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Abstract: Information entropies (Fisher, Shannon, and Rényi), wikir associated quantities, are calculated and discussele

Modified Hulthén Potential (MHP) in the position and momeantspaces using the J-matrix method. Interesting charstiteeatures
of the entropy densities are shown, where the position andentum space information entropies show scaling behavidrsatisfy
uncertainty relations. Many of our results are reportedHerfirst time. The outcome is compared with the availabéediiures’ results.
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1 Introduction The J-matrix has been proven to be an essential numerical
tool to calculate the bound and resonance state energies,
In [1], a modification for the simple Hulthén potential the scaling behavior of atomic and molecular systefs [
(MHP) [2,3,4,5], was proposed as: 6,7,14,15,16] , as well as the information entropie$4,
1 15]. Accordingly, we briefly retrieve the required
a equations and definitions of the J-matrix that are needed
Viarp(r, Z, 1,8,b) = Z“ cos(bur) (1) to help us in our discussions in the theory section.

with a, b, andu are being parameters. The MHP (1), with
a—= b =0 y haS the COU|OmbiC behaVior fOI’ Sma” ValueS Before we begin our task in Ca'cu'ating the

of r, but decreases exponentially for>> % Over the  information entropy for MHP using the J-matrix method,
years, a simple potentigh = 0) has been widely used in we shed some light and retrieve the most recent
chemical physics, plasma physics, and quantumpublications in the related subject. This is mainly due to
chemistry. In general, the MHP does not have an exacthe vast number of publications on the subject. Dehesa
analytic solution, except for the simple potential with@er and co-workers]7,18] applied the information theory to
angular momentum. Consequently, different study the one and two-electron atoms, as well as the
computational methods have been employed to obtairRydberg states1®]. Aquino et. al..R0] calculated the
their solutions. For a comprehensive review of the Shannon entropy and Fisher information for hydrogen
available computation methods in use to solve suchatoms under soft spherical confinement. Moreover, the
potentials, we refer the reader to the recent wdsls,[6, calculation of the entropies in the information theory has
7. been given for systems with different potentials rather
Due to the unavailability of the exact analytical than the Coulombic-potential [17-20]. For example, it has
solution of the MHP, accordingly, the present study been applied for: the hyperboliQ]] and asymmetric
presents the results of our numerical calculation on thedouble-well potential22], the asymmetric trigonometric
information entropies (such as Shann@f [Fisher P, Rosen-Morse potentialB], and position-dependent mass
Rényi [10]) and their associated quantitiesl]12,13] for Schradinger problem with a hyperbolic welk4]. Ref.
the MHP. A sample calculation is done using the J-matrix[25] discussed the Shannon-entropy-based uncertainty
method p,6,7,14,15,16] for the exponential-cosine relation for D-dimensional central potentials. In R&X6]|,
screened Coulomb potential with electron densities, andnformation-theoretic measures of hydrogen-like ions in
their gradients are manipulated in both r- and p-spacesweakly-coupled Debye plasmas.
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Regarding the Rényi entropy, the Fisher RényiwhereR,(r) is the solution of the radial non-relativistic
complexity measure and its applications are elegantlySchrodinger equation:
analytically discussed by Dehesa and his coworkevs [ L 1041
28,29 The Rényi and Tsallis entropies have been Lo + = |
discussed for the hydrogenic Rydberg atorf].[ Ref. [ 2dr2 + 2r2 FVIOIR() = En(Ry(1), - (7)
[31] discussed the Fisher information, Rényi entropy . . . . -
power and quantum phase transition in the Dicke model@NdYi.m(6. @) is the spherical Harmonics which satisfies
Ref. [32] used the finite-size scaling method to study the the non-radial operatak?:
Shannon-Rényi entropy in two-dimensional systems with ~5
spontaneously broken continuous symmetry. The scaling ANim(0,9) =11 +1)Yim(6,9), (8)
behavior of the Rényi entropy for He-like atoms, using

) . . where

the exponential-cosine screened Coulomb potential, was

discussed in Ref33). 5 1 0, .0 J | . J

The outline of this article is as follows: In Section II, N = aN%5) t gng %(sz 9@)7 9)
we provide some general expressions corresponding to
the information entropies, as well as a brief introductionwith1 =0,1,2,3,...andm=—I,-1+1,...,0,...,1 = 1,1. In

to the J-matrix method1§,15,16] In Section Ill, we  (7), E! represents the eigenvalues of the full Hamiltonian
present our numerical results of the scaling, product, andH, andR,(r) are the corresponding eigenfunctions.
uncertainty properties of the r- and p-space entropies In the J-matrix method, to find the radial function
derived for the MHP. Finally, a summary of the main R.,(r) and the corresponding eigenvalues,, we
results is accessible in Section IV. In the present study, Wejiagonalize the full Hamiltoniar(I:I) in a suitableL?
are using the atomic units throughout the manuscripty)5sis set{¢(Ar) N-1 To do so, we are using

unless mentioned otherwise. n=0 '

@A) =a (Ar)*+e2 L2+ (Ar); n=0,1,2,...,N—1

2 Theor , _ (10)
y whereL2+1(Ar) is the associated Laguerre polynomial,
It is well known that the electron density in the r-space, 8, = %is the normalization constant, N is the

p(r), and its gradient, are the corner stones in calculatingdimension of the J-matrix, and the parameter is

the information entropies. Thus, in applying the J-matrix introduced to be the positive length scale of the basis that
method [L4,15,16] in our study, we start with the particle’s allows for more computational freedom. The
density of the stationary and nonrelativistic states, in 3-wavefunction @(r), the basis of the J-matrix,

dimensional quantum systems, in the form: tridiagonalized, in the form
= |@(r,Z,u,a,b)? 2 AZ
p(r)=w(r.Z,pab)l @ (Mo = R4 18+ VAT 2+ 15,1
that satisfies the normalization condition: +\/(n+1)(n+2|+2)5n’n/71]. (11)
/P(Udf:l, (3)  In the manipulation of (11), we use the differential

equation, differential formula, three-term recursion

wheredr = r2drdQ and dQ = sin6d6dg is the solid  relation, and orthogonality formula of tHe? *1(Ar). In
angle. The wave functions in (2)y(r,Z, u,a,b), are the  the J-matrix method, the reference Hamiltonian of the
bounded solutions of the Schrodinger equation: systemH, is fully accounted for, while the potentigl(r)

R R is approximated by its representation in a subset of the
H]lY) =[Ho+V(r.Z u,ab)y(r,Z,u.ab= EL.U(EZ-,H,&EJAB basis, such that:
where (H)is the full Hamiltonian and{E} is the H)nm = (n|H|m) = { (Ho)nm=+Vam(r); nm<N-1
associated eigenvalues. In the following discussion, and( h (Ho)nm; nm>N-1
for simplicity, the parametei3, u,a andb are suppressed (12)
from the labels of the wave function and the potential. In The integer N in (12) is chosen large enough to ensure a
(4), good sampling of the potential.
d>  1(141) Returning back to the matrix elements of the potential

Ho=——5+ 57" (5)  v(r), whichis obtained by evaluating the integral:

is the reference Hamiltonian of the system, with orbital ®
quantum numbel. In spherical polar coordinatés 6, ¢) Vim(r) :/ GATV(r)@m(Ar)dr
, the eigenfunctio®(r) has the form: 0

— A lanan /0 TR e LY (LY V() dx. (13)

> x

W(r) =R\(1)Yim(6.9), (6)
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The evaluation of such an integral for a general effectiveWith the above definitions, one can also define: the

potential is almost always done numerically. We use theshannon entropy power [17-19}) = }Tee%, the

Gauss quadrature approximatid], which gives Fisher-Shannon information produ& = '2t, which
N-1 should satisfy the relatioR > 1.

Vim = z Ank/\nk[skV(/\ )] (14) In the p-space, to calculate the densityp) one has

to apply the Fourier transformation t8(r), in (6), in the

for an adequately large integhir & and{An}N-¢ are the spherical coordinates, i.e.

N eigenvalues and corresponding eigenvectors oRtklg o )
tridiagonal basis overlap matrifgh| @), whose elements ¥Y(p) = /ep' w(r)dr,  y(p)=|¥(p)" (23)
are:

. _ Consequently, one can replace, in Eqgs. (17-21), the
Kan=2n4242, Konia=—+/(n+1)(n+2 +125) subscriptr by p, p(r) by y(p) = |%¥(p)|?, and integrate
(15) with respect todp with the normalization condition
Jy(p)dp = 1. In addition, we have to check the Shannon

The output of the diagonalization of (7) in the associated
Laguerre ga5|s IS a sett (;l;thglelger}\zllaliﬁean_?hthe entropy sumSr = § + S, that contains the net
corresponding eigenvectof2yg, Oy, -, Q-—1}- TheN,  jncormation and obeys the well-known lower bound

the radial functioR(r)is calculated by the expansion:  Bjalynicki-Birula and Mycielski BBM-condition 13 in
the form:

z Qld.(n (16) Sr > 3(1+In(m)). (24)
In the end, we introduce the definition that used for the

Thus, the electron density functions of then-state can ~ M-moment ofr [14], in the form:
be written as:

D) = W) = s ()P 0.0) = RO Mm@ B, (M = UM = [“RAOR (r2 Ve, (29)
a7

With the knowledge of the electron state dengity), and  whereM is an integer number. The analytical expression

following the recent referenced112) one can express for the Buckingham static polarizability;afI oo of
the following quantities in the r-space: hydrogen 1s-state i$8, 35]: ,

1.The Shannon entropy [8]:

2 3
g 260316+ 3% 16— 8(N)1s1s(r?)1s15(r%) 115
— r)in[p(r)]dr, 18 a.. == 1,
[ ptyinip) 18) af,=3 I
2.The Fisher information [9]: . _ (26)
) and the expressions for the excited statpsa®d 3 are
Op(r :
o= /! p((r)ﬂ . 1) 138 e, .
p aZp,d = g(r )2}9 2p+ 15( )2}9,2}97 (27)
3.The Rényi entropyRg [10]:
324 27
1 B <3
Rar = 751l lo)far; B#1 (20) Toa1 = 35 (waet g (29

It is known thatS is a gauge that provides the

information about the localization, extent, spread, 3 Resultsand discussions

shape and uncertainty of the electronic density

distribution of states in the respective spaces. In otheit is our main objective in this section to demonstrate and
words, a more localized distribution,p(r)  discuss our numerical results. In other words, we
corresponds to the smaller value of the and vice numerically investigate the dependence of the Rényi
versa. The Rényi entropy can be argued to be aentropyRg, , and other informatics properties, on the
generalization of Shannon’s concepts and definitionsguantum number n and the order paramgteBut before

In general§ is a limited value of th&Rg asf3 — 1. we do so, we have to mention that; by including the
4.Moreover the expectation expressions férand P>~ Screening parameter in (1), the number of states are
are: reduced tremendously. This is opposite to the Coulombic
(r2) = /rzp(r)dr 21) case where we have an infinite number of states.
’ Our study starts with Table 1 that displays the
) numerical values of the nine information-theoretic
/W :_L‘?_ [r@(r)]dr, (22) quantities. The quantities are: the Shannon entrofies
Sy, Sr, the Reényi entropiesRy;, Ryp, the Fisher
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Table 1: Numerical values for the MHP, corresponding to with differealues of(Z, u,a,b), which illustrate its
independence ofu, Z] values if the ratio%, a, and b are held fixed.The literature references are givsnerscript.

(Z,1,a,b) n| -E (r?) (p%) S Rur | & Ir P S5 Rip | Ip | P St |RPy| Ilp
1 0.166697B 14.598 | 0.1700 | 6.6017 [6.59181.7452 0.6802 [1.0759 -0.1258 [-0.124858.407(1.0482 6.4759 [1.1277 39.728
0.166700{14.59115(0.17009 | 6.601715 0.680353| —0.125922 58.3646' 6.47578 39.7085

(1,0.05,0.5,0) 2 10.0499884 113.65 | 0.0932 | 9.5679 9.567184.50% 0.3729 |4.2887 -1.8439 [-1.8442454.6212.5954 7.7240 [11.131 169.52
0.049989| 113655 | 0.09323
3 (0.017188B 456.68 | 0.0513 | 11.589 11.58t32.64 0.2053 9.0774 -3.0810 [-3.0814 1826.74.571% 8.5081 ¥1.497 375.05

4 (0.005021p 1458.5| 0.0270 | 13.302 [13.3016.00 0.1081 [14.98¢ -4.2533 -4.25375694.1|6.5219 9.0490 [97.737 615.36

1 /0.375070[L 6.4880 | 0.3826 | 5.3853 [5.38742.1260 1.5304 [1.0846 1.0906 |1.0904 25.959(1.048% 6.4759 [1.1368 39.728
0.375075|6.48496 | 0.3827 |5.38532% 1.530794 1.09046% 25.9398 6.475787% 39.7085
(1.5,0.0750.5,0) | 2 0.112473P 50.513 | 0.2097 | 8.3515 8.352(15.343 0.8390 [4.2907 -0.6275 |-0.628( 202.05[2.5954 7.7240 (11.136 169.52
0.112475{50.51334|0.2097#
30.03867% 202.97 | 0.1155| 10.373 [10.37$9.00% 0.4620 [9.0859 -1.8646 [-1.865()811.89{4.571% 8.5081 }41.536 375.05
4 10.011299 648.23 | 0.0608 | 12.086 12.081184.9 0.2432 {14.989 -3.0369 |[-3.03732530.7(6.5219 9.0490 97.756 615.35
110.162877 14.269 | 0.1735| 6.5690 6.558'121.6417 0.6939 [1.073% -0.0946 [-0.093%57.093(1.0462 6.4744 [1.123] 39.614
0.16287 [14.26236] 0.1735 |6.568969 0.69401% -0.094702 57.0494 6.47426 39.592¢
(1.5,0.0750.5,2) | 2 {0.041142 105.70 | 0.10128| 9.4526 [9.452481.953 0.4047 {4.3107 -1.6918 |-1.7267 422.80[2.6712 7.7607 {11.51$171.12
0.04114 [1056998{0.10119
3 (0.004943 430.81| 0.0552 | 11.510 [11.51(125.9% 0.2210 [9.277% -3.0135 -3.0138? 1723.1|4.510, 8.4965 }41.84%380.77
1]0.151779 13.461| 0.1828 | 6.4844 |6.473#4.385] 0.7310 [1.068% -0.0133 -0.0l3d3 53.861(1.0419 6.4711 [1.113%239.372
0.15178|134536"0.18279 | 6.484443 0.731167 —0.01345 53.8143 6.47099 39.3472
(1,0.05,0.5,2) 210.017901 93.953 | 0.1161 | 9.2697 9.269¢28.286 0.4643 4.3774 -1.4657 -1.4656¢ 375.8212.760¢ 7.8040 [12.084 174.48
0.0179 93.95266]0.11608
110.341502 5.9826 | 0.4112| 5.2680 [5.2708.9663 1.6447 [1.078)Q 1.2031 |1.202§ 23.938(1.0419 6.4711 [1.1232 39.372
0.3415 |5.97938 |0.41128 [5.2680481 1.645125 1.202944 239175 6.47099 39.3472
(1.5,0.0750.5,2) | 2 [0.040278 41.757 | 0.2612 | 8.0533 8.054(12.579 1.0446 [4.3798 -0.2493 |-0.2497 167.03[2.7606 7.8040 (12.091 174.48
0.04028 [41.75674{0.26118

1 |0.244264 8.7285| 0.2821 | 5.8441 [5.844(R.8824 1.1285 [1.0848 0.6224 |0.6223 34.914[1.0319 6.4665 [1.1188 39.401
0.24426 |8.72829 [0.282131%,
(1.5,0.0750.75,2)| 2 {0.01319% 54.960 | 0.2040 | 8.4624 8.46286.513 0.8159 [4.4908 -0.5876 |-0.5879219.8382.8999 7.8748 [13.028 179.36
0.0132 [54.959970.20396"

information measured;, |, , the powers? and Py, as L'Hospitals rule to calculateR; analytically, which
well as the bound state energies, the expectation values gives the Shannon expression, or calculate it
(r?) and(p?), for the s-wave of the MHP. The quantities numerically by choosingf close to 1. In our

given in Table 1 present the following observations: calculations, we chosg = 1.0001.
1.0ur numerical values are in excellent agreement, up to 9-According to the definition of the Shannon entropy,

2.In all cases, the BBM-definition, Eq. (24), the sum  smaller value of th&. This means the delocalization

Sr > 6.43419, is satisfied for all the given parameters. ~_ P(r) increases with increasingandn. .
The St values shows scaling behavior in which they ~ 6-In the r-space, the results support the scaling property

are independent of thg, j1] when the ratic%, b, and that the MHP is independent of the set of val(&s.]
a are fixed. when the ratiqu/Z, b, and a are fixed.
3.The Fisher-Shannon information product&qf, and 7.For the nth-state, with fixed n, the prodég®, and the
their multiplication are all greater than 1. Fisher information measutd, are independent on all
4.In regards to the Rényi entropRs,(Rs ), it is the parameter&Z, i1, a,b). As an example, for the 1s-
known that the Shannon entropiedi (S.p) are stateR P, ~ 1.1 andl;lp ~ 39.
limited values of the Rényi entropies As— 1, which 8.For the fixed paramete(g, u1,a,b), the produck P,

is proven numerically in our cases. Note that, because ~ @ndlrlp increase with increasing n.
of the indeterminate form ofR;, one can use
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Table 2: Numerical values of Rényi entropies for the MHP, correspinog to different values ofl, Z, 1, a,b).
r-space p-space
(1,Z,u,a,b) n Ry Rs Ry Rs R Rs Ry Rs
(0,1,0.05,0.5,0) 1 5.9731 5.7099 5.5620 5.4662 -0.7653 -1.0395 -1.1993 -1.3064
2 8.8135 8.0878 7.6329 7.3713 -3.2760 -3.6292 -3.8045 -3.9159
3 10.803 9.7160 9.0593 8.7000 -4.8869 -5.3395 -5.5482 -5.6753
4 12.541 11.164 10.339 9.8977 -6.1695 -6.6716 -6.8982 -7.0334
(0,1.5,0.75,0.5,0) 1 4.7567 4.4935 4.3456 4.2498 0.4511 0.1769 0.0171 -0.0899
2 7.5971 6.8714 6.4165 6.1549 -2.0596 -2.4128 -2.5881 -2.6995
3 9.5872 8.4996 7.8429 7.4836 -3.6705 -4.1231 -4.3318 -4.4589
4 11.325 9.9479 9.1228 8.6813 -4.9531 -5.4552 -5.6818 -5.817(
(1,1,0.05,0.5,0) 1 7.3853 7.0987 6.9303 6.8174 -0.7290 -1.0014 -1.1603 -1.2667
2 9.6378 9.0130 8.5964 8.3391 -3.1354 -3.4956 -3.6733 -3.7857
3 10.513 10.513 9.9064 9.5548 -4.8688 -5.3232 -5.5332 -5.6614
(1,1.5,0.0750.5,0) 1 6.1689 5.8823 5.7139 5.6010 0.4874 0.2150 0.0561 -0.0504
2 8.4214 7.7966 7.3800 7.1227 -1.9190 -2.2792 -2.4569 -2.5693
3 10.211 9.2968 8.6900 8.3383 -3.6525 -4.1068 -4.3168 -4.4451
(0,1,0.05,0.5,2) 1 5.8730 5.6161 5.4714 5.3777 -0.6368 -0.9055 -1.0626 -1.168(
2 8.4943 7.7799 7.3443 7.094% -2.9398 -3.3149 -3.4989 -3.6149
(0,1.5,0.0750.5,2) 1 4.6566 4.3997 4.2551 41613 0.5796 0.3109 0.1538 0.0484
2 7.2779 6.5635 6.1279 5.8781 -1.7234 -2.0985 -2.2825 -2.3984
(0,1.5,0.0750.5,2) 1 6.5047 6.2742 6.1452 6.0617 -1.1832 -1.4404 -1.5922 -1.6944
2 8.9404 8.2951 7.8923 7.6584 -3.3106 -3.7108 -3.9061 -4.0291
(0,1,0.05,0.75,2) 1 5.2883 5.0578 4.9288 4.8453 0.0332 -0.2240 -0.3758 -0.478(
2 7.7240 7.0787 6.6759 6.442(0) -2.0942 -2.4944 -2.6897 -2.8127
Table 3: Scaling laws of Rényi entropies in the foilRg = cIn(n) +d for the MHP in r- and p-spaces.
r-space p-space
(Z,u,a,b) Rg c d R2 Rs.p c d R2
(1,0.05,0.5,0) Ry 4.779 6.468 0.995 Rip -2.922 -0.004 0.999
Roy 4.675 5.819 0.993 Ro.p -3.871 -0.699 0.998
Rar 3.879 5.588 0.993 Rsp -4.038 -0.962 0.998
Ry 5.573 5.451 0.993 Ra,p -4.087 -1.116 0.998
Rs 5.469 5.358 0.992 Rs p -4.107 -1.219 0.997
Table 4: Scaling laws of Rényi entropies in the folg , = cn’ for the MHP.
r-space
(Z,u,a,b) Rg c v R?
Ry 6.6477 0.5055 0.999
Roy 6.0091 0.5347 0.999
(1,0.05,0.5,0) Rar 5.7338 0.4825 0.999
Ra.r 5.5732 0.4456 0.999
Rs 5.4692 0.4265 0.999
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Table 5: The bound states energy, the squares of the M-motm¥nt, -, and Buckingham static polarizabilitiaxr‘,ﬁ -

of the 1s-state as well as the excited states 2p and 3d of MHB, selectedi-values of the MHRZ = 1,b=1,a=0).
All values are in a.u. The compared references numbersaga @i the superscript square bracket..

Initial statgg 0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 0.75
—Eis 0.5 0.47353| 0.44451| 0.38095|0.3131760.244276 0.176869|0.144503 0.113473{0.0841730.0571(0.03301
(r)1s1s 1.5 1.49731| 1.49097 | 1.47626| 1.46917| 1.47885| 1.51681 | 1.55333| 1.60956 | 1.69896| 1.8526| 2.1604
1s (r?)as1s 3.0 2.98803| 2.96043| 2.90012| 2.87927| 2.93983| 3.14493 | 3.34596| 3.66984 | 4.22355|5.28487 7.8030
(r3>1s,1s 7.5 7.45069| 7.33967 | 7.11265| 7.06972| 7.39296| 8.41778 | 9.46358| 11.2545 | 14.6045|21.916645.0362

afsp 4.5 4.46079| 4.3727 | 4.19313| 4.15726| 4.40972| 5.25109 | 6.1634 | 7.8414 | 11.3291|20.225552.765]
45414

u 0.0 0.05 0.1 0.105 | 0.11 | 0115 | 0.12 0.125 | 0.13 0.14 | 0.15 | 0.16
—Ezp | 0.125 |0.0957420.06144030.0579040.0543640.0508240.04728740.0437560.0402362 0.03324|0.026320.01953
(N1s1s | 5.0 |4.92522| 4.85837 | 4.85854| 4.86053| 4.86451| 4.87069 | 4.87929| 4.89059 | 4.9227 |4.971035.04214
2p  |(rPop2p| 30.0 |29.0597| 28.3264| 28.347 | 28.3923| 28.4649| 28.5679 | 28.7047| 28.8799 | 29.3685|30.105631.2131
(r¥op2p| 210.0 |199.733| 192.921 | 193.353| 194.08 | 195.135| 196.559 | 198.402| 200.728 | 207.174|217.083232.526
a4 | 208.0 |199.515 193.537|193.833| 194.367| 195.163| 196.253 | 197.677| 199.482 | 204.506(212.115223.898
2080038
u 0.0 0.01 0.02 0.03 | 0035 | 0.04 | 0.045 | 0.05 | 0055 | 0.06 | 0.062| 0.07
—Eag | 0.05555|0.0501400.04405520.0374720.0340460.0305550.02701830.023449 0.019866|0.0162820.014850.00919
(r)adad | 10.2255| 10.4378| 10.353 | 10.2581| 10.2158| 10.1806| 10.1549 | 10.1411| 10.1414 | 10.1585|10.170710.3059
3d  |(r®adqzd| 118.25 | 124.226| 122.155| 119.89 | 118.907| 118.113| 117.566 | 117.319| 117.432| 117.97 |118.323122.396
(r®)3q3d| 1513.37| 1657.39| 1615.21 | 1570.16| 1551.14| 1536.25| 1526.62 | 1523.34| 1527.63 | 1540.91|1549.141653.26
af; | 2478.6 | 2452.89| 2397.28 | 2338.79| 2314.42| 2295.64| 2283.97 | 2281.02| 2288.63 | 2309.41(2322.192408.41
24786039

Table 6: The scaled energies for 1s, 2p, 3d states in Taptth the corresponding? and .

nl —state En R? Ue
1s —0.4847u% +0.5117u% 4+ 0.511u — 0.5 1.0 0.830
2p —5.591% + 1.8416u? + 0.5072u — 0.125 1.0 0.191
3d —26.689u° +4.1732u? 4 0.4993u — 0.0555 1.0 0.084

9.The values with different signs for the entropy in lowest orders (particularly the casfs= 1,2, and3 = 3,
respective space, at different parameters, are mainlyhich correspond to the Shannon entropy, the
due to the flipping of the electronic densities. second-order, and the third-order of Rényi entropy,
To facilitate satisfying our purpose, i.e. to study the '€SPectively) are most significant for the quantification of

variation of the$ — th order Rényi entropy in terms q& the electron distribution spreading (_)f the system; iii- the
and n, we assembled Table 2. Table 2 displays theslope of the curves decreases @sincreases; iv- For
numerical values of Rényi entropi, 8 = 2,3,4and 5 B > 3, the curves start to be very closg to each other. In
in r— and p — spaces, for the MHP that corresponds to factZ suc_h behavior _ has been realized for all the
different values of(l,Z, u,a,b). The numerical values in D-dimensional states in case of hydrogen Rydberg states

Table 2 are used to plot Figure 1. With the parameters{f?' agdbShOLz‘ld be expected since thedRényi entropy is
(Z=1, u =005 a=05, b=0), Figure 1 shows the defined by (20) as a continuous and non-increasing

plotting of the quantitie®Rs, whereB = 1,2,3,4, and 5 functionins.

for MHP in r- and p-spaces, as a functionrof In the p-space, Figure 1 shows that: i- as n increases,
In the r-space, Figure 1 shows the following behavior: Rg , increases in the negative value for all valuegott

i- as n increasesRg, increases for all values of. is important to realize that the conjugate position and

According to the definition of the Shannon entropy, moremomentum space information entropies have an inverse
localized distributionsp(r), correspond to the smaller relationship with each other. A strongly-localized
value of theRy,, which means the delocalizatigo(r) distribution in the position space corresponds to
increases with increasing n; ii- the quantities with the widely-delocalized distribution in the momentum space.
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@ Fig. 2: Scaling laws of the exponentin terms of3 for
the MHP with(Z =1,u = 0.05,a=0.5,b=0).
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Yh e, ¢, d and the associated correlation coeffici®dtthat are
calculated in r- and p- spaces and given in Table 3. The
E S, ko - values of R> > 0.99, in Table 3, indicate the strong
x4 SN oy i correlation betweeRg and the parametecsd andn.
5 My < Another kind of approach to study the dependence of
' e a N o Rg r on the principle quantum number n afids by using
4 S g of5 the scaling in a form of power law:
7 1 Rg, =cn’, (30)

where the values of the fitting parametery and the
b correlation coefficienR? are given in Table 4 for the state
(b) with the values(Z = 1, = 0.05a = 0.5,b = 0). The

. - values of R? = 0.999 indicate the strong correlation
Fig. 1. The quantitiesRg, where 8 = 1,2,3,4 and 5 betweerR; , and the parametecs v andn. The behavior
with the parameter&Z = 1, = 0.05,a=0.5,b=0) for  of the exponent versusg is plotted in Figure 2, and the
MHP as a function o in R- and P-spaces. For guidance polynomial relation between them is given by:
purposes only, we've used the dotted line.
v = —0.00393*+ 0.05543° — 0.27483°

+0.52483 +0.204, (31)

When one entropy increases, the other entropy decreasdéWas found thatin (31) the correlation coefficieRfs=1,
but only to the extent that their sum stays above thewhere it indicates the strong relation between the exponent
stipulated lower bound of(@ + In(m)); ii- the quantites v and the parametg. o _
with the lowest orders (particularly the caggs= 1, and Using (31),v versus is plotted in Figure 2. Figure 2
2, are the most significant for the quantification of the Shows that the exponent starts with 0.5 a3 = 1 and
electron distribution spreading of the system; iii- the increases to a maximum At= 2. After g = 2, itis found
slope of the curves increases fisincreases. iv- For that v starts to decrease gradually until reaching a
B > 3, the curves start to be very close to each other. ~ constant value of 0.4 g > 5. The observation that the

Due to the scarcity of analytical study, we attempt to decreases monotonically as the integer orgeris
propose a kind of relationship betwe@ andn in a increases indicates that the Rényi entropy, at fixed n, with

logarithmic law form as follows: the lowest orders (particularly the casBs= 1,2, and
B = 3) is the most significant for the quantification of the
Rg =clIn(n)+d, (29) electron distribution spreading of the system. Again, such

behavior is realized for all the D-dimensional states in the
wherec and d are fitting parameters. With the help of case of hydrogen Rydberg states [37].
Tables 1 and 2 with the parameteiz = 1,1 = 0.05, For more data that could be used in future comparison,
a=0.5,b=0), one can find the values of the parameterswe have Table 5 to offer calculated results for the bound
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states energy, the squares of the M—mon@éﬂpnl J»and  correlation between the calculated quantities and the
’ parametersn, u and . It is believed that this initial

: entropy study of the non-analytic potential will stimulate
well as the excited states 2p and 3d of MEZP=1, b=1),  interesting studies, theoretically and experimentalighw
at 10 selectegi-values. Foru = 0, our values for all the  other potentials, and inspire the investigation of entepi
calculated quantities are in excellent agreement with thesuch as the Tsallis, or non additive entropi@s B8, 39).
published literatures [4, 14, 36]. Note that, for the case
0, we have had indeterminate values for all the calceulated
variables in Table 5. In that case, we had to use 10°°. Acknowledgment

Unfortunately, forpu > 0 there is no literature to
ggmggi W\I/t/ri]t.h,Th(iaSCICt)ﬁgSt g)?girr:tel?llﬂgitov;?ngansgrseee,r?enoﬂ_ he authors sincerely thank the kind referees for their

Coulomb potential (ECSCP), in the form [14, Table 7]: ?;ﬁ;;uci?mehiggrgglll;%b;ﬁeﬁ?ergmems’ from which the

Buckingham static polarizabilitieer,ﬁ /o of the 1s-state as

e H
Vecep(r) = —Z

A comparative study between the two potentials (1)
and (32) shows the following: i- the eigenvalues in MHP, 1
En (MHP), are more bound than eigenvalues in ECSCP,[ ]
En (ECSCP). Consequently one finds the critical value Chem..Vol.107, pp. 1864-1874 (2007).

Ue(MHP) > uc(ECSCP). The critical valuel is defined .
as the value ofz after which no bound state exists. ; ii- g I\‘/;)ﬁggh;g’_?”((igl\gt)' Astron. Fys.A, Vol.28, pp. 5 (1943,

The calculated quantities(,r'\")nl‘n,l, and afl y» almost  [3] L. Hulthén and M. Sugawara, The two-nucleon problem, In

stay constant, up to two or three digits, for a wide range Encyclopedia of Physics; S. Flugge (Ed.). Vol 39, pp. 1-143

of 4, 0 < i < pe. Close to the critical valugl, 1 ~ U , (Springer: Berlin ,1957). . .

the quantities start to increase. This is different than the4l A- K. Roy, Critical parameters and spherical confinement

behavior of the quantities in ECSCP, as the quantities of H atom in screened Coulomb potential, Int. J. Quantum

increase with increasing. Chem., Vol. 116, pp. 953-960 (2016). . .
To close the discussion, we end with the scaling Iaws,[s] M. S. Abdelmonem, I. Nasser, H. Bahlouli, U. Al Khawaja

. . . - . and A. D. Alhaidari, Singular short range potentials in the
which fits the data in Table 6, for the Buckingham static ;'\, . © approach, Phys. LettA, Vol. 373, pp. 2408-2412

cos(ur) (32)
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