unfortunately,
for general k, (39) cannot be solved analytically.
However, we can use these reductions to determine an the
efficient way to solve (1) numerically.

We focus on the casesk = 2 andk= 3. The results are
displayed in Tables 2 and 3 for the casek= 2 and Tables 4
and 5 for the casek= 3.

7 Discussion and Conclusion

In this study, a five-stage fourth-order explicit RKTGG
method denoted RKTGG4 for directly solving general
third-order differential equations of the form
y′′′ = f (x,y,y′,y′′) has been derived and the comparison
are made with existing RK methods that have the same
algebraic order which are found in [14,15] and [16].
Furthermore, numerical comparison is based on the
computation of the maximum global error of the solution
(max(| y(xn) − yn |)) which is equal to the maximum
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Fig. 6: Plot of the solution yi for problem (39) for k = 2,h =
0.01
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Fig. 7: Plot of the solution yi for problem (39) for k = 3,h =
0.01
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Fig. 8: Plot of graph for function evaluations against step size,
h for k= 3,h= 1/10i , i = 1...4.

absolute errors of the actual and computed solutions. In
general, the numerical results show graphically as
displayed in Figures 1–5 show that the global error of the
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new method. In Figures 6 and 7, we plot the numerical
solution, yi for k = 2 and k = 3, respectively, with
h= 0.01 . Figure 8 shows that the new RKTGG4 method
requires less function evaluations than the RK4 and
RKE4 methods. This is because when problem (39) is
solved using RK4 and RKE4 method, it needs to be
reduced to a system of first-order equations which is three
times the dimension. From numerical results, we notice
that the new RKTGG4 method is more efficient compared
with existing RK methods and it has been shown that the
new method is more accurate and competent when
solving general third-order ODEs.
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