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Abstract: Information entropies (Fisher, Shannon, and Rényi), withtheir associated quantities, are calculated and discussedfor the
Modified Hulthén Potential (MHP) in the position and momentum spaces using the J-matrix method. Interesting characteristic features
of the entropy densities are shown, where the position and momentum space information entropies show scaling behavior and satisfy
uncertainty relations. Many of our results are reported forthe first time. The outcome is compared with the available literatures’ results.
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1 Introduction

In [1], a modification for the simple Hulthén potential
(MHP) [2,3,4,5], was proposed as:

VMHP(r,Z,µ ,a,b) =−Zµ
1

eµr −1
cos(bµr)+

a
r2 , (1)

with a, b, andµ are being parameters. The MHP (1), with
a = b = 0 , has the Coulombic behavior for small values
of r, but decreases exponentially forr >> 1

µ . Over the
years, a simple potential(a = 0) has been widely used in
chemical physics, plasma physics, and quantum
chemistry. In general, the MHP does not have an exact
analytic solution, except for the simple potential with zero
angular momentum. Consequently, different
computational methods have been employed to obtain
their solutions. For a comprehensive review of the
available computation methods in use to solve such
potentials, we refer the reader to the recent work [1,5,6,
7].

Due to the unavailability of the exact analytical
solution of the MHP, accordingly, the present study
presents the results of our numerical calculation on the
information entropies (such as Shannon [8], Fisher [9],
Rényi [10]) and their associated quantities [11,12,13] for
the MHP. A sample calculation is done using the J-matrix
method [5,6,7,14,15,16] for the exponential-cosine
screened Coulomb potential with electron densities, and
their gradients are manipulated in both r- and p-spaces.

The J-matrix has been proven to be an essential numerical
tool to calculate the bound and resonance state energies,
the scaling behavior of atomic and molecular systems [5,
6,7,14,15,16] , as well as the information entropies [14,
15]. Accordingly, we briefly retrieve the required
equations and definitions of the J-matrix that are needed
to help us in our discussions in the theory section.

Before we begin our task in calculating the
information entropy for MHP using the J-matrix method,
we shed some light and retrieve the most recent
publications in the related subject. This is mainly due to
the vast number of publications on the subject. Dehesa
and co-workers [17,18] applied the information theory to
study the one and two-electron atoms, as well as the
Rydberg states [19]. Aquino et. al..[20] calculated the
Shannon entropy and Fisher information for hydrogen
atoms under soft spherical confinement. Moreover, the
calculation of the entropies in the information theory has
been given for systems with different potentials rather
than the Coulombic-potential [17-20]. For example, it has
been applied for: the hyperbolic [21] and asymmetric
double-well potential [22], the asymmetric trigonometric
Rosen-Morse potential [23], and position-dependent mass
Schrödinger problem with a hyperbolic well [24]. Ref.
[25] discussed the Shannon-entropy-based uncertainty
relation for D-dimensional central potentials. In Ref. [26],
information-theoretic measures of hydrogen-like ions in
weakly-coupled Debye plasmas.
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Regarding the Rényi entropy, the Fisher Rényi
complexity measure and its applications are elegantly
analytically discussed by Dehesa and his coworkers [27,
28,29] The Rényi and Tsallis entropies have been
discussed for the hydrogenic Rydberg atoms [30]. Ref.
[31] discussed the Fisher information, Rényi entropy
power and quantum phase transition in the Dicke model.
Ref. [32] used the finite-size scaling method to study the
Shannon-Rényi entropy in two-dimensional systems with
spontaneously broken continuous symmetry. The scaling
behavior of the Rényi entropy for He-like atoms, using
the exponential-cosine screened Coulomb potential, was
discussed in Ref. [33].

The outline of this article is as follows: In Section II,
we provide some general expressions corresponding to
the information entropies, as well as a brief introduction
to the J-matrix method [14,15,16] In Section III, we
present our numerical results of the scaling, product, and
uncertainty properties of the r- and p-space entropies
derived for the MHP. Finally, a summary of the main
results is accessible in Section IV. In the present study, we
are using the atomic units throughout the manuscript,
unless mentioned otherwise.

2 Theory

It is well known that the electron density in the r-space,
ρ(r), and its gradient, are the corner stones in calculating
the information entropies. Thus, in applying the J-matrix
method [14,15,16] in our study, we start with the particle’s
density of the stationary and nonrelativistic states, in 3-
dimensional quantum systems, in the form:

ρ(r) = |ψ(r,Z,µ ,a,b)|2, (2)

that satisfies the normalization condition:
∫

ρ(r)dr = 1, (3)

where dr = r2drdΩ and dΩ = sinθdθdφ is the solid
angle. The wave functions in (2),ψ(r,Z,µ ,a,b), are the
bounded solutions of the Schrödinger equation:

[Ĥ]|ψ〉= [Ĥo +V (r,Z,µ ,a,b)]ψ(r,Z,µ ,a,b = Eψ(r,Z,µ ,a,b),
(4)

where ˆ(H)is the full Hamiltonian and{E} is the
associated eigenvalues. In the following discussion, and
for simplicity, the parametersZ,µ ,a andb are suppressed
from the labels of the wave function and the potential. In
(4),

Ho =−
d2

dr2 +
l(l +1)

2r2 , (5)

is the reference Hamiltonian of the system, with orbital
quantum numberl. In spherical polar coordinates(r,θ ,φ)
, the eigenfunctionΨ(r) has the form:

ψ(r) = Rl
n(r)Yl,m(θ ,φ), (6)

whereRl
n(r) is the solution of the radial non-relativistic

Schrödinger equation:

[−
1
2

d2

dr2 +
l(l +1)

2r2 +V(r)]Rl
n(r) = E l

n(r)R
l
n(r), (7)

andYl,m(θ ,φ) is the spherical Harmonics which satisfies
the non-radial operator̂Λ2:

Λ̂2Yl,m(θ ,φ) = l(l +1)Yl,m(θ ,φ), (8)

where

Λ̂2 =
1

sinθ
∂

∂θ
(sinθ

∂
∂θ

)+
1

sinθ
∂

∂θ
(sin2 θ

∂
∂φ2 ), (9)

with l = 0,1,2,3, ... andm=−l,−l+1, ...,0, ..., l−1, l. In
(7), E l

n represents the eigenvalues of the full Hamiltonian
Ĥ, andRl

n(r) are the corresponding eigenfunctions.
In the J-matrix method, to find the radial function

Rl
n(r) and the corresponding eigenvaluesE l

n, we
diagonalize the full Hamiltonian ˆ(H) in a suitableL2

basis set,{φ l
n(λ r)}N−1

n=0 . To do so, we are using

φ l
n(λ r) = al

n(λ r)l+1e
−λr

2 L2l+1
n (λ r); n = 0,1,2, ...,N −1

(10)
whereL2l+1

n (λ r) is the associated Laguerre polynomial,

al
n =

√

λΓ (n+1)
Γ (n+2l+2) is the normalization constant, N is the

dimension of the J-matrix, and the parameterλ is
introduced to be the positive length scale of the basis that
allows for more computational freedom. The
wavefunction φ l

n(r), the basis of the J-matrix,
tridiagonalizesHo in the form

(Ho)n,n′ =
λ 2

8
[2(n+ l+1)δn,n′ +

√

n(n+2l+1)δn,n′+1

+
√

(n+1)(n+2l+2)δn,n′−1]. (11)

In the manipulation of (11), we use the differential
equation, differential formula, three-term recursion
relation, and orthogonality formula of theL2l+1

n (λ r). In
the J-matrix method, the reference Hamiltonian of the
systemHo is fully accounted for, while the potentialV (r)
is approximated by its representation in a subset of the
basis, such that:

(H)n,m = 〈n|H|m〉 ∼=

{

(Ho)n,m +Vnm(r); n,m ≤ N −1
(Ho)n,m; n,m > N −1

(12)
The integer N in (12) is chosen large enough to ensure a
good sampling of the potential.

Returning back to the matrix elements of the potential
V (r) , which is obtained by evaluating the integral:

Vn,m(r) =
∫ ∞

0
φn(λ r)V (r)φm(λ r)dr

= λ−1anam

∫ ∞

0
xνe−xLν

n (x)L
ν
m(x)[xV (

x
λ
)]dx. (13)
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The evaluation of such an integral for a general effective
potential is almost always done numerically. We use the
Gauss quadrature approximation [16], which gives

Vnm
∼=

N−1

∑
k=0

ΛnkΛmk[εkV (
εk

λ
)] (14)

for an adequately large integerN. εk and{Λnk}
N−1
n=0 are the

N eigenvalues and corresponding eigenvectors of theNxN
tridiagonal basis overlap matrix〈φn|φm〉, whose elements
are:

Kn,n = 2n+2l+2, Kn,n+1 =−
√

(n+1)(n+2l+2)
(15)

The output of the diagonalization of (7) in the associated
Laguerre basis is a set of the eigenvaluesE l

n and the
corresponding eigenvectors{Ω l

n0,Ω
l
n1, ...,Ω

l
nN−1}. Then,

the radial functionRl
n(r)is calculated by the expansion:

Rl
n,n(r) =

N−1

∑
m=0

Ω l
nmφ l

m(r), (16)

Thus, the electron density functions of thenlm-state can
be written as:

ρ(r) = |Ψ(r)|2 = ρn,l(r)ρl,m(θ ,φ) = |Rl
n(r)|

2|Yl,m(θ ,φ)|2,
(17)

With the knowledge of the electron state density,ρ(r), and
following the recent references [11,12] one can express
the following quantities in the r-space:

1.The Shannon entropy [8]:

Sr ≡−
∫

ρ(r)ln[ρ(r)]dr, (18)

2.The Fisher information [9]:

Ir ≡

∫

[∇ρ(r)]2

ρ(r)
dr, (19)

3.The Rényi entropy,Rβ [10]:

Rβ ,r ≡
1

1−β
ln[

∫

[ρ(r)]β dr]; β 6= 1, (20)

It is known that Sr is a gauge that provides the
information about the localization, extent, spread,
shape and uncertainty of the electronic density
distribution of states in the respective spaces. In other
words, a more localized distribution,ρ(r)
corresponds to the smaller value of theSr, and vice
versa. The Rényi entropy can be argued to be a
generalization of Shannon’s concepts and definitions.
In general,Sr is a limited value of theRβ asβ → 1.

4.Moreover the expectation expressions forr2 and P2

are:
〈r2〉=

∫

r2ρ(r)dr, (21)

〈p2〉=−
∫

Ψ(r)
1
r

∂ 2

∂ r
[rΨ(r)]dr, (22)

With the above definitions, one can also define: the
Shannon entropy power [17-19],Jr = 1

2πe e
2Sr
3 , the

Fisher-Shannon information productPr = IrJr
3 , which

should satisfy the relationPr > 1.
In the p-space, to calculate the densityγ(p) one has

to apply the Fourier transformation toΨ (r), in (6), in the
spherical coordinates, i.e.

Ψ(p) =
∫

eip.rΨ(r)dr, γ(p) = |Ψ (p)|2. (23)

Consequently, one can replace, in Eqs. (17-21), the
subscriptr by p, ρ(r) by γ(p) = |Ψ(p)|2, and integrate
with respect tod p with the normalization condition
∫

γ(p)d p = 1. In addition, we have to check the Shannon
entropy sum ST = Sr + Sp that contains the net
information and obeys the well-known lower bound
Bialynicki-Birula and Mycielski BBM-condition [13] in
the form:

ST ≥ 3(1+ ln(π)). (24)

In the end, we introduce the definition that used for the
M-moment ofr [14], in the form:

(rM)nl,n′ l′ = 〈nl|rM|n
′
l
′
〉 ≡

∫ ∞

0
Rl

n(r)R
l
′

n′
(r)r2+Mdr, (25)

whereM is an integer number. The analytical expression
for the Buckingham static polarizability,αβ

nl,l′
, of

hydrogen 1s-state is [34,35]:

αβ
ls,p =

2
3
[
6(r2)3

1s,1s +3(r3)2
1s,1s −8(r)1s,1s(r2)1s,1s(r3)1s,1s

9(r2)1s,1s −8(r)2
1s,1s

],

(26)
and the expressions for the excited states 2p and 3d are
[36]:

αβ
2p,d =

16
5
(r2)2p,2p +

8
15

(r3)2p,2p, (27)

αβ
3d, f =

324
35

(r2)3d,3d +
27
35

(r3)3d,3d , (28)

3 Results and discussions

It is our main objective in this section to demonstrate and
discuss our numerical results. In other words, we
numerically investigate the dependence of the Rényi
entropy Rβ ,r , and other informatics properties, on the
quantum number n and the order parameterβ . But before
we do so, we have to mention that; by including the
screening parameter in (1), the number of states are
reduced tremendously. This is opposite to the Coulombic
case where we have an infinite number of states.

Our study starts with Table 1 that displays the
numerical values of the nine information-theoretic
quantities. The quantities are: the Shannon entropiesSr,
Sp, ST , the Rényi entropiesR1,r, R1,p, the Fisher
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Table 1: Numerical values for the MHP, corresponding to with different values of(Z,µ ,a,b), which illustrate its
independence on[µ ,Z] values if the ratioµ

Z , a, and b are held fixed.The literature references are given as superscript.

(Z,µ,a,b) n -E 〈r2〉 〈p2〉 Sr R1,r Jr Ir Pr Sp R1,p Ip Pp ST PrPp IrIp

1 0.1666978 14.598 0.1700 6.6017 6.59184.7452 0.6802 1.0759 -0.1258 -0.1248 58.407 1.0482 6.4759 1.1277 39.728

0.166700114.591151 0.170091 6.6017151 0.6803531 −0.1259271 58.36461 6.475781 39.70851

(1,0.05,0.5,0) 2 0.0499884 113.65 0.0932 9.5679 9.567734.505 0.3729 4.2887 -1.8439 -1.8442 454.62 2.5954 7.7240 11.131 169.52

0.0499891 113.6551 0.093231

3 0.0171888 456.68 0.0513 11.589 11.588132.64 0.2053 9.0774 -3.0810 -3.0814 1826.7 4.5715 8.5081 41.497 375.05

4 0.0050215 1458.5 0.0270 13.302 13.302416.00 0.1081 14.986 -4.2533 -4.2537 5694.1 6.5219 9.0490 97.737 615.36

1 0.3750701 6.4880 0.3826 5.3853 5.38742.1260 1.5304 1.0846 1.0906 1.0904 25.959 1.0482 6.4759 1.1368 39.728

0.3750751 6.484961 0.38271 5.3853211 1.5307941 1.0904671 25.93981 6.4757811 39.70851

(1.5,0.075,0.5,0) 2 0.1124739 50.513 0.2097 8.3515 8.352015.343 0.8390 4.2907 -0.6275 -0.6280 202.05 2.5954 7.7240 11.136 169.52

0.112475150.513341 0.209771

3 0.038675 202.97 0.1155 10.373 10.37359.005 0.4620 9.0859 -1.8646 -1.8650 811.89 4.5715 8.5081 41.536 375.05

4 0.011299 648.23 0.0608 12.086 12.086184.93 0.2432 14.989 -3.0369 -3.0373 2530.7 6.5219 9.0490 97.756 615.35

1 0.162877 14.269 0.1735 6.5690 6.55874.6417 0.6939 1.0735 -0.0946 -0.0935 57.093 1.0462 6.4744 1.1231 39.614

0.162871 14.262361 0.17351 6.5689691 0.6940111 -0.0947021 57.04941 6.474261 39.59291

(1.5,0.075,0.5,2) 2 0.041142 105.70 0.10128 9.4526 9.452431.953 0.4047 4.3107 -1.6918 -1.7267 422.80 2.6712 7.7607 11.515 171.12

0.041141 105.69981 0.101191

3 0.004943 430.81 0.0552 11.510 11.510125.95 0.2210 9.2775 -3.0135 -3.0139 1723.1 4.510 8.4965 41.845 380.77

1 0.151779 13.461 0.1828 6.4844 6.47344.3851 0.7310 1.0685 -0.0133 -0.0138 53.861 1.0419 6.4711 1.1132 39.372

0.15178 13.45361 0.182791 6.4844431 0.7311671 −0.013451 53.81431 6.470991 39.34721

(1,0.05,0.5,2) 2 0.017901 93.953 0.1161 9.2697 9.269628.286 0.4643 4.3774 -1.4657 -1.4656 375.82 2.7606 7.8040 12.084 174.48

0.01791 93.952661 0.116081

1 0.341502 5.9826 0.4112 5.2680 5.27031.9663 1.6447 1.0780 1.2031 1.2028 23.938 1.0419 6.4711 1.1232 39.372

0.34151 5.979381 0.411281 5.26804811 1.6451251 1.2029441 23.91751 6.470991 39.34721

(1.5,0.075,0.5,2) 2 0.040278 41.757 0.2612 8.0533 8.054012.579 1.0446 4.3798 -0.2493 -0.2497 167.03 2.7606 7.8040 12.091 174.48

0.040281 41.756741 0.261181

1 0.244264 8.7285 0.2821 5.8441 5.84402.8824 1.1285 1.0843 0.6224 0.6223 34.914 1.0319 6.4665 1.1188 39.401

0.244261 8.728291 0.2821311

(1.5,0.075,0.75,2) 2 0.013195 54.960 0.2040 8.4624 8.462316.513 0.8159 4.4908 -0.5876 -0.5879219.8382.8999 7.8748 13.023 179.36

0.01321 54.959971 0.203961

information measures,Ir, Ip , the powersPr and Pp, as
well as the bound state energies, the expectation values
〈r2〉 and〈p2〉, for the s-wave of the MHP. The quantities
given in Table 1 present the following observations:

1.Our numerical values are in excellent agreement, up to
5 digits, with the only published literature [1].

2.In all cases, the BBM-definition, Eq. (24), the sum
ST > 6.43419, is satisfied for all the given parameters.
The ST values shows scaling behavior in which they
are independent of the[Z,µ ] when the ratioµ

Z , b, and
a are fixed.

3.The Fisher-Shannon information products ofPr, Pp and
their multiplication are all greater than 1.

4.In regards to the Rényi entropy,Rβ ,r(Rβ ,p), it is
known that the Shannon entropiesS1,r(S1,p) are
limited values of the Rényi entropies asβ → 1, which
is proven numerically in our cases. Note that, because
of the indeterminate form ofR1, one can use

L′Hospital′s rule to calculateR1 analytically, which
gives the Shannon expression, or calculate it
numerically by choosingβ close to 1. In our
calculations, we choseβ = 1.0001.

5.According to the definition of the Shannon entropy,
more localized distributions,ρ(r), correspond to the
smaller value of theSr. This means the delocalization
ρ(r) increases with increasingµ andn.

6.In the r-space, the results support the scaling property
that the MHP is independent of the set of values[Z,µ ]
when the ratioµ/Z, b, and a are fixed.

7.For the nth-state, with fixed n, the productPrPp and the
Fisher information measureIrIp are independent on all
the parameters(Z,µ ,a,b). As an example, for the 1s-
statePrPp ≈ 1.1 andIrIp ≈ 39.

8.For the fixed parameters(Z,µ ,a,b), the productPrPp
andIrIp increase with increasing n.
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Table 2: Numerical values of Rényi entropies for the MHP, corresponding to different values of(l,Z,µ ,a,b).

r-space p-space

(l,Z,µ,a,b) n R2 R3 R4 R5 R2 R3 R4 R5

(0,1,0.05,0.5,0) 1 5.9731 5.7099 5.5620 5.4662 -0.7653 -1.0395 -1.1993 -1.3063

2 8.8135 8.0878 7.6329 7.3713 -3.2760 -3.6292 -3.8045 -3.9159

3 10.803 9.7160 9.0593 8.7000 -4.8869 -5.3395 -5.5482 -5.6753

4 12.541 11.164 10.339 9.8977 -6.1695 -6.6716 -6.8982 -7.0334

(0,1.5,0.75,0.5,0) 1 4.7567 4.4935 4.3456 4.2498 0.4511 0.1769 0.0171 -0.0899

2 7.5971 6.8714 6.4165 6.1549 -2.0596 -2.4128 -2.5881 -2.6995

3 9.5872 8.4996 7.8429 7.4836 -3.6705 -4.1231 -4.3318 -4.4589

4 11.325 9.9479 9.1228 8.6813 -4.9531 -5.4552 -5.6818 -5.8170

(1,1,0.05,0.5,0) 1 7.3853 7.0987 6.9303 6.8174 -0.7290 -1.0014 -1.1603 -1.2667

2 9.6378 9.0130 8.5964 8.3391 -3.1354 -3.4956 -3.6733 -3.7857

3 10.513 10.513 9.9064 9.5548 -4.8688 -5.3232 -5.5332 -5.6615

(1,1.5,0.075,0.5,0) 1 6.1689 5.8823 5.7139 5.6010 0.4874 0.2150 0.0561 -0.0503

2 8.4214 7.7966 7.3800 7.1227 -1.9190 -2.2792 -2.4569 -2.5693

3 10.211 9.2968 8.6900 8.3383 -3.6525 -4.1068 -4.3168 -4.4451

(0,1,0.05,0.5,2) 1 5.8730 5.6161 5.4714 5.3777 -0.6368 -0.9055 -1.0626 -1.1680

2 8.4943 7.7799 7.3443 7.0945 -2.9398 -3.3149 -3.4989 -3.6149

(0,1.5,0.075,0.5,2) 1 4.6566 4.3997 4.2551 4.1613 0.5796 0.3109 0.1538 0.0484

2 7.2779 6.5635 6.1279 5.8781 -1.7234 -2.0985 -2.2825 -2.3985

(0,1.5,0.075,0.5,2) 1 6.5047 6.2742 6.1452 6.0617 -1.1832 -1.4404 -1.5922 -1.6944

2 8.9404 8.2951 7.8923 7.6584 -3.3106 -3.7108 -3.9061 -4.0291

(0,1,0.05,0.75,2) 1 5.2883 5.0578 4.9288 4.8453 0.0332 -0.2240 -0.3758 -0.4780

2 7.7240 7.0787 6.6759 6.4420 -2.0942 -2.4944 -2.6897 -2.8127

Table 3: Scaling laws of Rényi entropies in the formRβ = c ln(n)+ d for the MHP in r- and p-spaces.

r-space p-space

(Z,µ,a,b) Rβ ,r c d R2 Rβ ,p c d R2

(1,0.05,0.5,0) R1,r 4.779 6.468 0.995 R1,p -2.922 - 0.004 0.999

R2,r 4.675 5.819 0.993 R2,p -3.871 - 0.699 0.998

R3,r 3.879 5.588 0.993 R3,p -4.038 - 0.962 0.998

R4,r 5.573 5.451 0.993 R4,p -4.087 - 1.116 0.998

R5,r 5.469 5.358 0.992 R5,p -4.107 - 1.219 0.997

Table 4: Scaling laws of Rényi entropies in the formRβ ,r = cnν for the MHP.

r-space

(Z,µ,a,b) Rβ ,r c ν R2

R1,r 6.6477 0.5055 0.999

R2,r 6.0091 0.5347 0.999

(1,0.05,0.5,0) R3,r 5.7338 0.4825 0.999

R4,r 5.5732 0.4456 0.999

R5,r 5.4692 0.4265 0.999
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Table 5: The bound states energy, the squares of the M-moment(rM)nl,n′ l′ , and Buckingham static polarizabilities,αB
nl,l′

,

of the 1s-state as well as the excited states 2p and 3d of MHP, at 10 selectedµ-values of the MHP(Z = 1,b = 1,a = 0).
All values are in a.u. The compared references numbers are given in the superscript square bracket..

Initial state µ 0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 0.75

−E1s 0.5 0.47353 0.44451 0.38095 0.3131760.244276 0.176869 0.144503 0.113473 0.0841730.057100.03301

〈r〉1s,1s 1.5 1.49731 1.49097 1.47626 1.46917 1.47885 1.51681 1.55333 1.60956 1.69896 1.8526 2.1604

1s 〈r2〉1s,1s 3.0 2.98803 2.96043 2.90012 2.87927 2.93983 3.14493 3.34596 3.66984 4.22355 5.28487 7.8030

〈r3〉1s,1s 7.5 7.45069 7.33967 7.11265 7.06972 7.39296 8.41778 9.46358 11.2545 14.6045 21.916645.0362

αB
1s,p 4.5 4.46079 4.3727 4.19313 4.15726 4.40972 5.25109 6.1634 7.8414 11.3291 20.225552.7651

4.5[4,14]

µ 0.0 0.05 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.14 0.15 0.16

−E2p 0.125 0.0957420.06144030.0579040.0543640.0508240.04728740.0437560.0402362 0.03324 0.026320.01953

〈r〉1s,1s 5.0 4.92522 4.85837 4.85854 4.86053 4.86451 4.87069 4.87929 4.89059 4.9227 4.971035.04214

2p 〈r2〉2p,2p 30.0 29.0597 28.3264 28.347 28.3923 28.4649 28.5679 28.7047 28.8799 29.3685 30.105631.2137

〈r3〉2p,2p 210.0 199.733 192.921 193.353 194.08 195.135 196.559 198.402 200.728 207.174 217.083232.526

αB
2p,d 208.0 199.515 193.537 193.833 194.367 195.163 196.253 197.677 199.482 204.506 212.115223.898

208.0[36]

µ 0.0 0.01 0.02 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.062 0.07

−E3d 0.05555 0.0501400.04405520.0374720.0340460.0305550.02701830.023449 0.019866 0.0162820.014850.00919

〈r〉3d,3d 10.2255 10.4378 10.353 10.2581 10.2158 10.1806 10.1549 10.1411 10.1414 10.1585 10.170710.3059

3d 〈r2〉3d,3d 118.25 124.226 122.155 119.89 118.907 118.113 117.566 117.319 117.432 117.97 118.323122.396

〈r3〉3d,3d 1513.37 1657.39 1615.21 1570.16 1551.14 1536.25 1526.62 1523.34 1527.63 1540.91 1549.141653.26

αB
3d, f 2478.6 2452.89 2397.28 2338.79 2314.42 2295.64 2283.97 2281.02 2288.63 2309.41 2322.192408.41

2478.6[36]

Table 6: The scaled energies for 1s, 2p, 3d states in Table5, with the correspondingR2 andµc.

nl − state Enl R2 µc

1s −0.4847µ3 +0.5117µ2+0.511µ −0.5 1.0 0.830

2p −5.591µ3+1.8416µ2+0.5072µ −0.125 1.0 0.191

3d −26.689µ3+4.1732µ2+0.4993µ −0.0555 1.0 0.084

9.The values with different signs for the entropy in
respective space, at different parameters, are mainly
due to the flipping of the electronic densities.

To facilitate satisfying our purpose, i.e. to study the
variation of theβ − th order Rényi entropy in terms ofβ
and n, we assembled Table 2. Table 2 displays the
numerical values of Rényi entropiesRβ , β = 2,3,4and 5
in r− and p− spaces, for the MHP that corresponds to
different values of(l,Z,µ ,a,b). The numerical values in
Table 2 are used to plot Figure 1. With the parameters
(Z = 1, µ = 0.05, a = 0.5, b = 0), Figure 1 shows the
plotting of the quantitiesRβ , whereβ = 1,2,3,4, and 5
for MHP in r- and p-spaces, as a function ofn.

In the r-space, Figure 1 shows the following behavior:
i- as n increases,Rβ ,r increases for all values ofβ .
According to the definition of the Shannon entropy, more
localized distributions,ρ(r), correspond to the smaller
value of theR1,r, which means the delocalizationρ(r)
increases with increasing n; ii- the quantities with the

lowest orders (particularly the casesβ = 1,2, andβ = 3,
which correspond to the Shannon entropy, the
second-order, and the third-order of Rényi entropy,
respectively) are most significant for the quantification of
the electron distribution spreading of the system; iii- the
slope of the curves decreases asβ increases; iv- For
β > 3, the curves start to be very close to each other. In
fact, such behavior has been realized for all the
D-dimensional states in case of hydrogen Rydberg states
[37], and should be expected since the Rényi entropy is
defined by (20) as a continuous and non-increasing
function inβ .

In the p-space, Figure 1 shows that: i- as n increases,
Rβ ,p increases in the negative value for all values ofβ . It
is important to realize that the conjugate position and
momentum space information entropies have an inverse
relationship with each other. A strongly-localized
distribution in the position space corresponds to
widely-delocalized distribution in the momentum space.
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(a)

(b)

Fig. 1: The quantitiesRβ , where β = 1,2,3,4 and 5
with the parameters(Z = 1,µ = 0.05,a = 0.5,b = 0) for
MHP as a function ofn in R- and P-spaces. For guidance
purposes only, we’ve used the dotted line.

When one entropy increases, the other entropy decreases,
but only to the extent that their sum stays above the
stipulated lower bound of 3(1+ ln(π)); ii- the quantities
with the lowest orders (particularly the casesβ = 1, and
2, are the most significant for the quantification of the
electron distribution spreading of the system; iii- the
slope of the curves increases asβ increases. iv- For
β > 3, the curves start to be very close to each other.

Due to the scarcity of analytical study, we attempt to
propose a kind of relationship betweenRβ and n in a
logarithmic law form as follows:

Rβ = c ln(n)+ d, (29)

where c and d are fitting parameters. With the help of
Tables 1 and 2 with the parameters(Z = 1,µ = 0.05,
a = 0.5,b = 0), one can find the values of the parameters

Fig. 2: Scaling laws of the exponentν in terms ofβ for
the MHP with(Z = 1,µ = 0.05,a = 0.5,b = 0).

c, d and the associated correlation coefficientR2 that are
calculated in r- and p- spaces and given in Table 3. The
values of R2 > 0.99, in Table 3, indicate the strong
correlation betweenRβ and the parametersc, d andn.

Another kind of approach to study the dependence of
Rβ ,r on the principle quantum number n andβ is by using
the scaling in a form of power law:

Rβ ,r = cnν , (30)

where the values of the fitting parametersc,ν and the
correlation coefficientR2 are given in Table 4 for the state
with the values(Z = 1,µ = 0.05,a = 0.5,b = 0). The
values of R2 = 0.999 indicate the strong correlation
betweenRβ ,r and the parametersc, ν andn. The behavior
of the exponentν versusβ is plotted in Figure 2, and the
polynomial relation between them is given by:

ν = −0.0039β 4+0.0554β 3−0.2748β 2

+0.5248β +0.204. (31)

It was found that in (31) the correlation coefficientsR2 =1,
where it indicates the strong relation between the exponent
ν and the parameterβ .

Using (31),ν versusβ is plotted in Figure 2. Figure 2
shows that the exponentν starts with 0.5 atβ = 1 and
increases to a maximum atβ = 2. After β = 2, it is found
that ν starts to decrease gradually until reaching a
constant value of 0.4 atβ > 5. The observation that theν
decreases monotonically as the integer orderβ is
increases indicates that the Rényi entropy, at fixed n, with
the lowest orders (particularly the casesβ = 1,2, and
β = 3) is the most significant for the quantification of the
electron distribution spreading of the system. Again, such
behavior is realized for all the D-dimensional states in the
case of hydrogen Rydberg states [37].

For more data that could be used in future comparison,
we have Table 5 to offer calculated results for the bound
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states energy, the squares of the M-moment(rM)nl,n′ l′ , and

Buckingham static polarizabilities,αβ
nl,l′

, of the 1s-state as

well as the excited states 2p and 3d of MHP(Z = 1, b=1),
at 10 selectedµ-values. Forµ = 0, our values for all the
calculated quantities are in excellent agreement with the
published literatures [4, 14, 36]. Note that, for the caseµ =
0, we have had indeterminate values for all the calculated
variables in Table 5. In that case, we had to useµ = 10−6.

Unfortunately, for µ > 0 there is no literature to
compare with. The closest potential that we can use, and
compare with, is the exponential-cosine screened
Coulomb potential (ECSCP), in the form [14, Table 7]:

VECSCP(r) =−Z
e−µr

r
cos(µr) (32)

A comparative study between the two potentials (1)
and (32) shows the following: i- the eigenvalues in MHP,
Enl(MHP), are more bound than eigenvalues in ECSCP,
Enl(ECSCP). Consequently one finds the critical value
µc(MHP) > µc(ECSCP). The critical valueµc is defined
as the value ofµ after which no bound state exists. ; ii-
The calculated quantities,(rM)nl,n′ l′ and αβ

nl,l′
, almost

stay constant, up to two or three digits, for a wide range
of µ , 0< µ < µc. Close to the critical valueµc, µ ≃ µc ,
the quantities start to increase. This is different than the
behavior of the quantities in ECSCP, as the quantities
increase with increasingµ .

To close the discussion, we end with the scaling laws,
which fits the data in Table 6, for the Buckingham static
polarizabilities,αB

nl,l′
, which are given by:

αB
1s,p = 20077µ6−38647µ5+27720µ4−8990.9µ3

+1265.3µ2−58.41µ+4.5,

αB
2p,d = 6.0x107µ6−3.0x107µ5+6.0x106µ4

−567925µ3+24755µ2−576.91µ+208 (33)

αB
3d, f = 6.0x109µ6−7.0x108µ5−6.0x106µ4

−6.0x106µ3−315956µ2+1.4951µ+2478.6

and all have correlation coefficientR2 = 1.

4 Perspective

In summary, we have reported the results of our numerical
studies of some information-theoretical entropies for the
MHP. The J-matrix method has been implemented for the
MHP in spherical polar coordinates. The wave functions
and their corresponding electron densities are calculated
in r- and p- spaces. Many characteristic features have
been realized in the case of this study. For example, it is
found that the summationST satisfies the BBM sum. The
scaling laws for the calculated informatics entropies and
three other quantities are given as a function of the
quantum numbern. The scaling laws clearly show the

correlation between the calculated quantities and the
parametersn, µ and β . It is believed that this initial
entropy study of the non-analytic potential will stimulate
interesting studies, theoretically and experimentally, with
other potentials, and inspire the investigation of entropies,
such as the Tsallis, or non additive entropies [37,38,39].
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