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Abstract: The existence of unique solution, in terms of initial datdhef hierarchy of quantum kinetic equations with delta ptéén
and application of kinetic equation for information teclogy, has been proven. The proof is based on the nonrelatigjgantum
mechanics and application of semigroup theory methods
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Bethe Anzats was first introduced in 1931 by Hans Betheggr gl xj = X for all j,k=1,2,...,N and # k. The solution
[1] when he considered the Heisenberg model. Sinceyfthe Schodinger equation in
then, this model remains one of the several exactlyz:0<x; <x, <... <xy <L in this case will have Bethe
solvable models of many-body physic§-{4], [8]-[17]. anzats form:
A significant contribution was made by the work of
Lieb-Liniger [2], in the development of this model, where N
one-dimensional quantum system of bosons interacting YB(xe, . xn) = ZA(a)oepr Z KiXj),

S . o =1
through a potential in the form of a delta function

1 Introduction ( )xi=x0 = 2CW[xj=x,.

where the summation extends over all permutationsf

S(x—x0) ={3" i e .
0 if x#x ordered N numbets=Kki, ...k, andA(o) = [{Syp : aB
. G is an inversion ino }, are certain coefficients depending on
with a Hamiltonian: o
N 92 _Cilka—kg) _ _exp(iB
H=—igoa—)q2+20i;6(>q—xj) 1) Sup c+i(ka —kg) P(i6a.p).

whereb, g = 0(ka —kg), 8(r) = —2tan™1(g). Assuming
r to be real we haver> 6(r) > —,

In [3] using the ideas of Bethe Ansatz, the method is
given to solve the time-dependent Samifinger equation
for a system of one-dimentional bosons interacting via the
repulsive delta function potential. Authors df][solve
time-dependent Scbdinger equation:

is considered.

In (1) x is one dimentional coordinate of a particle, the
constanth is called the reduced Planck constantis the
mass andd(x; — Xj) is the potential energy; > 0 (the
repulsive case) angZ : all 0<x <L,i=1..N,
where N-the number of particles and-the size of the
periodic box. Here we suppose that 2m= 1.

In [2] the of solving of the differential problem related oY
to the Schodinger equation itz : 0 < xq < % < ... <Xy < Hy = 'S0
L is reduced to a solution of a much simpler system of
algebraic equations, called the Bethe ansatz equations. Wwith initial condition

lmx]:ka = Lp|Xj:Xk,07 W(Xa 0) - LIJ(XLXZ? "'aXN;O) = LIJO(XLXZ? "'7XN)'
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The solution is reduced to In the problem given by equation (4) and (&)gives
) the position ofith particle in the 1-dimensional spagg
s _ 5 °Ys X,i=1,2,....,s.In(1)h=1is the reduced Planck constant
ot X2 and|,] denotes the Poisson bracket.

The reduced statistical operator of particles is
in the interior ofZ, e.9.%° : X1 < X,... < XN With the Pé(xl,..,xs;x’l,..,xg) related to the positive symmetric

initial condition for the Schwdinger equation density matrixD of N particles by b],[6]
N
Ws(x;0) = |'|15(x,- ~y)) @) D5 (Xe, -, Xsi X1, -, X6) =
= S L
in % : —o <% < X,... <Xy < o and the boundary ~ © T2, 00 DR (X0 X, X1, XNT X X Yo 1, X))
condition: wherese N, N is the number of particles, the size of the
7] 0 periodic box. The trace is defined in terms of the kernel
(0xj+1 N 3_)(j)w5|xi+1=xj = CWslx;,1=x. 3) p"(x,X') by the formula
for a system of one-dimensional bosons interacting via Troob — L q
the delta function potential. In (3); € R are fixed and P~ = /Lp (x, x)dx

V1 < Y2,... < Yn- The equation (3) is the effect of the - _ _
d-function confined to the boundary o, e.g. on the The Hamiltonian of system is defined as
hyperplanex;j 1 = xj. The interest of authors3[ in the

Lieb-Liniger model has arisen because of its connection HE (Xq, ... Xs) = 1 A AUH(x) ) +
to ultracold gases confined in a quasi one-dimensional sVt £\ 2m T '
trap [4]. o

> @i —xl),

1<i<j<s

2 The dynamics of a one-dimensional system
of Bosons interacting via the delta function
potential 02

where 2n= 1, A; is the Laplacian

In paper we suggest the approach to solve the
time-dependent Bogolubov-Born-Green-Kirkwood-Yvon (% —xi]) = 268(% — Xi
(BBGKY) chain of quantum kinetic equations][[6] for @5 =) 04 =x)),

a one-dimensional system of bosons interacting via theandu*(x) is the external field which keeps the system in

delta function potential. the regionL (u-(x) = 0 if x € L andut(x) = +oo if
We will consider a system of N particles containedinax ¢ L. Hereq j(|x — X;|) is symmetric.
finite regionL. The operatorg and HamiltoniarH, act Using semigroup theory we can reduce this problem to

in the space”” with zero boundary conditiorv]. Finally solution of system of equations:
we get the equation

i OPL (X1, vy X5 XYy vy X 1)
= [H5, ps] (X1, -, X1 Xq, ., X5, ) ot
with initial date

=[HL, pL](Xq, oo Xsi X ooy X 1)

i(9pé-(xl,...,xs;x’1, X t)
ot

(1 9) T 3 (@salx— et
L N X“lglgs s+l st P (X1, o X Xy oy Xy V) [t—0 = PE (X0, oo X6 X s X5, 0),

wherex; € Z,i=1,...,N.

) L .
Asr1 (X —Xsr1]))Psia (Xt e X Xo4 110, o X Xor 1, 1) 4) According to the theory of semigroups, the solution of

with the initial condition the hierarchy of equations (4) has the for@h [
P (X1, ooy X Xy, oy X V) [t—0 = PE (XL, ooy X)X oo X 0)(.5) (UL ) pY)s(Xe, .., X X, -y Xo) =
for 1 <s< N. Fors= N, we have (eQ<L>e*iHéte*Q(L)pLeiHét)S(xl, XX X)
i0p§(x1,...,xs;x’l, Lo Xet) which is equal foxg <X < ... <Xs, X; <Xp < ...<X§
ot N whens= N to:
[HE L] (X0, o X X X )] (6B )5(xa, . X6, ),
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where as P = e i(kntkeyatkays) in a box and apply her lock
EL_ SEN K2 ex = —€%1 on that box. She sends the locked box
s K
=1 _ef21p — g i(keyrtkiya+kays)
L . _ .
(Q(L)P7)s(Xe X6 Xq, -+:%s) = to Bob, who then put his own lodg = —€ %1 to the box.
N S L . Now Bob the box under the double lock sends back to
= _(1__) zps 1(X17~'7X87XS+1’X,17"7X,57XS+1)X H
L N’ JL + Alice ) .
! d(0311+621)p — g-i(keyr+kaya+kiys)
O (Xs11)Gi (Xs1)dXs41 -
PATSHLEI TSRS L Alice will _O{szen ~ her lock
gl(xs11) is @ complete orthonormal system of vectors in —e %21 = _gb2 — _ = —d%2 pefore send it
the one-particle spacé(L), —gfs2g k2yl+k3>’2+k1y3> = g I(kantkey2tkays) hack to Bob

for the second time. And lastly Bob will unlock
PL (X1, o Xy Xy, oy Xe) = > Walla(Xy, .. Xs) W5 (X, ... Xs)  —e %1 = —g%= his lock to open the plaintext
a=1

) dOi3gi(kayitkayatkiys) — g—ikiyi+kaya+kays)
is nuclear operator7], and [2]:
(see diagram below)

S . .
X1, %) = Wa(X1,..xs) = S A(@)oexp(i S Kix;). Here we used —€%1 = —d%3 (Appendix),
Ya(x,.-X) = YB(x, . X6) Z (@) oexp( j; i%i) 6,j = —0;, [2] with factors: —e'%1 = —g%2 which is

. . equal to:—e 1023 — g2,
To determine the solution
plgs(xlv "'aXS;lea 7X!53t) =

> W, (X, - Xs W5, (X, X )
a=1

of the Liouville’s quantum kinetic equation with delta
potential with the initial condition (2) we can use the O O O
method described in3]. Namely, we use a Green’s
function P(es,€n) P(es) P
, X2,y XN, T) = )

Yo%z, X, 1) Alice en) Bob

N .
ZN / / A() [ ot 900 e 2150 di,....dkn(B) P Rea) ) Ples,en)
R ) OO0
whereA (o) = [{Syp : aB is aninversion ino}, 0 € Sy ~ ~

be a permutation of1,...,N}. Recall that an inversion in
a permutatioro is an ordered paifo(i),o(j)} in which
i <jando(i) > o(j).

For case N=2 from equation (6) &t O we obtain B]:

eritayithayy) _ STk =K iy, gy _
+ I(kz - kl)
—exp(i621)e” i(keyr+kay2) 7)
3 Application 4 Appendix

There are many different ways of transitions from set

The result of Lieb-Liniger 2] and the equation (7) from (Kekoks) to set(kakoky) ith equal probability J:

[3] can be used to solve the problem of two keys. Namely,

equations (6) and (7) make it possible to transmit, without
the transfer of keys, a time-dependent and (kikeks) = (kokaka) = (kokska) = (kakoke)
time-independent information, respectively. and
Solution of the problem: Alice is trying to send a
private message to Bob. Alice put plaintext for cake: 3 (kikoks) — (kiksko) — (kskiko) — (kskoks)
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Corresponding to permutation(kikoks) — (kskoki) [15] C.A.Tracy and J.H.Widom, Integral formulas for the

factors are —d02tif1+i621 Analogously factors asymmetric simple exclusion process Commun. Math.Phys,

—g81t18%21 and —€%3t1%1 correspond to permutation  Vol.132, pp.815-44 (2008).

(kikokz) — (kokskz). In other words: [16] C.N.Yang, Some exact results for the many-body probifem
one dimension with replusive delta-function interactidty®

g 83141621 o=i(kiyi+koyatkays) _ 63141623 -1 (kiy1+koy2+kays) Rev. Lett, Vol.19, p.1312 (1967).

[17]C.N.Yang and C.P.Yang, Thermodynamics of a one-
dimensional system of bosons with replusive delta-fumctio

It follows that interaction, J. Math. Phys, Vol.10, pp.1115-1226 (1969).
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