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Abstract: Software-Defined Network (SDN) is a network technology aimed to open new possibilities in network management and
orchestration. This is important in future (especially mobile) networks, where virtualization of resources and network functions is
the basic paradigm. SDN has been proposed to programmatically control networks, facilitating deployment of new applications and
services, as well as tuning network policy and performance.It represents an important change in the way networks are architected,
built, and managed. In this new networking paradigm, a network control plane is physically decoupled from a forwarding plane and
is directly programmable. In SDN networks, the control plane supports a logically centralized controller which has a global view of
the entire network; it gathers information from the data plane to be processed by the management tasks which are implemented as
applications running on the top of the controller. Based on the global view, these applications make packets processingdecisions and
distribute them to the data plane via the controller. However, security of such networks with their programmability andcentralized
points of control is not currently ensured on a sufficient level. In this paper, we present the concept of a new security system for
SDN-based networks, which can be easily integrated with theexisting network infrastructure as well as can provide security of all
network components. It consists of two main subsystems: thenetwork authentication and access control system to protect the network
control and the distributed firewall system to protect data transmission. Such a system enables creating additional boundaries within
the network to provide a multi-plane system of defense, solves the problem of a single point of failure, and makes it easy to protect the
network from external attacks as well as from internal malicious users.
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1 Introduction

In todays modern business climate, computer networks
become an essential element to provide important
communication links for an organization to run its
applications, deliver services, and become more
competitive for data security mechanisms [1]. To meet
modern IT requirements, a traditional network should
overcome the substantial limitations in its architecture
which include the complexity in addressing new business
requirements, where the features are vendor-specific and
implemented through proprietary commands, the
inconsistent policies, where a manually configured or
scripted configuration across hundreds or, maybe,
thousands of network devices that make the policy change
extremely complicated, and the inability to scale, where
the static provisioning in the traditional network meet an
increase in the number of endpoints and services, or the

necessary bandwidth, which requires an authentic
planning and redesigning the network. SDN is a new open
technology in industry promising to solve known
limitations in traditional networks and opening new
frames of networks designing, configuring, controlling
and operating [2].

The SDN architecture decouples the control plane
from the forwarding (data) plane, logically centralizes the
network intelligence, and abstracts the underlying
network infrastructure from the applications, which lead
to more innovations, greater scalability, and highly
flexible solutions. The point of SDN is to give open
interfaces that empower the ability to develop software
that can control the network resources connectivity as
well as traffic flow over them [3]. Nevertheless, the
centralized hierarchy that poses a single point of failure
and risk of DoS attacks, and the network programmability
are attractive for attackers, so securing the SDN networks
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is a real challenge and can be considered the key for
success or failure of such technology.

In this paper, we extend our previous work in [4,5]
and propose a solution that takes the advantages of the
programmability and the centralized control with its
global view, it consists of two main subsystems. The first
subsystem tries to prevent any access attempts from
unauthorized users by verifying a host identity upon
connection to the network. Moreover, a different level of
privilege is implemented for each host based on its
authentication credentials. The second subsystem
presents a reactive distributed stateful firewall solution, in
which the security policy is centralized in the firewall
application which runs on the top of the controller, and
implemented by the underlying data plane to present
distributed checkpoint that provides a defense-in-depth
and can be considered the best solution for those
networks with different levels of trust. The
implementation of our proposed system does not need
any new protocol supports or host configuration, as well
as it does not enforce any change in terms of behavior or
design for current OpenFlow-based SDN paradigm

The rest of the paper is organized as follows. The
theoretical background of firewalls and 802.1x
technologies are described in Section2. In Section3, we
present the state of the art of current SDN security
solutions, which are analyzed and compared later with
our proposed solution. In Section4, the overview of the
proposed system’s architecture is described. In Section5,
we showed the details of its implementation and the
results of the performance tests while in Section6, we
conclude the paper with a summary of the proposed
solution and its future enhancements.

2 Background

In the following, we relate our proposed system to other
existing network solutions and give the overview of
802.1X architecture, and firewalls technologies.

2.1 802.1x Architecture

IEEE 802.1x [6] is a standard technology that defines a
port-based network access control mechanism for wired
Ethernet networks. The standard specification of 802.1x
relies on the EAP protocol [7] to verify a user’s identity, it
includes three major components: supplicant (host),
authenticator, and authentication server. It defines an EAP
over LAN (EAPOL) protocol to transport the EAP
messages between the supplicant and the authenticator as
shown in Figure1.

To ensure that only authorized persons can access the
network, all traffic is blocked except EAPOL. Once the
user identity is successfully verified, his/her other traffic
is permitted. In the 802.1x specification, EAP gives a way

for the supplicant and the authentication server to
negotiate an EAP authentication method. The EAP
method is utilized to determine the credential type and
how the credentials are provided from the supplicant to
the authentication server. EAP is extensible by adding
new EAP methods. Different EAP methods are available
for use within IEEE 802.1x. The common EAP methods
used in 802.1x are EAP-MD5, EAP-TLS [8], and
PEAP-MSCHARPv2. The supplicant is an entity, which
must provide the proper credentials to the authenticator to
gain access to the network. Usually, it is an end-user
workstation, but it can be another device seeking network
services, such as a switch or router. The authenticator is
an entity that controls the access to the network. Usually,
it is a switch acting as a proxy between the supplicant and
the authentication server. Based on the client
identification data and the decision retrieved from the
authentication server, it either grants or does not grant the
client to access the network. The authenticator logically
characterizes its ports as a controlled port and an
uncontrolled port. The access to the whole network
resources is provided by the controlled port, while
uncontrolled port allows the access only for the EAPOL
traffic between the supplicants and the authentication
server. At the beginning, the authenticator opens only its
uncontrolled port for EAPOL traffic. Once the supplicant
is successfully authenticated, the controlled port is
opened, so the supplicant can access different network
resources. The authentication server is an entity that
provides the authentication service to the authenticator;it
validates the client and specifies whether the supplicant
can access available services on the network. Typically,
the authentication server supports RADIUS and EAP
protocols. All authentication and authorization policies
are located on the authentication server. RADIUS [9] or
Diameter [10] protocols are used to transfer EAP frames
between the authenticator and the authentication server.
The authentication process started either by the supplicant
requesting access to the network or by the authenticator
when it detects a port status change or when it receives a
packet with a source MAC address not included yet in its
MAC address table. If the authenticator starts the
negotiation, it sends an EAP-request/identity packet, but
in case the supplicant starts the negotiation, it sends an
EAPOL-start packet, to which the authenticator answers
with an EAP-request/identity packet. The supplicant
responds with an EAP-response/identity packet to the
authentication server via the authenticator, in which the
authenticator plays its role as a proxy between the
supplicant and the authentication server. The
authentication server responds it with an EAP-request
packet to be forwarded to the supplicant via the
authenticator. The supplicant now replays with an
EAP-response. After that, the authentication server
answers with either an EAP-success packet approving the
client identity or with an EAP-reject packet to the
supplicant, which means that its traffic will not forwarded
as shown in Figure2.
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Fig. 1: IEEE 802.1x framework

Fig. 2: Message exchanged during authentication

2.2 Firewall

In order to control the flow of information between
designated sources and destinations devices, individuals
and organizations, managing networks within information
systems and between interconnected systems, commonly
utilize flow control policies and enforcement mechanisms
[11,12]. Flow control is based on the characteristics of
the packet header and/or the information included.
Enforcement occurs, for instance, in boundary protection
devices, such as gateways or firewalls that employ sets of
rules that restrict the system services by utilizing a
packet-filtering capability based on header information,
or message-filtering capability based on message content.

Firewalls are very important security mechanisms
which are used to control the access from and to the

network by filtering incoming or outgoing traffic, based
on a set of filtering rules (firewall policies) reflecting and
enforcing the organization’s security policy. A Firewall is
a checkpoint usually employed in the boundary between
an authorized system and external environments to
compare each and every incoming packet with its policy
rules. It decides whether to allow or to deny a packet from
passing through it. The firewall policy is a set of rules
defining how the firewall handles the incoming and
outgoing traffic for some specific IP addresses range of
addresses, protocols, applications, and packet content
[13]. According to the firewall policy, the packets flowing
through a firewall can have one of three outcomes:
accepted, dropped, or rejected.
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Fig. 3: Stateless firewalls

Firewalls can be implemented as software- or
hardware-based and can be classified according to
deferent criteria, such as their functionality or the layer
(ISO/OSI reference model and TCP/IP model) where they
are implemented (e.g., network, session, transport or
application layer). For instance, stateless and stateful
firewall are the most common firewalls that work on the
network and transport layers. The stateless firewall
enforces the network security policies by employing a
filtering process for incoming and outgoing packets by
comparing the IP address of the incoming packet against
predetermined security rules set, to decide whether to
pass or drop it [14]. It treats each packet separately, so it
does not need to save the context (”state”) about a packet
already used for processing the next packet in the same
flow, see Figure3. The stateful firewall attempts to track
the state of network connections and can tell if the
packets are parts of current opened sessions originating
within a trusted network. Generally, it maintains a table
called the state table to store information about each
active connection [15]. This state table holds entries that
represent specific information (e.g., source and
destination IP addresses, port numbers, flags, sequence
and acknowledgment numbers) that uniquely identify the
communication session, see Figure4. For each received
packet, the device will check the state table to see, if this
packet belongs to any existing connection [16]. If it is, the
action will be applied (accepted or denied) based on the
policy associated to such a connection. In case it is the
first packet of the connection, there are no matches with
the state table entries, so it should be checked against the
policy rules. According to the predefined decision, if it is
accepted, a new entry will be created for this connection.
But, if it is denied, creating a new entry for this packet is
optional

3 SDN Security: State of The Art

In this section, we show an overview of some proposed
solutions concerning the security of SDN networks. Our
review is organized into two groups. The first group is
focused on available efforts to provide network access
control solutions. The second group presents the
SDN-based firewalls approaches. Both groups are
analyzed and compared with our proposed solution. One
of the earliest solutions to provide network access control
is Ethan [17]. The aim of Ethan project is to provide a
user identity-based network access control system to the
centralized controller architecture. It defines a global
policy located on the centralized controller’s side and
relies on building a strong binding between the user’s
attributes, machine, and traffic (IP, MAC, and Ports). In
order to authenticate and register different entities to the
system, the switches use certificates to verify themselves
to the controller through an SSL secure channel, the hosts
authenticate using their previously registered MAC
addresses, while the users authenticate by introducing
their usernames and passwords to a website end to the
Kerberos authentication server. Resonance [18] follows
Ethan and extends it to provide the real-time monitoring
ability. While both, Resonance and Ethane, are similar in
the terms that they are employing the MAC address, and
they redirected users to a website for authentication, their
way of policy update is quite different (static vs.
dynamic). Ethan and Resonance projects are followed by
different solutions that adopt the IEEE 802.1x standard to
provide an access control system for SDN networks. The
authors in [19,20] adopt the IEEE 802.1x standard to
provide a network and access control solution based on
the tight bind of the host to the switch port for
OpenFlow-based SDN network. Similar to Ethan and
resonance projects, this solution argues that newly
connected hosts are redirected to a website for submitting
their credentials. The authentication website is integrated
with the RADIUS client and ends to the RADIUS
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Fig. 4: Stateful firewalls

authentication server. The problem related with such
solutions is that they require using the captive portal,
which requires layer 3 configuration (e.g. DHCP) or even
ephemeral private IP address assigned to the node to be
able to access the website. Also, these approaches require
the host to install an HTTPS-capable Web browser, which
can be a real problem for virtual machines or other
network devices that do not support web browser, such as
printers, scanners, phones, or even some servers.
AuthFlow [21] solution does not need any IP address
assignment or layer 3 configurations; it tries to
authenticate the hosts directly at layer 2 (based on MAC
addresses). AuthFlow extends the RADIUS client
authenticator hostapd [22] to establish secure SSL
channel with the controller. FlowNAC [23] is a
Flow-based network access control for SDN networks. It
uniquely identifies the services and associates them with
the flows; the decisions are based on, both, the user
identity and the requested services. FlowNAC extends the
policy to define the target service identifier, and
implement a proactive manner of distributing the
centralized policies. FlowNAC introduces the
EAPoL in EAPoL encapsulation to help the user to
access many services simultaneously. Such an
encapsulation may enforce an additional overhead of
updating the standard protocols, entities, and data models.
FlowIdentity [24] adopt the IEEE 802.1x standard to
provide a network access control solution and policy
enforcement through a role-based firewall. The defined
security policies are dynamically updated and directly
enforced. While both, FlowNAC and FlowIdentity, argue
to provide some service-based authentication, they differ
only in the way that policy enforcement is achieved.
Figure 5 shows the comparison between our proposed
work and selected known SDN access control solutions.

Previous efforts to build firewall solutions to secure
the SDN networks have been presented in many

publications and projects deliverables. For instance,
FortNox [25] is a security policy enforcement kernel
implemented as a software extension to NOX controller.
It prevents any application attempts to insert flow rules
that may change the flow rules enforced by the security
policy. FortNox is a real-time rule conflict detection
engine that, using the rule-based authorization, either
accepts or refuses a new rule. FRESCO [26] is a security
application, which applies the OpenFlow framework
consisting of reusable modular libraries that can be
connected together to build more sophisticated security
applications. FRESCO assists the developers to compose
the necessary modules to produce the required security
functions, like firewalls, IDS, and scan detections.
FLOWGUARD [27] is a framework introduced to build
robust SDN firewalls. FLOWGUARD provides a
real-time violation resolution mechanism. Whenever the
network states are updated, or the configurations are
changed, it checks and compares the flow path spaces
against the specified authorized space in the firewall, to
detect firewall policy violations. FleXam [28,29] is a
sampling extension method that gives the controller the
ability to access packet-level information needed in
different security applications. Easily the controller
decides which part of the packet (e.g. headers/payload)
and where they should be sent. FleXam provides two
methods to sample the packet stochastically based on
predetermined probability or deterministically based on a
pattern. The stateful hardware firewall solution presented
in [30], propose a prototype consisting of dump switches
and the security rules specified in the controller.
Unknown traffics are sent to the controller for inspection.
The authors of [31] suggest a prototype for a reactive
stateful firewall. It provides orchestration services for
security policy management according to a holistic view,
and reactive application that processes the state of the
connection, In order to achieve the state aware, a generic
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Fig. 5: Comparison of the proposed approach with other SDN-based access control solutions

algorithm is introduced for processing the Finite State
Machine (FSM) of the TCP protocol. To summarize this
draft analysis of security functions and performance, see
Figure6, which compares such functions.

The objective of our proposed solution is to secure the
SDN network; it consists of two main subsystems. The
network authentication and access control system to
protect the network control by adopting the 802.1x
standard with RADIUS server to authenticate, both, the
users and hosts, it is based on the modified centralized
authenticator which maintains a local database used to
keep records of currently authenticated users as an
introduced solution for the stateless property of the
RADIUS protocol. The other subsystem is the distributed
firewall to protect data transmission. Such a system
creates an additional boundaries within the network to
provide a multi-plane system of defense, solves the
problem of a single point of failure, and protect the
network from external attacks as well as from internal
malicious users.

4 System Architecture

4.1 Architecture Overview

The main idea behind our proposed work is to protect the
SDN network from external attacks and internal
malicious users by developing the network access control
and authorization mechanism as well as the distributed
stateful firewall. Figure7 shows the main components of
the proposed system: the authentication server, the
centralized authenticator, and the system functionality,
that is executed by different modules running on the top
of the SDN controller, which in turn maintain some
introduced tables in the controller and on the data planes
sides to provide the required security functions protecting
the network. These tables help to reduce the lookup
process time needed to handle a packet and improve the

overall system performance. The Stable table
implemented in the data plane provides the flow
state-awareness and holds entries used to keep track for
each specific flow.

4.2 Access Control and Policy Enforcement
Subsystem

The authentication functionality is composed of five
components: supplicant, OpenFlow-enabled switches,
controller, authenticator, and the authentication server, see
[5]. The authentication process of comparing the
credentials, provided by the user with the predefined
authorized users information database to validate the
users, is done in the authentication server (RADIUS). If
the credentials successfully match, the process is
completed, and the user is granted authorization for the
access. The permissions returned defined the network
resources that the user can access. The authenticator is
centralized and connected to all the OpenFlow-enabled
switches. For security reasons, (to isolate the controllerto
protect the network from vulnerabilities and attacks like
SYN flooding on the controller, which may lead to
destructing the whole network [32,33], and to reduce the
load on the controller), the authenticator is separated from
the controller. The authenticator implements RADIUS
client functionality, it forwards the message between the
supplicant and the authentication server. The final
decision, whether the user is authorized or not, is from the
authentication server. It is forwarded to the controller via
a secure encrypted channel, using SSL 3.0 standard,
established between the controller and the authenticator.
Reactive mode is implemented; it reacts to the new users
access requests, approves the identity and accordingly
installs the appropriate rules to manage the connection.
However, two entries are installed in advance in the
switch flow table to forward all EAPOL (Ethernet type set
to 0x88E) to the authenticator and drop other packets.
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Fig. 6: Comparison of the proposed approach with other SDN based firewall solutions

Fig. 7: The Architecture overview

Whenever a new 802.1x-aware workstation (supplicant)
connects to the network, the authentication message starts
exchanging between the supplicant and the authenticator.
The supplicant starts the negotiation by sending
EAPOL-start message to the edge switch, see Figure8.
Proactively, the switch is instructed to forward such
frames to the centralized authenticator. The authenticator
now will ask for the supplicant credentials using
EAP-request/identity. The supplicant submits its
credentials (username that uniquely defines this request
for the client) using EAP-response/identity packet. After
that, the authenticator decapsulates the message and
checks it against the currently active user local database.
If the provided credentials belong to a currently active
user, the authenticator informs the controller application
(authmanager module); otherwise, it will forward it to
the authentication server. The authentication server

replays with RADIUS access/challenge, which the
authenticator forwards to the client. The client now
provides its identifying credentials using
EAP-response/identity. The RADIUS server verifies these
credentials, it either approves the identity of the user
using an EAP-success (access-accept) packet or replies
with EAP-reject (access-reject) packet, what it means the
access is denied and the port is kept blocked.
Accordingly, the authenticator will update its active-user
database and will forward the authentication server’s
decision to the controller. Depending on the decision, the
controller may install the new entry on the corresponding
switch flow table and apply the predefined group policy
for that client or may leave the ports blocked for that
client.

Logically, authorization follows authentication.
Despite the two terms are often used synonymously
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(although they may often seem to be combined).
However, they are two different processes. After the user
is authenticated and his credentials are correctly matched,
the authentication server returns a list of attribute-value
pairs defining the user privileges to be forwarded to the
authenticator, and finally to the Authmanage module
running over the controller, via the SSL channel. Such
messages inform the controller about the authentication
success and the identity of the supplicant (MAC address).
The returned attributes may include service type, protocol
type, access list to apply, or just static route to be installed
in the OpenFlow table. Then, Authmanage module
translates this parameter into flow rules to be installed and
applied to the corresponding switch port. Consequently,
the switch can easily relate between the supplicant (MAC
address) and its flow.

4.3 Distributed Stateful Firewall

Figure 4 shows an overview of the stateful firewall
subsystem that is integrated into the SDN architecture,
see [4]. The firewall functionality is provided by six
modules which run on the top of the controller, which
maintain tables located in the controller and the
OpenFlow-enabled switches for processing the
connections states. The main module is responsible for
coordinating and managing other units. The
EventListener module is triggered by some predefined
events to be responded with an appropriate action. The
role of StateExtractor module is extracting required
information from the packet. The SecPolDiv module is
responsible for initiation of SecPolTable table for every
new switch connects to the controller. The other table is
STable. It is located in the switch and is used to save the
state of each flow passes via the switch. SecPol lookup
module is used to check out the SecPolTable belonging to
all switches in the whole path for the traffic, to install a
new entry in the switches STable table located in the
traffic path, ConState module uses a
S PROTOCOLEAdd message; this approach helps
avoiding unwanted delays (switch-controller
communication), when the first packet arrives other
switches in the path. The following describes the
interaction between OpenFlow switches, controllers and
the stateful firewall application, and show how they
handle the traffic. When the switch receives a packet, first
step and before checking the flow table, it will compare
the packet’s header against the STable entries for any
match. If this packet matches with one of the STtable
table entries, the switch will forward the packet to its
destination as it belongs to a previously opened
connection. Otherwise, it will match the packet against
the Flow Table entries to perform the convenient action.
In case that no entry defined in the OpenFlow table
explains how to handle such connection, the switch either
performs the default action or encapsulates the packet
with packet-in message and forwarded it to the controller.

Once the controller receives the packet-in message, it will
consult the SecPolTable related for that switch, and
respond with the proper action encapsulated with
packet-out messages to install one or more appropriate
entries in the flow table of requesting switch. The
EventListener module is listening to the packet-out
message to call three functions StateExtractor,
SecPolLookup, and ConState. The StateExtractor
function extracts the header attributes needed to make up
the communication session (e.g. IP source/destination
addresses, port numbers, sequence/acknowledgment
numbers, and flags) which together considered the
fingerprint for any individual connection. The function
SecPolLookup is responsible for checking out all
SecPolTable tables belong to the switches located in the
packet path to make sure it does not violate the network
security policy. Finally the ConState function to install
entry in STable of corresponding switches using
S PROTOCOLEAdd message and all switches in the
packet path, such approach helps avoid additional
overhead (unwanted switch-controller communication
delay) when this packet arrives for remaining switches in
its path. One more important introduced mechanism done
by the SecPolDiv, which for each data plane device join
to the controller, this SecPolDiv object initiates
SecPolTable for that new connected switch, this
mechanism improves the overall performance by reducing
time needed by the controller to decide how should that
switch handle the packet if it does not match any entry in
its flow table. When security policy updated by the
network administrator, the SecPolDiv will rebuild all the
SecPolTable and reinforce and dynamically propagate the
security policies for every data plane. In order to maintain
the STable located in the OpenFlow-enabled switch for
adding, removing or even clear all entries, the designated
communication protocol SPROTOCOL between the
controller and the switch is introduced. SPROTOCOLE
protocol defines three messages: SPROTOCOLEAdd,
S PROTOCOLERemove, and SPROTOCOLEClear, to
enable state-based connection monitoring and to help the
ConState module to maintain the STable by adding,
removing and clearing the STable entries of the data
plane.

5 Implementation and Functional Validation

5.1 Implementation

A proof-of-concept is constructed to validate and test the
proposed subsystems functionality. We deploy and
configure our virtualized test environment, see Figure8,
in which the firewall functionality is mostly implemented
as interconnected modules running on the top of the
controller (we chose a widely used POX controller),
except for the state table placement, which uses a
low-level, assembly-based language called NetASM [34],
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which comes with a software switch capable of creating
tables and defining layouts of the processing pipeline. The
testbed consists of the several following machines:

1.The authentication server, which is Ubuntu server
16.04.3 LTS VM with the FreeRADIUS [35] server
v2.1.12 installed along with MySQL database to save
the authentication and authorization resources.

2.The authenticator, which is Ubuntu server 16.04.3
LTS VM running the modified version of open-source
802.1x hostapd [22]; it is modified to maintain a local
database as well as establish a secure channel with the
controller.

3.The POX [36] controller, which is installed on Ubuntu
server 16.04.3 LTS VM along with two applications,
forwarding.l2learning module and our own
application; it consists of modules performing the
firewall functionality and a module collecting the
result of the authentication process of the supplicant
from the authenticator through the SSL channel (it
must install required entries in the corresponding
switch.

4.The switch, which is Ubuntu server 16.04.3 LTS VM
running Mininet [37] network emulator with NetASM
language to create OpenvSwitch [38], helping to
connect different entities for testing purpose.

5.Finally, the supplicant, which is Ubuntu Desktop
16.04.3 LTS VM installed with wpa-supplicant for
network clients.

5.2 Validation

To prove the effectiveness and behavior; and to analyze
the performance overhead of our proposed solution,
several experiment scenarios are conducted and tested,
see Figure8. In the first scenario, we tested the control
access subsystem; Client-1 and Client-2 are trying to
access the network. For the test purpose, Client-1 is
authorized and its identification is previously saved in the
authentication server, therefore as soon as the controller
receives the notification of Client-1 of authentication
success, it installs entries in the OpenFlow table explicitly
reflecting the client privileges. The other unauthorized
host is Client-2; its access request is rejected and the
switch refuses any attempt to access the network
resources. The second experiment was implemented to
show the system efficiency of providing the different level
of access (privileges) for the network users.
OpenFlow-based SDN paradigm allows simple
”Match-Action” processing, which gives a great utility of
traffic control, where the packets are filtered basing on the
protocol, source/destination IP addresses, and
source/destination port numbers. For example, we can
easily block a specific host to open an HTTP session with
a given server-1, while still allow this host to access other
services on that particular server. Typically, port numbers
are associated with applications/protocols, so we can

easily determine which applications are allowed
alongside with the hosts that can access them; allow or
deny the access to the port associated with that specific
application number determines if that application can be
used, and which devices can access it. For this test, the
authenticated Client-1 is allowed to open an HTTP
sessions while denied to start Telnet sessions. The
installed entries are to allow any Client-1 request with the
TCP port (80/8080) and deny its request with the TCP
port equal to 23. The last experiment is to validate stateful
firewall solution. Client-1, which is connected to
Switch-2, starts HTTP session with server-1 that is
connected to Switch-3. When the first packet reaches to
Switch-2, it is forwarded to the controller for
consultation. The controller replies with packet-out
message to install an entry in Switch-2, to tell forwarding
such packets to Switch-3. Simultaneously, ConState
function installs new entries in the STable table for, both,
Switch-2 and Switch-3, using a SPROTOCOLEAdd
message. The other packets belong to this flow and the
reply from server-1 is compared against the STable that is
used to keep track of this matter. In the other case,
Client-3 wants to start a connection with server-1; so,
Switch-1 will check the flow with its STable table,
showing that there is no match with any previous
connection, so the Switch-1 will drop the packets, as we
implement the security policy to reject any HTTP
sessions from out LAN.

6 Summary and Conclusions

Securing the SDN networks is a hard challenge; it is so
important and is a key to the success of this technology.
In this paper, we provided the security solution for SDN
networks consisting of two subsystems: the network
access control system and distributed reactive stateful
firewall. The former subsystem adopts the 802.1x
standard to secure the network by preventing any access
attempts from unauthorized users, verifying the host
identity upon connection to the network, and
implementing different levels of privileges for each host,
based on its authentication credentials which are saved in
the authentication server. The latter subsystem presents a
distributed stateful firewall solution, in which the security
policy is centrally enforced by an application running on
the top of the controller. It is implemented by the
underlying data plane that makes use of state tables used
to keep track of each flow in the network to provide
stateful packet filtering.

The combination of these subsystems helps creation
of additional boundaries within the network to provide
multi-level of defense, solving the problem of single point
of failure, and protect the network from external attacks
as well as from internal malicious users. For both
subsystems, the policy is centralized and dynamically
enforced to the data plane(s), and the reactive mode is
implemented to keep the data planes flow table small. We

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


682 F. Nife et al.: New SDN-oriented distributed network

Fig. 8: Experiment testbed

reclaim to implement both reactive and proactive modes
for both subsystems to improve the expected overall
performance as a future enhancement.
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