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Abstract: The existence of unique solution, in terms of initial data ofthe hierarchy of quantum kinetic equations with delta potential
and application of kinetic equation for information technology, has been proven. The proof is based on the nonrelativistic quantum
mechanics and application of semigroup theory methods
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1 Introduction

Bethe Anzats was first introduced in 1931 by Hans Bethe
[1] when he considered the Heisenberg model. Since
then, this model remains one of the several exactly
solvable models of many-body physics [1]-[4], [8]-[17].
A significant contribution was made by the work of
Lieb-Liniger [2], in the development of this model, where
one-dimensional quantum system of bosons interacting
through a potential in the form of a delta function

δ (x− x0) = {∞, i f x=x0,
0 i f x6=x0

with a Hamiltonian:

H=−
N

∑
i=0

∂ 2

∂x2
i

+2c ∑
i< j

δ (xi − x j) (1)

is considered.
In (1) x is one dimentional coordinate of a particle, the

constant̄h is called the reduced Planck constant,m is the
mass andδ (xi − x j) is the potential energy,c > 0 (the
repulsive case) andR : all 0 ≤ xi ≤ L, i = 1, ...,N,
where N-the number of particles andL-the size of the
periodic box. Here we suppose thath̄ = 2m = 1.

In [2] the of solving of the differential problem related
to the Schr ¨odinger equation inR : 0≤ x1 ≤ x2 ≤ ...≤ xN ≤
L is reduced to a solution of a much simpler system of
algebraic equations, called the Bethe ansatz equations.

ψ |x j=xk+0 = ψ |x j=xk−0,

(
∂ψ
∂x j

−
∂ψ
∂xk

)|x j=xk+0 − (
∂ψ
∂x j

−
∂ψ
∂xk

)|x j=xk−0 = 2cψ |x j=xk ,

for all x j = xk for all j,k=1,2,...,N andj 6= k. The solution
of the Schr ¨odinger equation in
R : 0≤ x1 ≤ x2 ≤ ...≤ xN ≤ L in this case will have Bethe
anzats form:

ψB(x1, ...xN) = ∑
σ
A(σ)σexp(i

N

∑
j=1

k jx j),

where the summation extends over all permutationsσ of
ordered N numbersk = k1, ...,kN , andA(σ) =∏{Sαβ : αβ
is an inversion inσ}, are certain coefficients depending on
σ :

Sαβ =−
c− i(kα − kβ )

c+ i(kα − kβ )
=−exp(iθα ,β ),

whereθα ,β = θ (kα −kβ ), θ (r) =−2tan−1( r
c ). Assuming

r to be real we haveπ ≥ θ (r)≥−π ;
In [3] using the ideas of Bethe Ansatz, the method is

given to solve the time-dependent Schr ¨odinger equation
for a system of one-dimentional bosons interacting via the
repulsive delta function potential. Authors of [3] solve
time-dependent Schr ¨odinger equation:

Hψ = i
∂ψ
∂ t

,

with initial condition

ψ(x;0) = ψ(x1,x2, ...,xN ;0) = ψ0(x1,x2, ...,xN).
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The solution is reduced to

i
∂ψδ
∂ t

=−∑
i

∂ 2ψδ
∂x2

i

in the interior ofR, e.g.R0 : x1 < x2, ... < xN with the
initial condition for the Schr ¨odinger equation

ψδ (x;0) =
N

∏
j=1

δ (x j − y j) (2)

in R : −∞ < x1 < x2, ... < xN < ∞ and the boundary
condition:

(
∂

∂x j+1
−

∂
∂x j

)ψδ |x j+1=x j = cψδ |x j+1=x j . (3)

for a system of one-dimensional bosons interacting via
the delta function potential. In (2)y j ∈ R are fixed and
y1 < y2, ... < yN . The equation (3) is the effect of the
δ -function confined to the boundary ofR, e.g. on the
hyperplanesx j+1 = x j. The interest of authors [3] in the
Lieb-Liniger model has arisen because of its connection
to ultracold gases confined in a quasi one-dimensional
trap [4].

2 The dynamics of a one-dimensional system
of Bosons interacting via the delta function
potential

In paper we suggest the approach to solve the
time-dependent Bogolubov-Born-Green-Kirkwood-Yvon
(BBGKY) chain of quantum kinetic equations [5],[6] for
a one-dimensional system of bosons interacting via the
delta function potential.

We will consider a system of N particles contained in a
finite regionL. The operatorsρL

N and HamiltonianHL
N act

in the spaceH with zero boundary condition [7]. Finally
we get the equation

i
∂ρL

s (x1, ...,xs;x′1, ...,x
′
s, t)

∂ t
= [HL

s ,ρ
L
s ](x1, ...,xs;x′1, ...,x

′
s, t)

+
N
L

(

1−
s
N

)

Trxs+1 ∑
1≤i≤s

(φi,s+1(|xi − xs+1|)−

φi,s+1(|x
′
i − xs+1|))ρL

s+1(x1, ...,xs,xs+1;x′1, ...,x
′
s,xs+1, t),(4)

with the initial condition

ρL
s (x1, ...,xs;x′1, ...,x

′
s, t)|t=0 = ρL

s (x1, ...,xs;x′1, ...,x
′
s,0).

(5)
for 1≤ s < N. For s = N, we have

i
∂ρL

s (x1, ...,xs;x′1, ...,x
′
s, t)

∂ t
=

[HL
s ,ρ

L
s ](x1, ...,xs;x′1, ...,x

′
s, t)].

In the problem given by equation (4) and (5)xi gives
the position ofith particle in the 1-dimensional spaceR,
xi, i=1,2, ....,s. In (1) h̄=1 is the reduced Planck constant
and[, ] denotes the Poisson bracket.

The reduced statistical operator ofs particles is
ρL

s (x1, ..,xs;x′1, ..,x
′
s) related to the positive symmetric

density matrixDL
N of N particles by [5],[6]

ρL
s (x1, .,xs;x′1, .,x

′
s) =

LsTrxs+1,.,xN DL
N(x1, .,xs,xs+1, .,xN ;x′1, .,x

′
s,xs+1, .,xN),

wheres ∈ N, N is the number of particles,L the size of the
periodic box. The trace is defined in terms of the kernel
ρL(x,x′) by the formula

TrxρL =

∫

L
ρL(x,x)dx.

The Hamiltonian of system is defined as

H
L
s (x1, ...,xs) = ∑

1≤i≤s

(

−
1

2m
△xi +uL(xi)

)

+

∑
1≤i< j≤s

φi, j(|xi − x j|),

where 2m = 1,△i is the Laplacian

△i =
∂ 2

∂ (x1
i )

2
,

φi, j(|xi − x j|) = 2cδ (xi − x j),

anduL(x) is the external field which keeps the system in
the regionL (uL(x) = 0 if x ∈ L anduL(x) = +∞ if
x /∈ L. Hereφi, j(|xi − x j|) is symmetric.

Using semigroup theory we can reduce this problem to
solution of system of equations:

i
∂ρL

s (x1, ...,xs;x′1, ...,x
′
s, t)

∂ t
= [HL

s ,ρ
L
s ](x1, ...,xs;x′1, ...,x

′
s, t)

with initial date

ρL
s (x1, ...,xs;x′1, ...,x

′
s, t)|t=0 = ρL

s (x1, ...,xs;x′1, ...,x
′
s,0),

wherexi ∈ R, i = 1, ...,N.
According to the theory of semigroups, the solution of

the hierarchy of equations (4) has the form [8]:

(UL(t)ρL)s(x1, ..,xs;x′1, ..,x
′
s) =

(eΩ(L)e−iHL
s te−Ω(L)ρLeiHL

s t)s(x1, ..,xs;x′1, ..,x
′
s)

which is equal forx1 < x2 < ... < xs, x′1 < x′2 < ... < x′s
whens = N to:

(e−iEL
s tρLeiEL

s t)s(x1, ..,xs;x′1, ..,x
′
s),
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where

E
L
s =

s=N

∑
j=1

k2
j ,

(Ω(L)ρL)s(x1, ..,xs;x′1, ..,x
′
s) =

=
N
L
(1−

s
N
)

∫

L
∑

i
ρL

s+1(x1, ..,xs,xs+1;x′1, ..,x
′
s,xs+1)×

g1
i (xs+1)g̃

1
i (xs+1)dxs+1,

g1
i (xs+1) is a complete orthonormal system of vectors in

the one-particle spaceL2(L),

ρL
s (x1, ...,xs;x′1, ...,x

′
s)= ∑

α=1

wα ψα(x1, ...,xs)ψ∗
α(x

′
1, ...,x

′
s)

is nuclear operator [7], and [2]:

ψα(x1, ...xs) = ψB(x1, ...xs) = ∑
σ
A(σ)σexp(i

s

∑
j=1

k jx j).

To determine the solution

ρL
δs
(x1, ...,xs;x′1, ...,x

′
s, t) =

∑
α=1

wα ψδα (x1, ...,xs, t)ψ∗
δα
(x′1, ...,x

′
s, t)

of the Liouville’s quantum kinetic equation with delta
potential with the initial condition (2) we can use the
method described in [3]. Namely, we use a Green’s
function

ψδ (x1,x2, ...,xN , t) =

∑
σ∈SN

∫

R

...

∫

R

A(σ)
N

∏
j=1

eikσ( j)(x j−yσ( j))e−it ∑ j ε(k j)dk1...dkN ,(6)

whereA(σ) = ∏{Sαβ : αβ is an inversion inσ}, σ ∈ SN
be a permutation of{1, ...,N}. Recall that an inversion in
a permutationσ is an ordered pair{σ(i),σ( j)} in which
i < j andσ(i)> σ( j).

For case N=2 from equation (6) att = 0 we obtain [3]:

e−i(k2y1+k1y2) =−
c− i(k2− k1)

c+ i(k2− k1)
e−i(k1y1+k2y2) =

−exp(iθ2,1)e
−i(k1y1+k2y2). (7)

3 Application

The result of Lieb-Liniger [2] and the equation (7) from
[3] can be used to solve the problem of two keys. Namely,
equations (6) and (7) make it possible to transmit, without
the transfer of keys, a time-dependent and
time-independent information, respectively.

Solution of the problem: Alice is trying to send a
private message to Bob. Alice put plaintext for caseN = 3

as P = e−i(k1y1+k2y2+k3y3) in a box and apply her lock
eA =−eiθ2,1 on that box. She sends the locked box

−eiθ2,1P = e−i(k2y1+k1y2+k3y3)

to Bob, who then put his own lockeB =−eiθ3,1 to the box.
Now Bob the box under the double lock sends back to
Alice

ei(θ3,1+θ2,1)P = e−i(k2y1+k3y2+k1y3).

Alice will open her lock
−e−iθ2,1 = −eiθ1,2 = −e−iθ2,3 = −eiθ3,2 before send it
−eiθ3,2e−i(k2y1+k3y2+k1y3) = e−i(k3y1+k2y2+k1y3) back to Bob
for the second time. And lastly Bob will unlock
−e−iθ3,1 =−eiθ1,3 his lock to open the plaintext

eiθ1,3e−i(k3y1+k2y2+k1y3) = e−i(k1y1+k2y2+k3y3)

(see diagram below)
Here we used −eiθ2,1 = −eiθ2,3 (Appendix),

θi, j = −θ j,i [2] with factors:−e−iθ2,1 = −eiθ1,2 which is
equal to:−e−iθ2,3 =−eiθ3,2.

♥ ♥

♥ ♥

♥ ♥

♥ ♥

Alice

P P(eA)

P(eB,eA) P(eB)

P(eA) P(eB,eA)

P(eB) P

BobP(eB,eA)

4 Appendix

There are many different ways of transitions from set
(k1k2k3) to set(k3k2k1) with equal probability [2]:

(k1k2k3)→ (k2k1k3)→ (k2k3k1)→ (k3k2k1)

and

(k1k2k3)→ (k1k3k2)→ (k3k1k2)→ (k3k2k1)
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Corresponding to permutation(k1k2k3) → (k3k2k1)
factors are −eiθ3,2+iθ3,1+iθ2,1. Analogously factors
−eiθ3,1+iθ2,1 and −eiθ2,3+iθ3,1 correspond to permutation
(k1k2k3)→ (k2k3k1). In other words:

eiθ3,1+iθ2,1e−i(k1y1+k2y2+k3y3) = eiθ3,1+iθ2,3e−i(k1y1+k2y2+k3y3).

It follows that
−eiθ2,1 =−eiθ2,3.
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