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Abstract: This article is concerned to study the existence and multiplicity of positive solutions to a class with multi-point boundary
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conditions for multiplicity results of positive solutionsto the problem under consideration are obtained by using Leggett - Williams ’s
fixed point theorem. Further, the generalization of the concerned results are also obtained for more than three positivesolutions. For
the demonstration of our results, we provide an example.

Keywords: Nonlinear fractional differential equations; multi-point boundary conditions; Multiplicity of solutions; Green’sfunction;
Classical fixed point theorems.

1 Introduction

Differential equations of fractional order is one of the fast
growing area of research in the field of mathematics. The
concerned area has been recently proved to be valuable
tools in the modeling of many phenomena in biology,
chemistry, physics, networking, dynamics, fluid
mechanics, viscoelasticity, electro-chemistry, control
theory, movement through porous media, electromagnetic
theory, etc [26,24,2,13,15]. The mentioned area of
differential equations of fractional order became a
candidate to solve problems of complex systems that
appear in various fields of sciences, [3]. The application
of differential equations of fractional order can also be
traced in physics, see[4]. Recently, the fractional
differential equations have been applied to model the
phenomenon and process of manufacturing of polymers
and rheology, see [5]. Fractional derivatives provide a
powerful tools for the description of memory and
hereditary properties of various materials and processes.
Fractional-order derivatives and integrals are proved to be
more useful for the formulation of certain electrochemical
problems than the classical models, (see for detail [6]).
The phenomenon related to chaos, fractals theory and
bioengineering can be excellently models with the help of

fractional differential equations as compared to classical
ones, see [7].

The area devoted to study the existence and
uniqueness of solutions to boundary value problems of
fractional differential equations has been studied very
well and plenty of research work is available on it, (see
for example [10,11,12,16,19,29,20,36] and the
references therein). Boundary value problems of
differential and integral equations arise in various
branches of physics because any physical differential
equation represents it. Further, boundary value problems
of differential equations have significant applications in
the mathematical modeling of physical, biological and
engineering problems, for detail see [37]. Recently the
applications of boundary value problems have been traced
in chemical reactor theory and related applications, (see
[1]). To make a boundary value problem useful in
applications, it should be well posed. For these purposes
existence theory is very important aspect of differential
equations which tell us about the aforesaid behavior. The
concerned study was carried out by using the tools of
classical Fixed Point theory such as Banach Fixed Point
theorem, Leray-Schauder Fixed Point theorem etc to form
conditions for at least one solution.
In [14] the author established appropriate condition for
the existence and multiplicity of positive solutions to the
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following problem
{

Dαu(t)+ f (t,u(t)) = 0, t ∈ (0,1),

u(0) = u(1) = 0,

where 1< α ≤ 2, Dα is the Riemann-Liouvilli fractional
derivative. The aforesaid problems were further
investigated in [32] under the following conditions

{

Dα u(t) = f (t,u(t)); t ∈ (0,1),

u(0) = u(1) = u
′
(0) = u

′
(1) = 0,

where, 3< α ≤ 4, f : [0,1] × R → R, and D is the
standard Riemann-Liouville derivative.
Goodrich [17] studied the existence of at least three
solutions for the following boundary value problems











Dα u(t)+ f (t,u(t)) = 0, t ∈ (0,1),

u(i)(0) = 0, i = 0,1,2...n−2,

Dγu(1) = 0, 2≤ γ ≤ n−2,

where n − 1 < α ≤ n, and D is the standard
Riemann-Liouvilli fractional derivative of orderα, and
n > 3,n ∈ N , f : J × [0,∞) → [0,∞) is continuous
function.
Similarly in [29], authors developed sufficient conditions
for existence and uniqueness of nontrivial solutions by
using LeraySchauder Fixed Point theorem of nonlinear
alternative, and condensing mapping principle for
nonlinear fractional order differential equation given by











Dα
t u(t) = f (t,u(t)); t ∈ (0,1),

Dα−2u(0) = γ0Dα−2u(T ),

Dα−1u(0) = µ0Dα−1u(T ),

where 1< α ≤ 2, γ0,µ0 6= 1.
In very recent years the concerned area has been explored
very well, we refer some fresh work [33,34]. To the best
of our knowledge, the area devoted to the study of
multiple positive solutions corresponding to multi point
boundary value problems of nonlinear fractional order
differential equations is rarely studied. In this regard, very
few papers can be found in the literature dealing with the
existence and multiple results to multi-point boundary
value problems for fractional differential equations [27,
32,35].
In this paper, we investigate sufficient conditions for
multiplicity of positive solutions to the (BVP) given in (1)























Dq
0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1),

u(i)(0) = 0, 0≤ i ≤ n−2,

u(1) =
m−2

∑
i=1

δiu(ηi),

(1)

where n − 1 < q ≤ n and Dq
0+ is the standard

Riemann-Liouville fraction derivative of orderq,n ≥ 3,

δi,ηi ∈ (0,1) with
m−2
∑

i=1
δiηq−1

i < 1, and

f : [0,1]× [0,∞) → [0,∞) is continuous. The concerned
conditions are obtained by using the classical Fixed Point
theorem such as Leggett-Williams ’s Fixed Point theorem
for triple positive solutions. Moreover, the results are
further extended to search out conditions demonstrating
multiple positive solutions. For the applicability of our
results, we provide an example.

2 Preliminaries

In this section, we review some notation, definitions and
preliminary results which are used throughout this paper.
The concerned materials can be found in [2,24,26].
Definition 2.1. The fractional integral of orderq > 0 of a
functiony : (0,∞) is given by

Iq
0+y(t) =

1
Γ (q)

∫ t

0
(t − s)q−1y(s)ds,

provided that the integral converges.
Definition 2.2.The fractional derivative of orderq > 0 of
a continuous functiony : (0,∞)→ R is given by

Dq
0+y(t) =

1
Γ (n− q)

(

d
dt

)n ∫ t

0
(t − s)n−q−1y(s)ds,

where n=[q]+1, provided that the right side is point wise
defined on(0,∞).
Definition 2.3. A mappingθ is said to be a nonnegative
continuous concave functional on a coneP of a real
Banach spaceE provided that θ : P → [0,∞) is
continuous and

θ (tx+(1− t)y)≥ tθ (x)+ (1− t)θ (y),

for all x,y ∈ P and 0≤ t ≤ 1.
The next two lemmas provide an important base for
obtaining the equivalent integral equation of (BVP) (1).
Lemma 2.3[28] If we assumeu ∈ C(0,1)∩ L(0,1), then
the fractional differential equation of orderq > 0

Dq
0+u(t) = 0,

has a unique solution of the form

u(t)=C1tq−1+C2tq−2+ ...+CNtq−N
, Ci ∈R, i= 1,2, ...,N.

The following law of composition can be easily
deduced from above Lemma .
Lemma 2.4. Assume thatu ∈ C(0,1) ∩ L(0,1), with a
fractional derivative of order q that belongs to
C(0,1)∩L(0,1), then

Iq
0+Dq

0+u(t) = u(t)+C1tq−1+C2tq−2+ ...+Cntq−n
,

whereCi ∈ R, i = 1,2, ...,n.
Lemma 2.5.[23] Let P be a cone in a real Banach space
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E, Pc = {u ∈ P : ‖u‖ ≤ c}, θ a nonnegative continuous
concave function onP such thatθ (u)≤ ‖u‖ for all u ∈ P̃c,
andP(θ ,b,d) = {u ∈ P : b ≤ θ (u),‖u‖ ≤ d}. SupposeT :
P̃c → P̃c is completely continuous operator such that there
exist constants 0< a < b < d ≤ c satisfy

(i){u ∈ P(θ ,b,d) | θ (u) > b} 6= /0, andθ (Tu) > b for
u ∈ P(θ ,b,d)

(ii)‖Tu‖< a for u ≤ a
(iii)θ (Tu)> b for u ∈ P(θ ,b,c) with ‖Tu‖> d,

thenT has at least three fixed pointsu1,u2,u3 with a >

‖u1‖, θ (u2)> b, ‖u3‖> a with b > θ (u3).

3 Existence of multiplicity results

In this section, we develop sufficient conditions, under
which the (BVP) (1) has at least three solutions. More
over the criteria is extended to develop sufficient
conditions leading to multiplicity of positive solutions.
Use X = C[0,1] for the Banach space of all continuous
real-valued functions on [0,1] with norm
‖u‖= max

0≤t≤1
|u(t)| and a cone byP such that

P = {u ∈ X : u(t)≥ 0, t ∈ [0,1]}.

Define nonnegative continuous concave functionalθ on
the coneP as given by

θ (u) = min
0.25≤t≤0.75

|u(t)|. (2)

Lemma 3.1.For y(t) ∈C[0,1], the linear BVP

Dq
0+u(t)+ y(t) = 0; 0< t < 1,n−1< q ≤ n, n ≥ 3,

u(i)(0) = 0, 0≤ i ≤ n−2 u(1) =
m−2

∑
i=1

δiu(ηi),

(3)

has a unique solution of the formu(t) =
∫ 1

0 G(t,s)y(s)ds,
where the Green function

G(t,s) = G1(t,s)+ tq−1
m−2

∑
i=1

δiG2(ηi,s) (4)

is given by

G1(t,s) =



























tq−1(1− s)q−1− (1−λ )(t− s)q−1

(1−λ )Γ (q)
,

0≤ s ≤ t ≤ 1,

tq−1(1− s)q−1

(1−λ )Γ (q)
,0≤ t ≤ s ≤ 1,

(5)

G2(η ,s) =







































(1− s)q−1− (ηi − s)q−1

(1−λ )Γ (q)
,

0≤ s ≤ ηi, for i = 1,2,3, ...,m−2,

(1− s)q−1

(1−λ )Γ (q)
,

ηi ≤ s ≤ 1, for i = 1,2,3, ...,m−2.

(6)

Proof.In view of Lemma 2.4, we obtain

u(t)=−Iq
0+y(t)+C1tq−1+C2tq−2+C3tq−3+ · · ·+Cntn−q

,

(7)
for someCi ∈ R. The initial conditionu(i)(0) = 0 implies
C2 =C3 =C4 = · · ·=Cn = 0 and the boundary condition

u(1) =
m−2

∑
i=1

δiu(ηi),

yields

C1 =
1

1−λ

[

Iq
0+y(1)−

m−2

∑
i=1

δiI
q
0+y(ηi)

]

,

where

λ =
m−2

∑
i=1

δiηq−1
i < 1.

Hence, (7) takes the form

u(t) =−Iq
0+y(t)+

tq−1

1−λ

[

Iq
0+y(1)−

m−2

∑
i=1

δiI
q
0+y(ηi)

]

.

(8)
we write (8) as

u(t) =
−1

Γ (q)

∫ t

0
(t − s)q−1y(s)ds+

tq−1

(1−λ )Γ (q)

∫ 1

0
(1− s)q−1y(s)ds

−
tq−1

(1−λ )Γ (q)

m−2

∑
i=1

δi

∫ ηi

0
(ηi − s)q−1y(s)ds

=
−1

Γ (q)

∫ t

0
(t − s)q−1y(s)ds

+
1

(1−λ )Γ (q)

[

∫ t

0
[t(1− s)]q−1y(s)ds+

∫ 1

t
[t(1− s)]q−1y(s)ds

]

+
tq−1

(1−λ )Γ (q)

m−2

∑
i=1

δi

∫ ηi

0

[

(1− s)q−1− (ηi − s)q−1]y(s)ds

+
tq−1

(1−λ )Γ (q)

m−2

∑
i=1

δi

∫ 1

ηi

(1− s)q−1y(s)ds

=

∫ 1

0
G(t,s)y(s)ds.

Hence in view of this Lemma (1) can be written as

u(t) =
∫ 1

0
G(t,s) f (s,u(s))ds.

Lemma 3.2.The Green’s function defined by (4) satisfies
the following conditions:

(i)G(t,s) ∈ C([0,1] × [0,1]) and G(t,s) > 0, for
t,s ∈ (0,1);

(ii)There exists a positive functionγ(s)∈C ((0,1),(0,∞))
such that

min
0.25≤t≤0.75

G(t,s)≥ γ(s)L(s), for 0< s < 1, (9)

whereL(s) = G1(s,s)+
∑m−2

i=1 δi
(1−λ )Γ (q)G2(ηi,s), s ∈ (0,s).
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Proof.(i) The expression forG(t,s) in (4) clearly shows
that G(t,s) > 0, for s, t ∈ (0,1). Moreover continuity of
G(t,s) is obvious. (ii) Let us denote

g1(t,s) =
tq−1(1− s)q−1− (1−λ )(t− s)q−1

(1−λ )Γ (q)
,

g2(t,s) =
tq−1(1− s)q−1

(1−λ )Γ (q)
,

then, ∂g1(t,s)
∂ t < 0 for s ≤ t, which implies thatg1(t,s) is

decreasing function. While∂g2(t,s)
∂ t > 0 for s ≤ t yields

that g2(t,s) is increasing function. It follows thatG1(t,s)
is decreasing with respect tot for s ≤ t and increasing
with respect tot for t ≤ s. Consequently,

min
0.25≤t≤0.75

G1(t,s) =



















g1(0.75,s), s ∈ (0,0.25],

min{g1(0.75,s),g2(0.25,s)},

s ∈ [0.25,0.75],

g2(0.25,s), s ∈ [0.75,1),

=

{

g1(0.75,s), s ∈ (0,ε],
g2(0.25,s), s ∈ [ε,1),

=



















[0.75(1− s)]q−1− (1−λ )(0.75− s)q−1

(1−λ )Γ (q)
, s ∈ (0,ε],

[0.25(1− s)]q−1

(1−λ )Γ (q)
, s ∈ [ε,1),

where ε is the unique solutions obtained from
g1(0.75,ε) = g2(0.25,ε). Further

max
t∈[0,1]

G1(t,s) = G1(s,s) =
sq−1(1− s)q−1

(1−λ )Γ (q)
> 0, s ∈ (0,1).

Setting

γ(s) =



















[0.75(1− s)]q−1− (1−λ )(0.75− s)q−1

[s(1− s)]q−1 , s ∈ (0,r],

(

0.25
s

)q−1

,s ∈ [r,1).

min
0.25≤t≤0.75

G1(t,s) = γ(s)G1(s,s), s ∈ (0,s).

Thus

min
0.25≤t≤0.75

G(t,s)≥ min
0.25≤t≤0.75

G(t,s)

+ min
0.25≤t≤0.75

tq−1
m−2

∑
i=1

δ1G2(ηi,s)

≥ γ(s)G1(s,s)+ (0.25)q−1
m−2

∑
i=1

δ1G2(ηi,s) = χ(s), s ∈ (0,1),

max
t∈[0,1]

G(t,s)≤ max
t∈[0,1]

G1(t,s)

+ max
0.25≤t≤0.75

tq−1
m−2

∑
i=1

δ1G2(ηi,s)

= G1(s,s)+
m−2

∑
i=1

δ1G2(ηi,s) = L(s), s ∈ (0,1).

Henceγ1(s) =
χ(s)
L(s)

=
γ(s)G1(s,s)+ (0.25)q−1∑m−2

i=1 δ1G2(ηi,s)

G1(s,s)+∑m−2
i=1 δ1G2(ηi,s)

.

Clearlyγ1 : (0,1)→ (0,∞) is continues.

proof is completed.

In view of Lemma 3.1, the BVP (1) is equivalent to the
integral equation

u(t) =
∫ 1

0
G(t,s) f (s,u(s))ds (10)

and by a solution of the BVP (1), we mean a solution of
the integral equation (10) is a fixed point of the operator
T : P → P defined by

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds. (11)

Onward, we use these notations

M =

(

∫ 1

0
G(s,s)ds

)−1

,N =

(

∫ 0.75

0.25
γ(s)G(s,s)ds

)−1

and

Q=
1

(1−λ )Γ (q+1)
+

m−2

∑
i=1

δi

∫ 1

0
G2(ηi,s)ds.

(12)

Lemma 3.3. Assume thatf : [0,1]× [0,∞) → [0,∞) is
continuous. Then the operatorT : P → P defined in (11)
is completely continuous.

Proof.Due to nonnegativity and continuity ofG(t,s) and
f (t,s), the operatorT is continuous. For eachu ∈ Ω =
{u ∈ P : ‖u‖ ≤ R, R > 0}, we have

K = max
(t,u)∈[0,1]×[0,R]

| f (t,u(t))|+1. (13)

Therefore, we consider

|Tu(t)|=

∣

∣

∣

∣

∫ 1

0
G(t,s) f (s,u(s))ds

∣

∣

∣

∣

≤ K
∫ 1

0
G(s,s)ds

≤ K
∫ 1

0
L(s)ds,

which implies thatT (Ω) is bounded.
For equi-continuity ofT : P → P, taket1, t2 ∈ [0,1] such
thatt1 < t2 with t2− t1 < δ and takingε > 0 andn−1< q,
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such thatδ = 1
n(

ε
KQ

)q−1. Then foru ∈ Ω , we claim that
|Tu(t2)−Tu(t1)|< ε. Thus we have

|Tu(t2)−Tu(t1)|

=

∣

∣

∣

∣

∫ 1

0
[G(t2,s) f (s,u(s))−G(t1,s) f (s,u(s))]ds

∣

∣

∣

∣

≤ K
∫ 1

0
|G(t2,s)−G(t1,s)|ds

≤ K

[

∫ 1

0
|G1(t2,s)−G1(t1,s)|ds

]

+K

[

(tq−1
2 − tq−1

1 )
m−2

∑
i=1

δi

∫ 1

0
G2(ηi,s)ds

]

≤ K

[

∫ t1

0
|G1(t2,s)−G1(t1,s)|ds

]

+K

[

∫ 1

t2
|G1(t2,s)−G1(t1,s)|ds

]

+K

[

∫ t2

t1
|G1(t2,s)−G1(t1,s)|ds

]

+K

[

(tq−1
2 − tq−1

1 )
m−2

∑
i=1

δi

∫ 1

0
G2(ηi,s)ds

]

,

which on simplification gives

|Tu(t2)−Tu(t1)|

≤ K

[

(tq−1
2 − tq−1

1 )

(1−λ )Γ (q)

∫ 1

0
(1− s)q−1ds

]

+K

[

(tq−1
2 − tq−1

1 )
m−2

∑
i=1

δi

∫ 1

0
G2(ηi,s)ds

]

≤ K

[

1
(1−λ )Γ (q+1)

+
m−2

∑
i=1

δi

∫ 1

0
G2(ηi,s)ds

]

×

(tq−1
2 − tq−1

1 ) = KQ(tq−1
2 − tq−1

1 ).

Further, we explain the above process as
Case I.δ ≤ t1 < t2 < 1 and using Mean value theorem on
|tq−1

2 − tq−1
1 |, we have

|Tu(t2)−Tu(t1)| ≤ KQ(tq−1
2 − tq−1

1 )

< KQ(q−1)δ q−2(t2− t1)

< KQnδ q−1
< ε.

Case II. 0≤ t1 < δ , t2 < nδ , we have

|Tu(t2)−Tu(t1)| ≤ KQ(tq−1
2 − tq−1

1 )

< KQ(q−1)(tq−2
2

< KQ(nδ )q−1 = ε.

HenceT : P → P is equicontinuous. By Arzela-Ascoli
theorem, we conclude that the operatorT : P → P is
completely continuous.

Now, we show existence of at least three solutions of the
BVP (1).
Theorem 3.4.Assume thatf : [0,1]× [0,∞) → [0,∞) is
continuous and there exists positive constants 0< a < b <

c such that

(A1) f (t,u)< Ma, for (t,u) ∈ [0,1]× [0,a]
(A2) f (t,u)≥ Nb, for (t,u) ∈ [0.25,0.75]× [b,c]
(A3) f (t,u)≤ Mc, for (t,u) ∈ [0,1]× [0,c],

then the BVP (1) has at least three positive solutions
u1, u2, andu3 such that

max
0≤t≤1

|u1(t)|< a,

b < min
0.25≤t≤0.75

|u2(t)| ≤ c,

a < max
0≤t≤1

|u3(t)|< c,

min
0.25≤t≤0.75

|u3(t)|< b.

(14)

Proof.From Lemma 3.3, the operatorT : P → P is
completely continuous. Anyu is the solution of BVP(1) if
and only if u is the solution of the operator equation
u = Tu. Now, we show that all the conditions of Lemma
2.5 are satisfied. Letu ∈ P̄c, then||u|| ≤ c and from(A3),
we have

‖Tu‖= max
0≤t≤1

∣

∣

∣

∣

∫ 1

0
G(t,s) f (s,u(s))ds

∣

∣

∣

∣

≤

∫ 1

0
G(s,s) f (s,u)s))ds

≤

∫ 1

0
L(s)Mcds = c.

HenceT : P̄c → P̄c. Chooseu(t) = b+c
2 ,0 ≤ t ≤ 1. Then

using (2), we have

u(t) =
b+ c

2
∈ P(θ ,b,c),θ (u) = θ (

(b+ c)
2

)> b.

From which we have

{u ∈ P(θ ,b,c) |θ (u)> b} 6= /0.

Hence, ifu ∈ P(θ ,b,c), thenb ≤ u(t) ≤ c for 0.25≤ t ≤
0.75. Also, from assumption(A2), we have f (t,u(t)) ≥
Nb, for 0.25≤ t ≤ 0.75 and

θ (Tu) = min
0.25≤t≤0.75

|(T (u))|

≥

∫ 1

0
γ(s)G(s,s) f (s,u(s))ds

>

∫ 0.75

0.25
γ(s)L(s))Nbds = b,

which implies that

θ (Tu)> b, for all u ∈ P(θ ,b,c).
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Next, letu ∈ P̄a, then||u|| ≤ a. From(A1) for t ∈ [0,1]

‖Tu‖= max
0≤t≤1

∣

∣

∣

∣

∫ 1

0
G(t,s) f (s,u(s))ds

∣

∣

∣

∣

≤
∫ 1

0
G(s,s) f (s,u)s))ds

≤

∫ 1

0
L(s)Mads = a.

HenceT : P̄a → P̄a. Hence all the conditions of Lemma
2.5 are satisfied, so the BVP (1) has at least three positive
solutionsu1,u2,andu3 satisfying

max
0≤t≤1

|u1(t)|< a,

b < min
0.25≤t≤0.75

|u2(t)| ≤ c,

a < max
0≤t≤1

|u3(t)|< c,

min
0.25≤t≤0.75

|u3(t)|< b.

Proof is completed.

Theorem 3.5.Assume thatf : [0,1]× [0,∞) → [0,∞) is
continuous and there exists positive constants

0< a < b1 < c1 < b2 < c2...bk−1 < ck−1,n = 1,2,3, ...,

such that
(A4) f (t,u)< Ma, for (t,u) ∈ [0,1]× [0,a]
(A5) f (t,u)≥ Nbi, for (t,u) ∈ [0.25,0.75]× [bi,ci],1≤ i ≤

k−1;
(A6) f (t,u)≤ Mci, for (t,u) ∈ [0,1]× [0,ci], 1≤ i ≤ k−1.
then the BVP (1) has at least 2k−1 positive solutions.

Proof.By mathematical induction, whenk = 1, then from
(A4), the operatorT has at least one Fixed Point which is
the corresponding solution of BVP(1) by using Schauder
Fixed Point theorem. Fork = 2, the theorem reduces to
Theorem 3.4, whose proof has already done. Fork = n,
the statement holds and the BVP(1) has at least 2n− 1
positive solutions satisfying
maxt∈[0,1] |ui(t)| ≤ cn−1; i = 1,2, ...,2n − 1. Again to
derive result fork = n+1 applying Theorem 3.4 to

f (t,u)< Mcn−1, for (t,u) ∈ [0,1]× [0,cn−1];

f (t,u)≥ Nbn, for (t,u) ∈ [0.25,0.75]× [bn,cn];

f (t,u)≤ Mcn, for (t,u) ∈ [0,1]× [0,cn].

We get three positive solutionsu0,u2n,u2n+1 with

max
0≤t≤1

|u0(t)|< cn−1,

bn < min
0.25≤t≤0.75

|u2n(t)|< max
0≤t≤1

|u2k(t)|

≤ cn,cn−1 < max
0≤t≤1

|un+1(t)|< cn,

min
0.25≤t≤0.75

|un+1(t)|< bn.

Clearly u2n,u2n+1 are different from u1,u2, ...,u2n−1.
Hence BVP(1) has at least 2k+1 positive solutions. Proof
is completed.

4 Example

Example 4.1.For the problem takingm = 5,δ1 = η1 =
0.5, δ2 = η2 = 0.25,δ3 = η3 = 0.125

D
5
2
0+u(t)+ f (t,u) = 0,0< t < 1,

u(0) = u′(0) = 0, u(1) =
3

∑
i=1

δiu(ηi),
(15)

where

f (t,u) =















e−2t

100
+

u3

1000
; u ≤ 1,

4+
sint
100

+ u; u > 1,

we find thatM ≈ 2.623438 andN = 6.099814. Choosing
a = 0.04, b = 0.75 and c = 2, we have

f (t,u) =
e−2t

100
+ u3 ≤ 0.011< Ma ≈ 0.10493752,

f or (t,u) ∈ [0,1]×
[

0,0.04],

f (t,u) = 4+
sint
100

+ u ≤ 5.01≥ Nb ≈ 4.5748605,

f or (t,u) ∈ [0.25,0.75]× [1,2],

f (t,u) = 4+
sint
100

+ u ≤ 5.01≤ Mc ≈ 5.246876,

f or (t,u) ∈ [0,1]× [0,2].

Hence, by Lemma 2.5, the BVP (15) has at least three
positive solutionsu1,u2, and u3 with

max
0≤t≤1

|u1(t)|< 0.25,

1< min
0.25≤t≤0.75

|u2(t)| ≤ 2,

0.25< max
0≤t≤1

|u3(t)|< 2,

min
0.25≤t≤0.75

|u3(t)|< 0.75.

5 Conclusion

Thanks to classical Fixed Point theorem due to
Leggett-Williams, we have established adequate results
for the existence of triple solutions. Also the criteria has
been extended to multiplicity results for the considered
problem. The established theoretical results have been
demonstrated by a proper example. Hence a conclusion,
we state that Fixed Point theory provide a powerful tools
to treat boundary value problems of FDEs as well as
classical differential equations.
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