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Abstract: Here we study the approximation of functions by sublinear positive operators with applications to a large variety of Max-
Product operators under Canavati fractional differentiability. Our approach is based on our general fractional results about positive
sublinear operators. We derive Jackson type inequalities under simple initial conditions. So our way is quantitative by producing
inequalities with their right hand sides involving the modulus of continuity of Canavati fractional derivative of the function under
approximation.
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1 Introduction, Motivation and Preliminaries

The inspiring motivation here is the monograph by B. Bede, L.Coroianu and S. Gal [1], 2016.
Let N ∈N, the well-known Bernstein polynomials [2] are positive linear operators, defined by the formula

BN ( f ) (x) =
N

∑
k=0

(

N
k

)

xk (1− x)N−k f

(

k
N

)

, x∈ [0,1] , f ∈C([0,1]) . (1)

T. Popoviciu in [3], 1935, proved forf ∈C([0,1]) that

|BN ( f ) (x)− f (x)| ≤ 5
4

ω1

(

f ,
1√
N

)

, ∀ x∈ [0,1] , (2)

where
ω1 ( f ,δ ) = sup

x,y∈[a,b]:
|x−y|≤δ

| f (x)− f (y)| , δ > 0, (3)

is the first modulus of continuity, here[a,b] = [0,1].
G. G. Lorentz in [2], 1986, p. 21, proved forf ∈C1 ([0,1]) that

|BN ( f ) (x)− f (x)| ≤ 3

4
√

N
ω1

(

f ′,
1√
N

)

, ∀ x∈ [0,1] , (4)

In [1], p. 10, the authors introduced the basic Max-product Bernstein operators,

B(M)
N ( f ) (x) =

∨N
k=0 pN,k (x) f

(

k
N

)

∨N
k=0 pN,k (x)

, N ∈N, (5)
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where
∨

stands for maximum, andpN,k (x) =

(

N
k

)

xk (1− x)N−k and f : [0,1]→R+ = [0,∞).

These are nonlinear and piecewise rational operators.
The authors in [1] studied similar such nonlinear operators such as: the Max-product Favard-Szász-Mirakjan operators

and their truncated version, the Max-product Baskakov operators and their truncated version, also many other similar
specific operators. The study in [1] is based on presented there general theory of sublinear operators. These Max-product
operators tend to converge faster to the on hand function.

So we mention from [1], p. 30, that forf : [0,1]→R+ continuous, we have the estimate

∣

∣

∣B
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤ 12ω1

(

f ,
1√

N+1

)

, for all N ∈ N, x∈ [0,1] , (6)

Also from [1], p. 36, we mention that forf : [0,1]→ R+ being concave function we get that

∣

∣

∣B
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤ 2ω1

(

f ,
1
N

)

, for all x∈ [0,1] , (7)

a much faster convergence.
In this paper we expand the study of [1] by considering Canavati fractional smoothness of functions. So our inequalities

are with respect toω1 (Dα f ,δ ), δ > 0, whereDα f with α > 0 is the Canavati fractional derivative. The structure of
the manuscript is as follows. In Section 2 the main results are presented. The applications can be seen in Section 3.A
conclusion part in mentioned in Section 4.

2 Main Results

We make

Remark.I) Here see [4], pp. 7-10.
Let x,x0 ∈ [a,b] such thatx≥ x0, ν > 0, ν /∈ N, such thatp= [ν], [·] the integral part,α = ν − p (0< α < 1).
Let f ∈Cp([a,b]) and define

(

Jx0
ν f
)

(x) :=
1

Γ (ν)

∫ x

x0

(x− t)ν−1 f (t)dt, x0 ≤ x≤ b. (8)

the left generalized Riemann-Liouville fractional integral.
HereΓ stands for the gamma function.
Clearly here it holds

(

Jx0
ν f
)

(x0) = 0. We define
(

Jx0
ν f
)

(x) = 0 for x< x0. By [4], p. 388,
(

Jx0
ν f
)

(x) is a continuous
function inx, for a fixedx0.

We define the subspaceCν
x0+

([a,b]) of Cp ([a,b]) :

Cν
x0+

([a,b]) :=
{

f ∈Cp([a,b]) : Jx0
1−α f (p) ∈C1 ([x0,b])

}

. (9)

So let f ∈Cν
x0+

([a,b]), we define the left generalizedν-fractional derivative off over[x0,b] as

Dν
x0+

f =
(

Jx0
1−α f (p)

)′
, (10)

that is
(

Dν
x0+

f
)

(x) =
1

Γ (1−α)

d
dx

∫ x

x0

(x− t)−α f (p) (t)dt, (11)

which exists forf ∈Cν
x0+

([a,b]), for a≤ x0 ≤ x≤ b.
Canavati in [5] first introduced this kind of left fractional derivative over [0,1] .
We mention the following left generalized fractional Taylor formula (f ∈Cν

x0+
([a,b]), ν > 1).

It holds

f (x)− f (x0) =
p−1

∑
k=1

f (k) (x0)

k!
(x− x0)

k+
1

Γ (ν)

∫ x

x0

(x− t)ν−1(Dν
x0+

f
)

(t)dt, (12)

for x,x0 ∈ [a,b] with x≥ x0.
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II) Here see [6], p. 333, and again [6], pp. 345-348.
Let x,x0 ∈ [a,b] such thatx≤ x0, ν > 0, ν /∈ N, such thatp= [ν], α = ν − p (0< α < 1).
Let f ∈Cp ([a,b]) and define

(

Jν
x0− f

)

(x) :=
1

Γ (ν)

∫ x0

x
(z− x)ν−1 f (z)dz, a≤ x≤ x0. (13)

the right generalized Riemann-Liouville fractional integral.
Define the subspace of functions

Cν
x0− ([a,b]) :=

{

f ∈Cp([a,b]) : J1−α
x0− f (p) ∈C1 ([a,x0])

}

. (14)

Define the right generalizedν-fractional derivative off over[a,x0] as

Dν
x0− f = (−1)p−1

(

J1−α
x0− f (p)

)′
. (15)

Notice that

J1−α
x0− f (p) (x) =

1
Γ (1−α)

∫ x0

x
(z− x)−α f (p) (z)dz, (16)

exists for f ∈Cν
x0− ([a,b]), and

(

Dν
x0− f

)

(x) =
(−1)p−1

Γ (1−α)

d
dx

∫ x0

x
(z− x)−α f (p) (z)dz. (17)

I.e.
(

Dν
x0− f

)

(x) =
(−1)p−1

Γ (p−ν +1)
d
dx

∫ x0

x
(z− x)p−ν f (p) (z)dz, (18)

which exists forf ∈Cν
x0− ([a,b]), for a≤ x≤ x0 ≤ b.

We mention the following right generalized fractional Taylor formula (f ∈Cν
x0− ([a,b]), ν > 1).

It holds

f (x)− f (x0) =
p−1

∑
k=1

f (k) (x0)

k!
(x− x0)

k+
1

Γ (ν)

∫ x0

x
(z− x)ν−1(Dν

x0− f
)

(z)dz, (19)

for x,x0 ∈ [a,b] with x≤ x0.

We need

Definition 1.Let Dν
x0

f denote any of Dνx0− f , Dν
x0+

f , andδ > 0. We set

ω1
(

Dν
x0

f ,δ
)

:= max
{

ω1
(

Dν
x0− f ,δ

)

[a,x0]
,ω1

(

Dν
x0+

f ,δ
)

[x0,b]

}

, (20)

where x0 ∈ [a,b] . Here the moduli of continuity are considered over[a,x0] and[x0,b], respectively.

We need

Theorem 1.Let ν > 1, ν /∈ N, p = [ν], x0 ∈ [a,b] and f ∈ Cν
x0+

([a,b])∩Cν
x0− ([a,b]). Assume that f(k) (x0) = 0, k =

1, ..., p−1, and
(

Dν
x0+

f
)

(x0) =
(

Dν
x0− f

)

(x0) = 0. Then

| f (x)− f (x0)| ≤
ω1
(

Dν
x0

f ,δ
)

Γ (ν +1)

[

|x− x0|ν +
|x− x0|ν+1

(ν +1)δ

]

, δ > 0, (21)

for all a ≤ x≤ b.
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Proof.We use (12) and (19), and the assumptionf (k) (x0) = 0, k= 1, ..., p−1 and
(

Dν
x0+

f
)

(x0) =
(

Dν
x0− f

)

(x0) = 0. We

have that

f (x)− f (x0) =
1

Γ (ν)

∫ x

x0

(x− z)ν−1((Dν
x0+

f
)

(z)−
(

Dν
x0+

f
)

(x0)
)

dz, (22)

for all x0 ≤ x≤ b,
and

f (x)− f (x0) =
1

Γ (ν)

∫ x0

x
(z− x)ν−1((Dν

x0− f
)

(z)−
(

Dν
x0− f

)

(x0)
)

dz, (23)

for all a≤ x≤ x0.
We observe that (x0 ≤ x≤ b)

| f (x)− f (x0)| ≤
1

Γ (ν)

∫ x

x0

(x− z)ν−1
∣

∣

∣

(

Dν
x0+

f
)

(z)−
(

Dν
x0+

f
)

(x0)
∣

∣

∣dz ≤
(δ1>0)

1
Γ (ν)

∫ x

x0

(x− z)ν−1 ω1

(

Dν
x0+

f ,
δ1 |z− x0|

δ1

)

[x0,b]
dz≤

ω1

(

Dν
x0+

f ,δ1

)

[x0,b]

Γ (ν)

∫ x

x0

(x− z)ν−1
(

1+
(z− x0)

δ1

)

dz=

ω1

(

Dν
x0+

f ,δ1

)

[x0,b]

Γ (ν)

[

(x− x0)
ν

ν
+

1
δ1

∫ x

x0

(x− z)ν−1 (z− x0)
2−1dz

]

= (24)

ω1

(

Dν
x0+

f ,δ1

)

[x0,b]

Γ (ν)

[

(x− x0)
ν

ν
+

1
δ1

Γ (ν)Γ (2)
Γ (ν +2)

(x− x0)
ν+1
]

=

ω1

(

Dν
x0+

f ,δ1

)

[x0,b]

Γ (ν)

[

(x− x0)
ν

ν
+

1
δ1

1
(ν +1)ν

(x− x0)
ν+1
]

=

ω1

(

Dν
x0+

f ,δ1

)

[x0,b]

Γ (ν +1)

[

(x− x0)
ν +

(x− x0)
ν+1

(ν +1)δ1

]

.

We have proved

| f (x)− f (x0)| ≤
ω1

(

Dν
x0+

f ,δ1

)

[x0,b]

Γ (ν +1)

[

(x− x0)
ν +

(x− x0)
ν+1

(ν +1)δ1

]

, (25)

δ1 > 0, andx0 ≤ x≤ b.
Similarly acting, we get (a≤ x≤ x0)

| f (x)− f (x0)| ≤
1

Γ (ν)

∫ x0

x
(z− x)ν−1 ∣

∣Dν
x0− f (z)−Dν

x0− f (x0)
∣

∣dz≤

1
Γ (ν)

∫ x0

x
(z− x)ν−1 ω1

(

Dν
x0− f , |z− x0|

)

[a,x0]
dz=

(δ2 > 0)
1

Γ (ν)

∫ x0

x
(z− x)ν−1 ω1

(

Dν
x0− f ,

δ2 |x0− z|
δ2

)

[a,x0]

dz≤ (26)

ω1
(

Dν
x0− f ,δ2

)

[a,x0]

Γ (ν)

[

∫ x0

x
(z− x)ν−1

(

1+
x0− z

δ2

)

dz

]

=

ω1
(

Dν
x0− f ,δ2

)

[a,x0]

Γ (ν)

[

(x0− x)ν

ν
+

1
δ2

∫ x0

x
(x0− z)2−1 (z− x)ν−1dz

]

=

c© 2018 NSP
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ω1
(

Dν
x0− f ,δ2

)

[a,x0]

Γ (ν)

[

(x0− x)ν

ν
+

1
δ2

Γ (ν)Γ (2)
Γ (ν +2)

(x0− x)ν+1
]

=

ω1
(

Dν
x0− f ,δ2

)

[a,x0]

Γ (ν)

[

(x0− x)ν

ν
+

1
δ2

(x0− x)ν+1

(ν +1)ν

]

= (27)

ω1
(

Dν
x0− f ,δ2

)

[a,x0]

Γ (ν +1)

[

(x0− x)ν +
(x0− x)ν+1

(ν +1)δ2

]

.

We have proved

| f (x)− f (x0)| ≤
ω1
(

Dν
x0− f ,δ2

)

[a,x0]

Γ (ν +1)

[

(x0− x)ν +
(x0− x)ν+1

(ν +1)δ2

]

, (28)

δ2 > 0, and (a≤ x≤ x0). Choosingδ = δ1 = δ2 > 0, by (25) and (28), we get (21).

We need

Definition 2.Here C+ ([a,b]) := { f : [a,b]→ R+, continuous functions} . Let LN : C+ ([a,b]) → C+ ([a,b]), operators,∀
N ∈ N, such that

(i)
LN (α f ) = αLN ( f ) , ∀α ≥ 0,∀ f ∈C+ ([a,b]) , (29)

(ii) if f ,g∈C+ ([a,b]) : f ≤ g, then
LN ( f )≤ LN (g) , ∀N ∈N, (30)

(iii)
LN ( f +g)≤ LN ( f )+LN (g) , ∀ f ,g∈C+ ([a,b]) . (31)

We call{LN}N∈N positive sublinear operators.

We make

Remark.By [1], p. 17, we get: letf ,g∈C+ ([a,b]), then

|LN ( f ) (x)−LN (g)(x)| ≤ LN (| f −g|) (x) , ∀ x∈ [a,b] . (32)

Furthermore, we also have that

|LN ( f ) (x)− f (x)| ≤ LN (| f (·)− f (x)|) (x)+ | f (x)| |LN (e0) (x)−1| , (33)

∀ x∈ [a,b]; e0 (t) = 1.
From now on we assume thatLN (1) = 1. Hence it holds

|LN ( f ) (x)− f (x)| ≤ LN (| f (·)− f (x)|)(x) , ∀ x∈ [a,b] . (34)

Using Theorem1 and (21) with (34) we get:

|LN ( f ) (x0)− f (x0)| ≤
ω1
(

Dν
x0

f ,δ
)

Γ (ν +1)
· (35)



LN
(

|·− x0|ν
)

(x0)+
LN

(

|·− x0|ν+1
)

(x0)

(ν +1)δ



 , δ > 0.

We have proved

Theorem 2.Let ν > 1, ν /∈ N, p = [ν], x0 ∈ [a,b] and f : [a,b] → R+, f ∈ Cν
x0+

([a,b])∩Cν
x0− ([a,b]). Assume that

f (k) (x0) = 0, k = 1, ..., p− 1, and
(

Dν
x0+

f
)

(x0) =
(

Dν
x0− f

)

(x0) = 0. Let LN : C+ ([a,b]) → C+ ([a,b]), ∀ N ∈ N, be
positive sublinear operators, such that LN (1) = 1, ∀ N ∈N. Then

|LN ( f ) (x0)− f (x0)| ≤
ω1
(

Dν
x0

f ,δ
)

Γ (ν +1)
·



LN
(

|·− x0|ν
)

(x0)+
LN

(

|·− x0|ν+1
)

(x0)

(ν +1)δ



 , (36)

δ > 0, ∀ N ∈ N.
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3 Applications

We give

Theorem 3.Letν > 1, ν /∈N, p= [ν], x∈ [0,1], f : [0,1]→R+ and f∈Cν
x+ ([0,1])∩Cν

x− ([0,1]). Assume that f(k) (x) = 0,
k= 1, ..., p−1, and

(

Dν
x+ f
)

(x) =
(

Dν
x− f
)

(x) = 0. Then

∣

∣

∣B
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,
(

6√
N+1

) 1
ν+1
)

Γ (ν +1)
·

[

6√
N+1

+
1

(ν +1)

(

6√
N+1

) ν
ν+1
]

, (37)

∀ N ∈ N.
We get lim

N→+∞
B(M)

N ( f ) (x) = f (x).

Proof.By [7] we get that

B(M)
N

(

|·− x|ν
)

(x)≤ 6√
N+1

, ∀ x∈ [0,1] , (38)

∀ N ∈N, ∀ ν > 1.
Also B(M)

N mapsC+ ([0,1]) into itself,B(M)
N (1) = 1, and it is positive sublinear operator.

We apply Theorem2 and (36), we get

∣

∣

∣B
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤ ω1 (Dν
x f ,δ )

Γ (ν +1)

[

6√
N+1

+

6√
N+1

(ν +1)δ

]

. (39)

Chooseδ =
(

6√
N+1

) 1
ν+1

, thenδ ν+1 = 6√
N+1

, and apply it to (39). Clearly we derive (37).

We continue with

Remark.The truncated Favard-Szász-Mirakjan operators are givenby

T(M)
N ( f ) (x) =

∨N
k=0 sN,k (x) f

(

k
N

)

∨N
k=0sN,k (x)

, x∈ [0,1] , N ∈N, f ∈C+ ([0,1]) , (40)

sN,k (x) =
(Nx)k

k! , see also [1], p. 11.
By [1], p. 178-179, we get that

T(M)
N (|·− x|)(x)≤ 3√

N
, ∀ x∈ [0,1] , ∀ N ∈ N. (41)

Clearly it holds

T(M)
N

(

|·− x|1+β
)

(x)≤ 3√
N
, ∀ x∈ [0,1] , ∀ N ∈ N, ∀ β > 0. (42)

The operatorsT(M)
N are positive sublinear operators mappingC+ ([0,1]) into itself, withT(M)

N (1) = 1.

We continue with

Theorem 4.Same assumptions as in Theorem3. Then

∣

∣

∣T
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,
(

3√
N

) 1
ν+1
)

Γ (ν +1)
·

[

3√
N
+

1
(ν +1)

(

3√
N

) ν
ν+1
]

, ∀ N ∈ N. (43)

We get lim
N→+∞

T(M)
N ( f ) (x) = f (x).
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Proof.Use of Theorem2, similar to the proof of Theorem3.

We make

Remark.Next we study the truncated Max-product Baskakov operators(see [1], p. 11)

U (M)
N ( f ) (x) =

∨N
k=0bN,k (x) f

(

k
N

)

∨N
k=0bN,k (x)

, x∈ [0,1] , f ∈C+ ([0,1]) , N ∈ N, (44)

where

bN,k (x) =

(

N+ k−1
k

)

xk

(1+ x)N+k . (45)

From [1], pp. 217-218, we get (x∈ [0,1])

(

U (M)
N (|·− x|)

)

(x)≤
2
√

3
(√

2+2
)

√
N+1

, N ≥ 2, N ∈ N. (46)

Let λ ≥ 1, clearly then it holds

(

U (M)
N

(

|·− x|λ
))

(x)≤
2
√

3
(√

2+2
)

√
N+1

, ∀ N ≥ 2, N ∈N. (47)

Also it holdsU (M)
N (1) = 1, andU (M)

N are positive sublinear operators fromC+ ([0,1]) into itself.

We give

Theorem 5.Same assumptions as in Theorem3. Then

∣

∣

∣
U (M)

N ( f ) (x)− f (x)
∣

∣

∣
≤

ω1

(

Dν
x f ,

(

2
√

3(
√

2+2)√
N+1

) 1
ν+1
)

Γ (ν +1)
· (48)







2
√

3
(√

2+2
)

√
N+1

+
1

(ν +1)





2
√

3
(√

2+2
)

√
N+1





ν
ν+1





, ∀ N ≥ 2, N∈ N.

We get lim
N→+∞

U (M)
N ( f ) (x) = f (x) .

Proof.Use of Theorem2, similar to the proof of Theorem3.

We continue with

Remark.Here we study the Max-product Meyer-Köning and Zeller operators (see [1], p. 11) defined by

Z(M)
N ( f ) (x) =

∨N
k=0sN,k (x) f

(

k
N+k

)

∨N
k=0sN,k (x)

, ∀ N ∈N, f ∈C+ ([0,1]) , (49)

sN,k (x) =

(

N+ k
k

)

xk, x∈ [0,1].

By [1], p. 253, we get that

Z(M)
N (|·− x|)(x)≤

8
(

1+
√

5
)

3

√
x(1− x)√

N
, ∀ x∈ [0,1] , ∀ N ≥ 4, N ∈ N. (50)

We have that (forλ ≥ 1)

Z(M)
N

(

|·− x|λ
)

(x)≤
8
(

1+
√

5
)

3

√
x(1− x)√

N
:= ρ (x) , (51)

∀ x∈ [0,1], N ≥ 4, N ∈ N.

Also it holdsZ(M)
N (1) = 1, andZ(M)

N are positive sublinear operators fromC+ ([0,1]) into itself.
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We give

Theorem 6.Same assumptions as in Theorem3. Then

∣

∣

∣Z
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,(ρ (x))

1
ν+1

)

Γ (ν +1)
· (52)

[

ρ (x)+
1

(ν +1)
(ρ (x))

ν
ν+1

]

, ∀ N ∈ N, N ≥ 4.

We get lim
N→+∞

Z(M)
N ( f ) (x) = f (x), whereρ (x) is as in (51).

Proof.Use of Theorem2, similar to the proof of Theorem3.

We continue with

Remark.Here we deal with the Max-product truncated sampling operators (see [1], p. 13) defined by

W(M)
N ( f ) (x) =

∨N
k=0

sin(Nx−kπ)
Nx−kπ f

(

kπ
N

)

∨N
k=0

sin(Nx−kπ)
Nx−kπ

, (53)

and

K(M)
N ( f ) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(

kπ
N

)

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

, (54)

∀ x∈ [0,π ], f : [0,π ]→R+ a continuous function.

Following [1], p. 343, and making the conventionsin(0)
0 = 1 and denotingsN,k (x) =

sin(Nx−kπ)
Nx−kπ , we get thatsN,k

(

kπ
N

)

=

1, andsN,k

(

jπ
N

)

= 0, if k 6= j, furthermoreW(M)
N ( f )

(

jπ
N

)

= f
(

jπ
N

)

, for all j ∈ {0, ...,N} .
ClearlyW(M)

N ( f ) is a well-defined function for allx∈ [0,π ], and it is continuous on[0,π ], alsoW(M)
N (1) = 1.

By [1], p. 344,W(M)
N are positive sublinear operators.

Call I+N (x) =
{

k∈ {0,1, ...,N} ;sN,k (x)> 0
}

, and setxN,k := kπ
N , k∈ {0,1, ...,N}.

We see that

W(M)
N ( f ) (x) =

∨

k∈I+N (x) sN,k (x) f
(

xN,k
)

∨

k∈I+N (x) sN,k (x)
. (55)

By [1], p. 346, we have

W(M)
N (|·− x|) (x)≤ π

2N
, ∀ N ∈ N, ∀ x∈ [0,π ] . (56)

Notice also
∣

∣xN,k− x
∣

∣≤ π , ∀ x∈ [0,π ] .
Therefore (λ ≥ 1) it holds

W(M)
N

(

|·− x|λ
)

(x)≤ πλ−1π
2N

=
πλ

2N
, ∀ x∈ [0,π ] , ∀ N ∈N. (57)

We continue with

Theorem 7.Letν > 1, ν /∈N, p= [ν], x∈ [0,π ], f : [0,π ]→R+ and f∈Cν
x+ ([0,π ])∩Cν

x− ([0,π ]). Assume that f(k) (x) =
0, k= 1, ..., p−1, and

(

Dν
x+ f
)

(x) =
(

Dν
x− f
)

(x) = 0. Then

∣

∣

∣
W(M)

N ( f ) (x)− f (x)
∣

∣

∣
≤

ω1

(

Dν
x f ,
(

πν+1

2N

) 1
ν+1
)

Γ (ν +1)
·

[

πν

2N
+

1
(ν +1)

(

πν+1

2N

)

ν
ν+1
]

, ∀ N ∈N. (58)

We have that lim
N→+∞

W(M)
N ( f ) (x) = f (x).
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Proof.Applying (36) for W(M)
N and using (57), we get

∣

∣

∣W
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤ ω1 (Dν
x f ,δ )

Γ (ν +1)

[

πν

2N
+

πν+1

2N

(ν +1)δ

]

. (59)

Chooseδ =
(

πν+1

2N

) 1
ν+1

, thenδ ν+1 = πν+1

2N , andδ ν =
(

πν+1

2N

) ν
ν+1

. We use the last into (59) and we obtain (58).

We make

Remark.Here we continue with the Max-product truncated sampling operators (see [1], p. 13) defined by

K(M)
N ( f ) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(

kπ
N

)

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

, (60)

∀ x∈ [0,π ], f : [0,π ]→R+ a continuous function.

Following [1], p. 350, and making the conventionsin(0)
0 = 1 and denotingsN,k (x) =

sin2(Nx−kπ)
(Nx−kπ)2 , we get thatsN,k

(

kπ
N

)

=

1, andsN,k

(

jπ
N

)

= 0, if k 6= j, furthermoreK(M)
N ( f )

(

jπ
N

)

= f
(

jπ
N

)

, for all j ∈ {0, ...,N} .

SincesN, j

(

jπ
N

)

= 1 it follows that
∨N

k=0sN,k

(

jπ
N

)

≥ 1> 0, for all j ∈ {0,1, ...,N}. HenceK(M)
N ( f ) is well-defined

function for all x ∈ [0,π ], and it is continuous on[0,π ], alsoK(M)
N (1) = 1. By [1], p. 350,K(M)

N are positive sublinear
operators.

DenotexN,k := kπ
N , k∈ {0,1, ...,N}.

By [1], p. 352, we have

K(M)
N (|·− x|)(x)≤ π

2N
, ∀ N ∈ N, ∀ x∈ [0,π ] . (61)

Notice also
∣

∣xN,k− x
∣

∣≤ π , ∀ x∈ [0,π ] .
Therefore (λ ≥ 1) it holds

K(M)
N

(

|·− x|λ
)

(x)≤ πλ−1π
2N

=
πλ

2N
, ∀ x∈ [0,π ] , ∀ N ∈ N. (62)

We give

Theorem 8.All as in Theorem7. Then

∣

∣

∣K
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,
(

πν+1

2N

) 1
ν+1
)

Γ (ν +1)
·

[

πν

2N
+

1
(ν +1)

(

πν+1

2N

)

ν
ν+1
]

, ∀ N ∈N. (63)

We have that lim
N→+∞

K(M)
N ( f ) (x) = f (x).

Proof.As in Theorem7.

We make

Remark.We mention the interpolation Hermite-Fejer polynomials onChebyshev knots of the first kind (see [1], p. 4): Let

f : [−1,1]→R and based on the knotsxN,k = cos
(

(2(N−k)+1)
2(N+1) π

)

∈ (−1,1), k∈ {0, ...,N},−1< xN,0 < xN,1 < ... < xN,N <

1, which are the roots of the first kind Chebyshev polynomialTN+1 (x) = cos((N+1)arccosx), we define (see Fejér [8])

H2N+1 ( f ) (x) =
N

∑
k=0

hN,k (x) f
(

xN,k
)

, (64)
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where

hN,k (x) =
(

1− x ·xN,k
)

(

TN+1 (x)

(N+1)
(

x− xN,k
)

)2

, (65)

the fundamental interpolation polynomials.
The Max-product interpolation Hermite-Fejér operators on Chebyshev knots of the first kind (see p. 12 of [1]) are

defined by

H(M)
2N+1 ( f ) (x) =

∨N
k=0hN,k (x) f

(

xN,k
)

∨N
k=0hN,k (x)

, ∀ N ∈ N, (66)

where f : [−1,1]→ R+ is continuous.
Call

EN (x) := H(M)
2N+1 (|·− x|)(x) =

∨N
k=0hN,k (x)

∣

∣xN,k− x
∣

∣

∨N
k=0hN,k (x)

, x∈ [−1,1] . (67)

Then by [1], p. 287 we obtain that

EN (x)≤ 2π
N+1

, ∀ x∈ [−1,1] , N ∈N. (68)

Form> 1, we get

H(M)
2N+1 (|·− x|m) (x) =

∨N
k=0hN,k (x)

∣

∣xN,k− x
∣

∣

m

∨N
k=0hN,k (x)

=

∨N
k=0hN,k (x)

∣

∣xN,k− x
∣

∣

∣

∣xN,k− x
∣

∣

m−1

∨N
k=0hN,k (x)

≤ 2m−1
∨N

k=0 hN,k (x)
∣

∣xN,k− x
∣

∣

∨N
k=0hN,k (x)

(69)

≤ 2mπ
N+1

, ∀ x∈ [−1,1] , N ∈ N.

Hence it holds

H(M)
2N+1 (|·− x|m) (x)≤ 2mπ

N+1
, ∀ x∈ [−1,1] , m> 1,∀ N ∈ N. (70)

Furthermore we have
H(M)

2N+1 (1)(x) = 1, ∀ x∈ [−1,1] , (71)

andH(M)
2N+1 maps continuous functions to continuous functions over[−1,1] and for anyx∈ R we have

∨N
k=0hN,k (x)> 0.

We also havehN,k
(

xN,k
)

= 1, andhN,k (xN, j) = 0, if k 6= j, furthermore it holdsH(M)
2N+1 ( f ) (xN, j ) = f (xN, j ), for all

j ∈ {0, ...,N}, see [1], p. 282.

H(M)
2N+1 are positive sublinear operators, [1], p. 282.

We give

Theorem 9.Let ν > 1, ν /∈ N, p= [ν], x∈ [−1,1], f : [−1,1]→ R+ and f ∈ Cν
x+ ([−1,1])∩Cν

x− ([−1,1]). Assume that
f (k) (x) = 0, k= 1, ..., p−1, and

(

Dν
x+ f
)

(x) =
(

Dν
x− f
)

(x) = 0. Then

∣

∣

∣H
(M)
2N+1 ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,
(

2ν+1π
N+1

) 1
ν+1
)

Γ (ν +1)
· (72)

[

2νπ
N+1

+
1

(ν +1)

(

2ν+1π
N+1

)

ν
ν+1
]

, ∀ N ∈ N.

Furthermore it holds lim
N→+∞

H(M)
2N+1 ( f ) (x) = f (x) .

Proof.Use of Theorem2, (36) and (70). Chooseδ :=
(

2ν+1π
N+1

) 1
ν+1

, etc.

We continue with
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Remark.Here we deal with Lagrange interpolation polynomials on Chebyshev knots of second kind plus the endpoints±1
(see [1], p. 5). These polynomials are linear operators attached tof : [−1,1]→R and to the knotsxN,k = cos

((

N−k
N−1

)

π
)

∈
[−1,1], k= 1, ...,N, N∈N, which are the roots ofωN (x) = sin(N−1)t sint, x= cost. Notice thatxN,1 =−1 andxN,N = 1.
Their formula is given by ([1], p. 377)

LN ( f ) (x) =
N

∑
k=1

lN,k (x) f
(

xN,k
)

, (73)

where

lN,k (x) =
(−1)k−1 ωN (x)

(

1+ δk,1+ δk,N
)

(N−1)
(

x− xN,k
) , (74)

N ≥ 2, k = 1, ...,N, andωN (x) = ∏N
k=1

(

x− xN,k
)

andδi, j denotes the Kronecher’s symbol, that isδi, j = 1, if i = j, and
δi, j = 0, if i 6= j.

The Max-product Lagrange interpolation operators on Chebyshev knots of second kind, plus the endpoints±1, are
defined by ([1], p. 12)

L(M)
N ( f ) (x) =

∨N
k=1 lN,k (x) f

(

xN,k
)

∨N
k=1 lN,k (x)

, x∈ [−1,1] , (75)

where f : [−1,1]→ R+ continuous.

First we see thatL(M)
N ( f ) (x) is well defined and continuous for anyx ∈ [−1,1]. Following [1], p. 289, because

∑N
k=1 lN,k (x) = 1, ∀ x ∈ R, for any x there existsk ∈ {1, ...,N} : lN,k (x) > 0, hence

∨N
k=1 lN,k (x) > 0. We have that

lN,k
(

xN,k
)

= 1, and lN,k (xN, j ) = 0, if k 6= j. Furthermore it holdsL(M)
N ( f ) (xN, j ) = f (xN, j), all j ∈ {1, ...,N} , and

L(M)
N (1) = 1.

Call I+N (x) =
{

k∈ {1, ...,N} ; lN,k (x)> 0
}

, thenI+N (x) 6= /0.
So for f ∈C+ ([−1,1]) we get

L(M)
N ( f ) (x) =

∨

k∈I+N (x) lN,k (x) f
(

xN,k
)

∨

k∈I+N (x) lN,k (x)
≥ 0. (76)

Notice here that
∣

∣xN,k− x
∣

∣≤ 2,∀ x∈ [−1,1] .
By [1], p. 297, we get that

L(M)
N (|·− x|) (x) =

∨N
k=1 lN,k (x)

∣

∣xN,k− x
∣

∣

∨N
k=1 lN,k (x)

=

∨

k∈I+N (x) lN,k (x)
∣

∣xN,k− x
∣

∣

∨

k∈I+N (x) lN,k (x)
≤ π2

6(N−1)
, (77)

N ≥ 3,∀ x∈ (−1,1), N is odd.
We get that (m> 1)

L(M)
N (|·− x|m) (x) =

∨

k∈I+N (x) lN,k (x)
∣

∣xN,k− x
∣

∣

m

∨

k∈I+N (x) lN,k (x)
≤ 2m−1π2

6(N−1)
, (78)

N ≥ 3 odd,∀ x∈ (−1,1) .

L(M)
N are positive sublinear operators, [1], p. 290.

We give

Theorem 10.Same assumptions as in Theorem9. Then

∣

∣

∣L
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,
(

2ν π2

6(N−1)

) 1
ν+1
)

Γ (ν +1)
· (79)

[

2ν−1π2

6(N−1)
+

1
(ν +1)

(

2νπ2

6(N−1)

)

ν
ν+1
]

, ∀ N ∈ N : N ≥ 3, odd.

It holds lim
N→+∞

L(M)
N ( f ) (x) = f (x) .
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Proof.By Theorem2, chooseδ :=
(

2ν π2

6(N−1)

) 1
ν+1

, use of (36) and (78). At ±1 the left hand side of (79) is zero, thus (79) is

trivially true.

We make

Remark.Let f ∈C+ ([−1,1]), N ≥ 4, N ∈N, N even.
By [1], p. 298, we get

L(M)
N (|·− x|) (x)≤ 4π2

3(N−1)
=

22π2

3(N−1)
, ∀x∈ (−1,1) . (80)

Hence (m> 1)

L(M)
N (|·− x|m)(x)≤ 2m+1π2

3(N−1)
, ∀ x∈ (−1,1) . (81)

We present

Theorem 11.Same assumptions as in Theorem9. Then

∣

∣

∣L
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
ω1

(

Dν
x f ,
(

2ν+2π2

3(N−1)

) 1
ν+1
)

Γ (ν +1)
· (82)

[

2ν+1π2

3(N−1)
+

1
(ν +1)

(

2ν+2π2

3(N−1)

)

ν
ν+1
]

, ∀ N ∈ N, N ≥ 4, N is even.

It holds lim
N→+∞

L(M)
N ( f ) (x) = f (x) .

Proof.By Theorem2, use of (36) and (81). Chooseδ =
(

2ν+2π2

3(N−1)

) 1
ν+1

, etc.

We need

Definition 3.Let x,x0 ∈ R, x≥ x0, ν > 0, ν /∈ N, p= [ν], [·] is the integral part,α = ν − p.

Let f ∈Cp
b (R), i.e. f ∈Cp(R) with

∥

∥

∥ f (p)
∥

∥

∥

∞
<+∞, where‖·‖∞ is the supremum norm.

Clearly
(

Jx0
ν f
)

(x) can be defined via (8) over[x0,+∞).

We define the subspace Cν
x0+

(R) of Cp
b (R) :

Cν
x0+

(R) :=
{

f ∈Cp
b (R) : Jx0

1−α f (p) ∈C1 ([x0,+∞))
}

.

For f ∈Cν
x0+

(R), we define the left generalizedν-fractional derivative of f over[x0,+∞) as

Dν
x0+

f =
(

Jx0
1−α f (p)

)′
. (83)

Whenν > 1, clearly then the left generalized fractional Taylor formula ( f ∈Cν
x0+

(R)) (12) is valid.

We need

Definition 4.Let x,x0 ∈ R, x≤ x0, ν > 0, ν /∈ N, p= [ν], α = ν − p. Let f∈Cp
b (R). Clearly

(

Jν
x0− f

)

(x) can be defined
via (13) over(−∞,x0].

We define the subspace of Cν
x0− (R) of Cp

b (R) :

Cν
x0− (R) :=

{

f ∈Cp
b (R) :

(

J1−α
x0− f (p)

)

∈C1 ((−∞,x0])
}

.

For f ∈Cν
x0− (R), we define the right generalizedν-fractional derivative of f over(−∞,x0] as

Dν
x0− f = (−1)p−1

(

J1−α
x0− f (p)

)′
. (84)

Whenν > 1, clearly then the right generalized fractional Taylor formula ( f ∈Cν
x0− (R)) (19) is valid.
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We need

Definition 5.([9], p. 41) Let I⊂ R be an interval of finite or infinite length, and f: I → R a bounded or uniformly
continuous function. We define the first modulus of continuity

ω1 ( f ,δ )I = sup
x,y∈I

|x−y|≤δ

| f (x)− f (y)| , δ > 0. (85)

Clearly, it holdsω1 ( f ,δ )I <+∞.
We also have

ω1 ( f , rδ )I ≤ (r +1)ω1 ( f ,δ )I , any r≥ 0. (86)

convention Let a real numberm> 1, from now on we assume thatDm
x0− f is either bounded or uniformly continuous

function on(−∞,x0], similarly from now on we assume thatDm
x0+

f is either bounded or uniformly continuous function
on [x0,+∞).

We need

Definition 6.Let Dm
x0

f (real number m> 1) denote any of Dmx0− f , Dm
x0+

f andδ > 0. We set

ω1
(

Dm
x0

f ,δ
)

R
:= max

{

ω1
(

Dm
x0− f ,δ

)

(−∞,x0]
,ω1

(

Dm
x0+

f ,δ
)

[x0,+∞)

}

, (87)

where x0 ∈R. Notice thatω1
(

Dm
x0

f ,δ
)

R
<+∞.

We give

Theorem 12.Let m> 1, m /∈ N, p= [m], x0 ∈ R, and f∈Cm
x0+

(R)∩Cm
x0− (R). Assume that f(k) (x0) = 0, k= 1, ..., p−1,

and
(

Dm
x0+

f
)

(x0) =
(

Dm
x0− f

)

(x0) = 0. The convention3 is imposed. Then

| f (x)− f (x0)| ≤
ω1
(

Dm
x0

f ,δ
)

R

Γ (m+1)

[

|x− x0|m+
|x− x0|m+1

(m+1)δ

]

, δ > 0, (88)

for all x ∈R.

Proof.Similar to Theorem1.

Remark.Let b : R → R+ be a centered (it takes a global maximum at 0) bell-shaped function, with compact support
[−T,T], T > 0 (that isb(x)> 0 for all x∈ (−T,T)) andI =

∫ T
−T b(x)dx> 0.

The Cardaliaguet-Euvrard neural network operators are defined by (see [10])

CN,α ( f ) (x) =
N2

∑
k=−N2

f
(

k
n

)

IN1−α b

(

N1−α
(

x− k
N

))

, (89)

0< α < 1, N ∈ N and typically heref : R→ R is continuous and bounded or uniformly continuous onR.
CB(R) denotes the continuous and bounded function onR, and

CB+ (R) = { f : R→ [0,∞); f ∈CB(R)} .

The corresponding max-product Cardaliaguet-Euvrard neural network operators will be given by

C(M)
N,α ( f ) (x) =

∨N2

k=−N2 b
(

N1−α (x− k
N

))

f
(

k
N

)

∨N2

k=−N2 b
(

N1−α
(

x− k
N

))
, (90)

x∈R, typically heref ∈CB+ (R), see also [10].
Next we follow [10].
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For anyx∈ R, denoting

JT,N (x) =

{

k∈ Z; −N2 ≤ k≤ N2, N1−α
(

x− k
N

)

∈ (−T,T)

}

,

we can write

C(M)
N,α ( f ) (x) =

∨

k∈JT,N(x) b
(

N1−α (x− k
N

))

f
(

k
N

)

∨

k∈JT,N(x)b
(

N1−α
(

x− k
N

)) , (91)

x ∈ R, N > max
{

T + |x| ,T− 1
α
}

, whereJT,N (x) 6= /0. Indeed, we have
∨

k∈JT,N(x)b
(

N1−α (x− k
N

))

> 0, ∀ x ∈ R and

N > max
{

T + |x| ,T− 1
α

}

.

We have thatC(M)
N,α (1)(x) = 1,∀ x∈ R andN > max

{

T + |x| ,T− 1
α
}

.

See in [10] there: Lemma 2.1, Corollary 2.2 and Remarks.
We need

Theorem 13.([10]) Let b(x) be a centered bell-shaped function, continuous and with compact support[−T,T], T > 0,

0< α < 1 and C(M)
N,α be defined as in (90).

(i) If | f (x)| ≤ c for all x∈ R then
∣

∣

∣
C(M)

N,α ( f ) (x)
∣

∣

∣
≤ c, for all x∈ R and N> max

{

T + |x| ,T− 1
α

}

and C(M)
N,α ( f ) (x) is

continuous at any point x∈ R, for all N > max
{

T + |x| ,T− 1
α
}

;

(ii) If f ,g ∈ CB+ (R) satisfy f(x) ≤ g(x) for all x ∈ R, then C(M)
N,α ( f ) (x) ≤ C(M)

N,α (g)(x) for all x ∈ R and

N > max
{

T + |x| ,T− 1
α

}

;

(iii) C (M)
N,α ( f +g)(x)≤C(M)

N,α ( f ) (x)+C(M)
N,α (g)(x) for all f ,g∈CB+ (R), x∈ R and N> max

{

T + |x| ,T− 1
α
}

;

(iv) For all f ,g∈CB+ (R), x∈R and N> max
{

T + |x| ,T− 1
α
}

, we have

∣

∣

∣C
(M)
N,α ( f ) (x)−C(M)

N,α (g)(x)
∣

∣

∣≤C(M)
N,α (| f −g|)(x) ;

(v) C(M)
N,α is positive homogeneous, that is C(M)

N,α (λ f ) (x) = λC(M)
N,α ( f ) (x) for all λ ≥ 0, x∈R, N> max

{

T + |x| ,T− 1
α

}

and f ∈CB+ (R) .

We make

Remark.We have that

EN,α (x) :=C(M)
N,α (|·− x|)(x) =

∨

k∈JT,N(x)b
(

N1−α (x− k
N

))∣

∣x− k
N

∣

∣

∨

k∈JT,N(x)b
(

N1−α
(

x− k
N

)) , (92)

∀ x∈ R, andN > max
{

T + |x| ,T− 1
α

}

.

We mention from [10] the following:

Theorem 14.([10]) Let b(x) be a centered bell-shaped function, continuous and with compact support[−T,T], T > 0
and0< α < 1. In addition, suppose that the following requirements are fulfilled:

(i) There exist0< m1 ≤ M1 < ∞ such that m1 (T − x)≤ b(x)≤ M1 (T − x), ∀ x∈ [0,T] ;
(ii) There exist0< m2 ≤ M2 < ∞ such that m2 (x+T)≤ b(x)≤ M2 (x+T), ∀ x∈ [−T,0].

Then for all f∈CB+ (R), x∈R and for all N∈ N satisfying N> max

{

T + |x| ,
(

2
T

)
1
α

}

, we have the estimate

∣

∣

∣C
(M)
N,α ( f ) (x)− f (x)

∣

∣

∣≤ cω1
(

f ,Nα−1)

R
, (93)

where

c := 2

(

max

{

TM2

2m2
,
TM1

2m1

}

+1

)

,
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and
ω1 ( f ,δ )

R
:= sup

x,y∈R:
|x−y|≤δ

| f (x)− f (y)| . (94)

We make

Remark.In [10], was proved that

EN,α (x)≤ max

{

TM2

2m2
,
TM1

2m1

}

Nα−1, ∀ N > max

{

T + |x| ,
(

2
T

) 1
α
}

. (95)

That is

C(M)
N,α (|·− x|)(x)≤ max

{

TM2

2m2
,
TM1

2m1

}

Nα−1, ∀ N > max

{

T + |x| ,
(

2
T

) 1
α
}

. (96)

From (92) we have that
∣

∣x− k
N

∣

∣≤ T
N1−α .

Hence (m> 1) (∀ x∈ R andN > max

{

T + |x| ,
(

2
T

)
1
α

}

)

C(M)
N,α (|·− x|m) (x) =

∨

k∈JT,N(x) b
(

N1−α (x− k
N

))∣

∣x− k
N

∣

∣

m

∨

k∈JT,N(x) b
(

N1−α
(

x− k
N

)) ≤ (97)

(

T
N1−α

)m−1

max

{

TM2

2m2
,
TM1

2m1

}

Nα−1, ∀ N > max

{

T + |x| ,
(

2
T

) 1
α
}

.

Then (m> 1) it holds

C(M)
N,α (|·− x|m) (x)≤

Tm−1max

{

TM2

2m2
,
TM1

2m1

}

1

Nm(1−α)
, ∀ N > max

{

T + |x| ,
(

2
T

) 1
α
}

. (98)

Call

θ := max

{

TM2

2m2
,
TM1

2m1

}

> 0. (99)

Consequently (m> 1) we derive

C(M)
N,α (|·− x|m)(x)≤ θTm−1

Nm(1−α)
, ∀ N > max

{

T + |x| ,
(

2
T

) 1
α
}

. (100)

We need

Theorem 15.All here as in Theorem12, where x= x0 ∈ R is fixed. Let b be a centered bell-shaped function, continuous

and with compact support[−T,T], T > 0, 0< α < 1 and C(M)
N,α be defined as in (90). Then

∣

∣

∣C
(M)
N,α ( f ) (x)− f (x)

∣

∣

∣≤

ω1 (Dm
x f ,δ )

R

Γ (m+1)



C(M)
N,α (|·− x|m) (x)+

C(M)
N,α

(

|·− x|m+1
)

(x)

(m+1)δ



 , (101)

∀ N ∈N : N > max
{

T + |x| ,T− 1
α
}

.
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Proof.By Theorem12and (88) we get

| f (·)− f (x)| ≤ ω1 (Dm
x f ,δ )

R

Γ (m+1)

[

|·− x|m+
|·− x|m+1

(m+1)δ

]

, δ > 0, (102)

true overR.
As in Theorem13and using similar reasoning andC(M)

N,α (1) = 1, we get

∣

∣

∣C
(M)
N,α ( f ) (x)− f (x)

∣

∣

∣≤C(M)
N,α (| f (·)− f (x)|)(x)

(102)
≤

ω1 (Dm
x f ,δ )

R

Γ (m+1)



C(M)
N,α (|·− x|m) (x)+

C(M)
N,α

(

|·− x|m+1
)

(x)

(m+1)δ



 , (103)

∀ N ∈N : N > max
{

T + |x| ,T− 1
α

}

.

We continue with

Theorem 16.Here all as in Theorem12, where x= x0 ∈ R is fixed and m> 1. Also the same assumptions as in Theorem
14. Then

∣

∣

∣C
(M)
N,α ( f ) (x)− f (x)

∣

∣

∣≤ 1
Γ (m+1)

ω1

(

Dm
x f ,

(

θTm

N(m+1)(1−α)

) 1
m+1
)

R

·

[

θTm−1

Nm(1−α)
+

1
(m+1)

(

θTm

N(m+1)(1−α)

) m
m+1
]

, (104)

∀ N ∈N : N > max

{

T + |x| ,
(

2
T

)
1
α

}

.

We have that lim
N→+∞

C(M)
N,α ( f ) (x) = f (x) .

Proof.We apply Theorem15. In (101) we choose

δ :=

(

θTm

N(m+1)(1−α)

) 1
m+1

,

thusδ m+1 = θTm

N(m+1)(1−α) , and

δ m =

(

θTm

N(m+1)(1−α)

) m
m+1

. (105)

Therefore we have

∣

∣

∣C
(M)
N,α ( f ) (x)− f (x)

∣

∣

∣

(100)
≤ 1

Γ (m+1)
ω1

(

Dm
x f ,

(

θTm

N(m+1)(1−α)

) 1
m+1
)

R

· (106)

[

θTm−1

Nm(1−α)
+

1
(m+1)δ

θTm

N(m+1)(1−α)

]

=

1
Γ (m+1)

ω1

(

Dm
x f ,

(

θTm

N(m+1)(1−α)

) 1
m+1
)

R

[

θTm−1

Nm(1−α)
+

1
(m+1)δ

δ m+1
]

(105)
=

1
Γ (m+1)

ω1

(

Dm
x f ,

(

θTm

N(m+1)(1−α)

) 1
m+1
)

R

·

[

θTm−1

Nm(1−α)
+

1
(m+1)

(

θTm

N(m+1)(1−α)

) m
m+1
]

, (107)

∀ N ∈N : N > max

{

T + |x| ,
(

2
T

)
1
α

}

, proving the inequality (104).

c© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.4, No. 3, 161-177 (2018) /www.naturalspublishing.com/Journals.asp 177

We finish with (case ofα = 1.5)

Corollary 1.Let x∈ [0,1], f : [0,1]→ R+ and f ∈ C1.5
x+ ([0,1])∩C1.5

x− ([0,1]). Assume that f′ (x) = 0, and
(

D1.5
x+ f
)

(x) =
(

D1.5
x− f
)

(x) = 0. Then

∣

∣

∣B
(M)
N ( f ) (x)− f (x)

∣

∣

∣≤
4ω1

(

D1.5
x f ,

(

6√
N+1

) 2
5
)

3
√

π
[

6√
N+1

+
2
5

(

6√
N+1

) 3
5
]

, ∀ N ∈N. (108)

Proof.By Theorem3, apply (37).

Due to lack of space we do not give other example applications.

4 Conclusion

In this article we determined the rate of convergence of general sublinear positive operators to the unit in the presence
of Canavati fractional smoothness. We gave applications toa great variety of max-product operators. The results are
quantitative and the produced Jackson type inequalities involve the modulus of continuity of Canavati fractional order
derivative under initial conditions. Our approach in the applications results in a higher order of convergence.
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