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Abstract: This paper considers stochastic parameter panel data snetieh the errors are first-order serially correlated. Thsibde
generalized least squares (FGLS) and simple mean group Y@btnators for these models have been reviewed and exdaniihe
efficiency comparisons for these estimators have beeredamtien the regression parameters are stochastic, ndmastm; and mixed-
stochastic. Monte Carlo simulation study and a real daticgtipn are given to evaluate the performance of FGLS anéG®stimators.
The results indicate that, in small samples, SMG estimatarnare reliable in most situations than FGLS estimatorss@afly when
the model includes one or more non-stochastic parameter.

Keywords: Feasible generalized least squares estimator, First-sedi@al correlation, Mixed-stochastic parameter regoessodel,
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1 Introduction

In classical panel data models, there is an important assomig that the individuals in our database are drawn from a
population with a common regression parameter vector. herotvords, the parameters of a classical panel data model
must be non-stochastic. In particular, this assumptiorotssatisfied in most economic models, see, ely2][ In this
paper, panel data models are studied when this assumptielaxed. In this case, the model is called stochastic paeme
regression (SPR) model. This model has been examined by pwaseveral publications (Swamg,4,5]), and 6,7,
8,9,10,11,12]. Some statistical and econometric publications refehis model as Swamy’s model, see, e.g., A& [
Abonazel [14,15], and Elhorst 16].

Practically, the SPR models have been used in several fiedggcially in finance and economics, e.g., Feige and
Swamy [L7] used this model to estimate demand equations for liquidtaswhile Boness and Frankfurté&id applied it
to examine the concept of risk-classes in finance. Recafdgterlund and Narayad 9| used the stochastic parameter
approach to predict the stock returns at the New York StoahBRrge.

In classical SPR model, Swamg][assumed that the individuals of the dataset are drawn fragropaulation has a
common regression parameter, which is a constant compoaethitanother stochastic component, that will allow the
parameters to differ from unit to unit. This model has beevettged in many papers, e.g., Anh and Chelligf][
Murtazashvili and WooldridgeZ[l], and Hsiao and Pesara?2?.

The main objective of this paper is to provide the researaliter some guidelines on how to select the appropriate
estimator for panel data models, in the case of small samwlesn the errors are first-order serially correlated as well
as with stochastic or mixed-stochastic regression paensielfo achieve this objective, we will discuss and exantiee t
performance of different estimators in the case of smallgesn

The rest of the paper is organized as follows. Section 2 pesvigeneralized least squares (GLS) estimators for
stochastic parameter model with serially correlated srrior section 3, we present an appropriate estimator for drixe
stochastic parameter model. The feasible versions of GIGE @ estimators have been suggested in section 4. While in
section 5, simple mean group (SMG) estimator has been disduSection 6 contains the Monte Carlo simulation study.
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Areal data set has been used to examine the behavior of themts in section 7. Finally, section 8 offers the conahgdi
remarks.

2 Stochastic Parameter M odel

Let there be observations fdf cross-sectional units ovartime periods. Suppose the variagléor the ith unit at time
is specified as a linear function Kfstrictly independent variablegg, in the following form:

K
Vit = B + U =Xiefi+ue, i=1 .. Nit=1..T, 1)
=1

whereu; is the random error ternx;; is a 1x K vector of independent variables, afids theK x 1 vector of regression
parameters. If the performance of one individual from th&allase is of interest, separate equation regressions can be
estimated for each individual unit and then rewrite the nhadgl) as:

yi:XiBi+ui; i:]—a"'7N7 (2)

wherey; = (Yi1, .., Yir), Xi = (X1,..., Xt)', B = (B, ---,Bk)’, andu; = (uiz, ..., u)".In this paper, we assume that
the model in ) or (2) under the following assumptions:

Assumption 1: The errors have zero mean, i.E.(uj) =0; Vi= 1, ..., N.

Assumption 2: The independent variables are non-stochastic (in repea@ples), and then assume independent with
other variables in the model. And the valuerahk(X/X) =K; ¥ i=1, ..., N, whereK < T, N.

Assumption 3: The errors have a constant variance for each individuathayt are cross-sectional heteroscedasticity as
well as they are first-order serially correlate:= @uit—1 + & |@| < 1, whereq fori=1,...,N are first-order serial
correlation coefficients and are fixed. Whérést) =0, E (uiz—1&t) =0; Vi, j, andt. And

2 . . -
oy Jog ift=si=j .. e
E($|[8Js) — { OI OtherWISe |,J — :I.7 ey N,t,S— :I.7 ey T,

it is assumed that in the initial time period the errors hdneegsame properties as in subsequent periods. So, we assume
that:E (u) = 02/1— ¢ Vi.

Assumption 4: The vector of regression parameters is specifieqﬁias:EJr 6, whereﬁz (El, ...,BK)’ is a vector of
non-stochastic parameter aGd= (6, ..., G.K)/ is a vector of random variables with:

_Jyifi=j Cle—
E(G.BJ-/)_{ A B N T S
wherey* is aK diagonal matrix, also assume tliat6u;; ) = 0Viandj.

Using assumption 4, the model i)(can be rewritten asyY = XB_+ Z6 +u; whereY = (Y}, ..., \v)',
X = (X{,..., X)) su=(uy, ...,uy), 8=(6],...,8), for i = 1,...,N. Under assumptions 1 to 4, the best linear
unbiased estimator (BLUE) ¢ and the variance-covariance matrix of it are:

Bspr sc= (X'A"X) XA, var (Bspr sc) = (XA™2X) @3)
whereA* =V +Z(In® y*) Z', with
02Qu1 0 -+ 0
V = 0 0-822922 E ;
: . .0
0 - 0 dg2Qnn
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and

1 (N 1N N 18 2o 1y L
y = lN——l (iZ\Bi B —Ngiﬁi i;ﬁi )] —Ni;f’si(xigii X)

whereB* = (X/Q; 1) }/Q; 2y, with

@ " q

Qi :

1
_1—442 : : o
qufl qufz qufa 1

Remark 1: Non-stochastic parameter model with serial correlation

In non-stochastic parameter model, the errors are cras®sal heteroscedasticity as well as they are first-ordealky
correlated. However, the individuals are_drawn from a pafioih with a common regression parameter ve@or.e.,
B1=--- = Bn = B. Therefore the BLUE of8, under assumptions 1 to 3, is:

EPL&SC = (X/V_lx) - (X/V_lY) ;
this estimator has been termed pooled least squares wih samrelation (PLS-SC) estimator.

Remark 2: Standard stochastic parameter (Swamy’s) model

In standard stochastic parameter model that presented byn$\8], he assumed that the errors are cross-sectional
heteroscedasticity and they are serially independentty.fék the parameters, he assumed the same conditions in
assumption 4. Therefore, the BLUE Bf under Swamy’s3] assumptions, is:

ESPR: (X'A71X) Ay,

whereA = (Zy @ I1)+Z(In®y) Z, with Zy = diag{o?}; fori=1,...,N, 67 = var(u;), andyin this estimator is equal
vy underQ;i = It; fori=1,...,N:

v | (ser-t5aS )|~ |3 )
PR PROAC ) I [P '
The efficiency gains from the use of SPR-SC estimator wilbh@agned in the following lemma.

lemma 1.
If assumptions 1 to 4 are satisfied, atdV andA* are known, we get:

i. The PLS and SPR are unbiased estimators and have the ifojj@ariance-covariance matrices:

var Em&sc) —RA'F F = (XV X)XV L 4)

var (ESPR) —RAF Fo= (XATIX) XA (5)
ii. The efficiency gains from the use of SPR-SC estiméetrFy = (X’/\*—lx)_lx’/\*—l):
EGpLs sc=var (BPLS—SC) —var (BSPR—SC) = (FL—Fo) A*(FL—Fo)’,

EGspr= var (ESPR) —var (ESPR—SC) = (R-F)A* (R~ Fo)"

From Lemma 1, we can conclude that the SPR-SC estimator ig gficient than PLS-SC and SPR estimators
becausd= Gp s sc andEGspr matrices are positive semi-definite matrices. And theseieffty gains given in Lemma
1 are increasing whefg| and/or the variances values of the parameters are incged$iwever, these efficiency gains
may be not achieved in practice because the estimated smtrid and/A\* are not consistently positive definite matrices,
especially in small samples, as explained below in Remark 3.
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3 Mixed-Stochastic Parameter M odel

In this section, we will present the GLS estimator for the glodhen the parameters are mixed; some of them are
stochastic and the other is non-stochastic. In this casentked model can be written as:

Yi = X1 B1i + Xoi B2 + Ui = Giaj + Ui, (6)

wherey; anduy; are defined in2), G; = (Xyj, X)) whereXs; andXy areT x K3 andT x K, matrices of observations on
K1 andK; independent variables, respectively, and= (B;;, B3)’, wherepy; is aKy x 1 vector of parameters assumed
to be stochastic with megh and variance-covariance matnp, but 3, is aK; x 1 vector of parameters assumed to be
non-stochastic, whei€; + K, = K. _
The model in 6) applies to each dl cross-sections. Under suppose Bat= 31 + 61, theseN individual equations
can be combined as:
Y =Ga +T,

whereG = (G}, ..., G\), a = (B}, Bﬁ)/, andt = (17, ..., 7); T = X3i0p1 + Ui.
Under Swamy’s 3] assumptions, this model has been examined by SwaB)yahd Rosenberd?d]. However, in this
paper, we examine this model under our assumptions (1 thetgfore the variance-covariance matrixas:

E(T T/) =V +2Zg (|N®V31)Z£;l =,

whereZg = diag{Xy;}. The GLS estimator off is:
-1
. IR PR S XIM=1X, XM, X/n-ly
AMSPR-SC = (G/I'I G) GNy = <X2I'I‘1X1 le'l‘lxz le—l—lY )

whereXy = (X, ..., X{y) andXa = (X}q, ..., Xby)'-
It is worth noting that, the mixed model is a special case ef stochastic model when the variances of certain
parameters are assumed to be equal to zero.

4 FGL S Estimator s and Negative Variance Problem

Since SPR-SC, SPR, PLS-SC, and MSPR-SC estimators stillvimthe unknown parameters (variance-covariance
matrices), therefore it needs to estimate the elementseskttmatrices to make these estimators feasible. For SPR-SC
estimator, we suggest using the following consistent egting forg andagzi:

Stolili1. -, &&

62 = (7)

T 2 Y K’
t=2Ut 1 ' T-K

&:

whereu; = (Gig, ...,l:IiT)/ =Y —XiBAi; Bi = (X{Xi)*lx{yi, while & = (81,802, ..., éiT)/; &1 = Gipy/1— quz and&; = G —
@Gy 4 fort=2,..., T2

By replacing@ by @ in Q; matrix, we get consistent estimators®s, sayf)ii. And we will us;eﬁgzi andQ;i to get
consistent estimators & and y*, sayVand y*. By using consistent estimator@rfl(, Qi andy*), we have a consistent
estimator ofA*, sayA*. And then use\* to get a feasible estimator of SPR-SC. Summarily, usintat defined above
lead to get feasible PLS-SC estimator.

For SPR estimator, Swamy3 used the following unbiased and consistent estimatorofrr 62 = GG /T — K;

whereli is defined in 7). While for MSPR-SC estimator, we suggest use of the caersiststimator of1 (say 1) that
proposed by AbonazeRf| to get the feasible estimator for it.

Remark 3: Negative variance estimates problem

Just as in the error-components model, the estimate vafugsamdy are not necessarily non-negative definite. So, we
expect to get the negative values of the estimated variafceBRSC and SPR estimators. To avoid this problem, it can
use one of the following proposed estimatérs:

1 The estimator ofg in (7) is consistent, but it is not unbiased. See Srivastava ales (2] for other suitable consistent estimators
of it that are often used in practice.

2 These suggestions ware been proposed to correct the reegatiance estimation in stochastic parameter (Swamy'sjeiout
we generalized these suggestions for stochastic parametisl under assumption 3.
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i. The first proposed estimator (Swangj)3

= (SR -3 By B
R PRl PR
ii. The second proposed estimator (Havenner and Swagjy. [

if y*is positive definite
V) = y -+ (_}\min-f' v) Ik otherwise

whereAmin is the smallest eigenvalue gf andv > 0 is a small constant number.

Abonazel 4] and Mousa et al.12] showed that the first proposed estimator by Swagjyray be suitable in case of
moderate or large samplé€E > 20), but it is not suitable for small sampl€§ < 20). Therefore, in this paper, we select
the second proposed estimator as a corrected estimatgf. for

5 Mean Group Estimator

Abonazel [L5,25] proposed use the SMG estimator as an alternative estirfmatstochastic regression models, in general,
it is defined as:

- 1N
BSMG:Ni;Bi-

Note that this estimator is the simple average of ordinaagtlsquares estimatofg;). The SMG estimator is also
used by Pesaran and Smig#] for estimation of dynamic panel data (DPD) models with bstic parameters.

Itis easy to verify that SMG estimator is consistenfoivhen bothN, T — . Moreover, AbonazelZ5] showed the
statistical properties of SMG estimator that will be digd in the following lemma.

lemma 2.
If assumptions 1 to 4 are satisfied apolém T~ 1)(1 X, pI|mT 1)(1 Q 1x; are finite and positive definite for dllwe get:

T—o
i. The SMG is unbiased estimatorﬁfand the consistent estimator of the variance-covariantexed SMG is:

a N N -
7ar (Bawe) = 7+ 1 302 06%0) X84 (04%) ®

ii. The estimated asymptotic variance-covariance mamfé&SPR-SC, SPR, and SMG estimators are:

plimvar (Bspwsc) = pI|mvar (BSPR) = pI|mvar (BSMG) liyf

T—00

From lemma 2, we can conclude that the means and the_var@wvegiance matrices of the limiting distributions of
SPR-SC, SPR, and SMG estimators are the same and are eﬂlmhdq}—,y* respectively even if the errors are correlated
as in assumption 3. Therefore, it is not expected to incréfesasymptotic efficiency of SPR-SC about SPR and SMG.
But in small samples, the efficiency of these estimatorshélexamined by the following Monte Carlo simulation study.

8 Judge et al.77] and Abonazel 15] showed that the resulted estimator using this suggessicorisistent whell — co. Moreover,
this suggestion used by Stata software for the estimati@tozhastic parameter (Swamy’s) model, specificallytimhh andxtrchh2
Statas commands. See PDE].

4 For more information about the estimation methods for DPDlels see, e.g., Baltagd(], Hsiao [31], Abonazel B2], Youssef et
al. [33,34], and Youssef and Abonaze39).
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Fig. 1: Square root of AMSE for different estimators whidn= 10, g = 15, and the parameters distributed student-t.

Table 1: Simulation factors.

No. Factor Levels

1. Cross-sectional unitd\j N=5o0r10

2. Time periodsT) T=6,8,,20

3. Standard deviation of errorey) ge=1or15

4, First-order serial correlation coefficiem & ¢) @=.450r.95 .

5. Stochastic component of regression parameess(6o;, eli)’ I. Non-stochastic modeblg = 61j = 6 =0

II. Stochastic model6g = 61 = 0,

6 ~ N(0,30), 6 ~t(10), or 6 ~ U (—10,10)
I1l. Mixed-stochastic model:

type I: 6gi ~N(0,30), 6, =0

type II: 6pi =0, 61; ~ N(0,30)

6 Monte Carlo Simulation Study

In this section, we will make Monte Carlo simulation studet@mine the performance of pooled least squares (PLS-SC),
simple mean group (SMG), and stochastic parameter (SPR.SSRRnd MSPR-SC) estimators in small samples. The
programs to set up the Monte Carlo simulation study, writteR language, are available upon requebtonte Carlo
experiments were carried out based on the following datergging process:

Vit = Boi + BuiXait + U =X B+Xa B+ Uy, i=1, ... Njt=1.. T, 9

where = (1,x5it ), B= (Bo,Bl )/, andé = (6o, 64 )’. In this study, the values of the independent variaklg, in (9)
were generated as independent normally distributed ran@oiable with mean 1 and standard deviation 5. The values of
x1it were allowed to differ for each cross-sectional unit. Hogreence generated for &l cross-sectional units the values
were held fixed over all Monte Carlo experiments. For all expents, we rari. = 3000 replications and all the results of
all separate experiments are obtained by precisely the saries of random numbers. The paramet@gsandB;;, were
generated as in assumption@:= (B, B1i) = B + 6, where the vector o = (10, 10)’, and6 were generated from
three different distributions (normal, student-t, andfairm).

To compare small samples performance for the differentnastirs, the three different types of regression parameters
(non-stochastic, stochastic, and mixed-stochastic) heen designed. And the effective simulation factors and the
values, are summarized in Table 1.

5 For information about how to create Monte Carlo simulatitutis in econometric models using R, see Abonaagl [
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o
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Fig. 2: Square root of AMSE for different estimators whidn= 10, g = 15, and the parameters distributed uniform.
Table 2: The formulas of variances that used in the simulation study.
Model type Results Appropriate estimator ~ Other The fornufileariance
presentation  (theoretically) estimators
Stochastic Table 3 & SPR-SC Equatid@) (
Figures 1, 2 PLS-SC Equatiod)(
SPR Equationg)
SMG Equation §)
Non-stochastic ~ Table 4 PLS-SC (XV-1x) 7t
SPR (X'A=1X) TXA-WA-IX (XA-1X) !

SPR-SC  (X/A*1X) XA WAIX(X'A*1x)

Mo b 5 620¢%) KA (xx)

Mixed-stochastic ~Tables5,6  MSPR-SC (
PLS-SC (X ~1X) XV 1A V-1X(XV-1X)
SPR (XAX) " IXA-LA A-IX (XA~ 1X)
SPR-SC  (X'A*1X) " 'A* 17 A+ IX(XA*1x)
N _ N _
SMG ¥t 3 08 (X)X (%)

We calculate the average of mean square error (AMSE) for estiator to compare between these estim&tdirse
AMSE of any estimator is calculated By:

a

AMSE (e) = % Iiol\/w’arr (§k<e)) . M.var (Ek(e>) - % Iixﬁa\r(ﬁk(e))l,

where the subscrifindicates the estimator that it calculated, iees PLS— SC SPRSPR- SC MSPR- SC or SMG
The different formulas of variances of estimators that usexuir study are summarized in Table 2.

The simulation results are presented in Tables 3 to 6 andrésgl and 2. Specifically, Table 3 presents AMSE
values of PLS-SC, SPR, and SMG estimates when the all régngsarameters are stochastic. While the results in case

6 In our simulation study, the AMSE for the estimator has beseduas an efficiency criterion because the true parameters fo
intercept(foi) and slopgBy;) are equal in all experiments as above.

7 Since all estimators used in the simulation study are uebiathe values of variance and mean square error of an estiarat
equal.
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Table 3: AMSE values for different estimators of stochastic paranetodels.

T 6 8 10 12 14 16 18 20
Estimator Os=1& @=.45
PLS-SC 1161.7078 286.5830 1590.0133 286.7348 145.5133 .83®2 129.5876 78.8564
SPR 151.0063  108.6775 400.2833  226.5832 68.1937  96.4581.7538  50.0262
SPR-SC 151.0052 108.6768 400.2828  226.5829 68.1935  36.45P0.7556  50.0260
SMG 150.9839 108.6624 400.2723  226.5738 68.1847  96.4494 .74B®  50.0178
Oe=1& ¢=.95
PLS-SC 296.0779  601.3393 600.0485  415.5658 258.8698 28%.5 378.0578 376.2315
SPR 119.3964  278.9932 199.3290 2455471 75.8107  76.99216.53@B 236.9335
SPR-SC 119.3955  278.9920 199.3263  245.5431 75.8055 « 75.98886.5355 236.9297
SMG 119.3783  278.9643 199.2930  245.5100 75.7595  76.9442 6.41%7 236.8750

O =15& = .45
PLS-SC 1171.4790 294.2605 1596.4111 292.4377 149.9735.73®3p 133.3269 82.3236

SPR 162.2297 117.1815 407.5070 232.6752 72.8079 100.568164 7 53.7125
SPR-SC 161.7574 116.9123 407.3713 232.6022 72.7359 110.5D4.6061 53.6556
SMG 157.9103 114.0909 405.1224 230.5740 70.8367 98.6555 .78%2  51.8352

0 —=15&p= .95
PLS-SC  622.9230  879.2027 851.1865 648.8132 470.0074 G@L.1570.0349 560.8580

SPR 327.3646 478.9316 392.3680 434.3315 256.1690 251.0&%6.1431 399.1720
SPR-SC 327.1277 478.5953 391.6656 433.4229 254.8246 528D.0355.0235 398.1656
SMG 323.7681 472.6823 384.6074 426.1067 244.9034 240.56842.8339 386.1583

of the all regression parameters are non-stochastic asemied in Table 4. This table displays AMSE values of SPR,
SPR-SC, and SMG estimates. Finally, Tables 5 and 6 presei@RMalues of PLS-SC, SPR, SPR-SC, MSPR-SC, and
SMG estimates when the vector of regression parameterainsriioth stochastic and non-stochastic parameter (mixed-
stochastic parameter model). Specifically, Table 5 disptag results when the intercept parameter is stochastithend
slope parameter is non-stochastic, we refer to this modeligsd-stochastic type-I model. Table 6 displays the invers
case; when the intercept parameter is non-stochastic ansldpe parameter is stochastic, also we refer to this model
as mixed-stochastic type-1l mod&In Tables 3, 5, and 6, the all stochastic regression parasnetre generated from a
normal distribution. However, in Figures 1 and 2 the paramsavere generated from student-t with degree of freedom 10
and uniform from -10 to 10 distributions, respectively.

Table 3 indicates that AMSE values for SPR, SPR-SC and SM@eayeclosely in all simulation situations (for every
value of gz and @), this means that the efficiency of SPR and SMG is close toffi@emcy of SPR-SC estimator even
if o, = 15 andp = .95, then SPR and SMG are good alternatives estimators forSPR stochastic parameter models.
But PLS-SC is inefficient estimator (has highest AMSE) fas tmodel even ifo, = 1 andg = .45. While the results of
non-stochastic parameter models as in Table 4 indicateSt& estimator is more efficient (has less AMSE) than SPR
and SPR-SC estimators, and then it is a good alternativeasti for PLS-SC in non-stochastic parameter models.

Tables 5 and 6 indicate that PLS-SC is inefficient estimdias (highest AMSE) for these models (type-I and type-
II) for every value ofg; and ¢. Also, SPR and SPR-SC estimators are greater in AMSE than BiMi@st situations,
especially when the errors have large standard deviatipa-(15). Therefore, SMG estimator is more efficient than SPR
and SPR-SC estimators and it is a good alternative estifatMSPR-SC in mixed-stochastic parameter models.

Figures 1 and 2 confirm that PLS-SC is inefficient estimatas (ighest RAMSE) for the stochastic parameter models
in general, whether the parameters are distributed nornaedather distribution (student-t or uniform). While the R&SE
values of SPR and SPR-SC are very closely evanf .95, and SMG estimator has minimum AMSE. Therefore, we
can conclude that the relative efficiency of SMG estimatonéseasing when the regression parameters are distributed
non-normal distributions (such as student-t or uniform).

8 Note that the mixed-stochastic type-1 model is equivalerthe random-effects panel data model that well-known imeneetric
literature such as Baltagd] and Hsiao 81] and others.
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Table 4: AMSE values for different estimators of non-stochasticapaeter models.

T 6 8 10 12 14 16 18 20

Estimator oe=1& p=.45

PLS-SC 0.0226 0.0180 0.0149 0.0133 0.0117 0.0111 0.0103 10B.0

SPR 0.0281 0.0208 0.0168 0.0145 0.0126 0.0118 0.0109 0.0111

SPR-SC 0.0255 0.0194 0.0161 0.0138 0.0121  0.0114  0.0105 10D.0

SMG 0.0175 0.0116 0.0100 0.0071 0.0051 0.0044 0.0035  0.0035
Og=1& ¢=.95

PLS-SC 0.0193 0.0272 0.0303 0.0310 0.0422  0.0389  0.0490 470.0

SPR 0.0316 0.0389 0.0417 0.0412 0.0540 0.0497 0.0603  0.0588

SPR-SC 0.0304 0.0365 0.0385 0.0376 0.0489 0.0451  0.0546 53D.0

SMG 0.0209 0.0128 0.0092 0.0080 0.0077 0.0040 0.0016  0.0015
Os=15& = .45

PLS-SC 5.0817 4.0455 3.3524 2.9949 2.6331 24961  2.3092 692.3

SPR 6.3190 4.6805 3.7806 3.2538 2.8351 2.6624  2.4434  2.5097

SPR-SC 5.7319 4.3729 3.6192 3.1125 2.7275 2.5696 2.3641 152.4

SMG 3.9281 2.6162 2.2395 1.6071 1.1454  0.9796 0.7880  0.7910
O =15& p=.95

PLS-SC 43513 6.1296 6.8180 6.9697 9.4963  8.7486 11.0184580%

SPR 7.1163 8.7486 9.3926 9.2803 12.1286 11.1962 13.56782233.

SPR-SC 6.8458 8.2178 8.6557 8.4619 11.0079 10.1370 12.28849450

SMG 46985 2.8901 2.0727 1.7965 1.7241  0.9107 0.3582  0.3361

Table 5: AMSE values for different estimators of mixed-stochastacgmeter type-1 models.

T 6 8 10 12 14 16 18 20
Estimator Og=1& o= .45
PLS-SC 42.5935 16.7176 158.1552  20.7387 76.3997 27.7728 .557%  31.2017
SPR 28.1440 12.5011 126.8526 17.3081 65.4339  24.4185 9#2.8628.3037
SPR-SC 28.1430 12.5003 126.8521 17.3078 65.4337 24.4183.8692  28.3035
MSPR-SC  28.1380 12.4981 126.8499 17.3073 65.4332 24.418(®.8622 28.3032
SMG 28.1215 12.4860 126.8416  17.2987 65.4248 244098  P2.86 28.2952
Os=1& ¢=.95
PLS-SC 31.1223 113.7420 72.4561  36.4672 8.7816 2.0711 284.8 85.2755
SPR 19.2128  79.8667 54.3945  28.8520 7.2631 1.7506 62.02448.0288
SPR-SC 19.2120 79.8654  54.3918  28.8481 7.2579 1.7467 ®2.0273.0249
MSPR-SC  19.2064  79.8638 54.3902  28.8462 7.2555 1.7458 182.0 73.0247
SMG 19.1947 79.8377 54,3585  28.8149 7.2119 1.7030 61.964322.9703
O =15& = .45
PLS-SC 52.5343  24.5567 164.0455 26.2783 81.2154  31.8164 .122®  34.7906
SPR 40.0848  20.8322 133.3901 23.1781 72.3780  28.6569 425.7032.0908
SPR-SC 40.6557 20.5998 133.2785 23.1847 73.2956 28.6100.7498%  32.0390
MSPR-SC  38.0632 20.1050 132.8147 22.8804  70.3133 28.5346%.5422 31.9901
SMG 35.0916 17.8817 130.9597 21.0680 68.4397 26.7367  24.79 30.2067
O:=15& ¢=.95
PLS-SC 357.4704 387.1405 325.2358 269.4800 222.3834 2.1 260.1526 266.6328
SPR 226.3993 276.3997 249.1998 218.2033 188.8947 175.6289.0426 232.7010
SPR-SC 226.6159 276.1689 248.7864 217.3773 187.8297 T1M4.9228.1817 231.9148
MSPR-SC 2245230 275.5007 247.9577 216.4067 186.7705 41g¥. 227.8646 231.6045
SMG 222.1396 269.8575 241.0743 209.5643 177.2645 164.97545.6170 219.6503
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Table 6: AMSE values for different estimators of mixed-stochasticgmeter type-1l models.

T 6 8 10 12 14 16 18 20
Estimator oe=1& p=.45

PLS-SC 268.3050 55.3754  546.7841 33.2591 175.0454 54.85817008  54.8090
SPR 28.1098  12.4915  126.8922 17.2964  65.4255  24.4224 222.8728.2791

SPR-SC 28.1087 12.4908 126.8917 17.2969 65.4253 24422187222  28.2789
MSPR-SC  28.0953 12.4841 126.8877 17.2923 65.4234 24.427.87@8 28.2778
SMG 28.0874 12.4764 126.8812 17.2858 65.4165 24.4137 22.86 28.2707
Oc=1& @=.95
PLS-SC 76.8349 238.4523 216.9282 124.2924 45.3886 3.74168.0867 176.9515
SPR 18.3929 79.1032 53.5576 27.9590 6.5245 1.0289 61.453@.7310
SPR-SC 18.3920 79.1021 53.5550 27.9551 6.5192 1.0247 9BL.A4472.7272
MSPR-SC  18.3762 79.0894 53.5437 27.9463 6.5096 1.0168 4B1.4 72.7182
SMG 18.3750 79.0741 53.5217 27.9219 6.4734 0.9815 61.39362.67725
O =15& = .45
PLS-SC 287.3080 60.5266 550.0523 37.4486 177.6554 57.4812882 57.0881
SPR 37.7539 20.3777 131.3394  22.4409 68.5303 27.3492 (@5.5530.8830
SPR-SC 37.4135 20.9536 131.1374 22.3493 68.4455 27.2948471%  30.8116
MSPR-SC  35.2518 17.0909 130.6431 20.9898 68.1025 27.02@3424 30.6368
SMG 33.4848 15.3430 129.1714 19.5234 66.5490 25.4568 28.78 29.0194
O =15& ¢=.95
PLS-SC 80.8612 2445464 224.0472 131.3575 56.3350 12.6888.9614 188.0358
SPR 27.1524 88.9928 64.1088 38.3350 20.0432 12.6620 7.46@6.5948
SPR-SC 26.9147 89.0226 63.7921 37.3767 18.5995 11.65415334. 85.7907
MSPR-SC  23.2522 85.3927 60.6137 35.2174 16.4916 9.8758 7072. 83.4960
SMG 23.0028 81.9484 55.6523 29.7454 8.3503 1.9382 61.99733.2101

7 Real Data Application

In this section, PLS-SC, SPR, SPR-SC, and SMG estimatesamguted for Grunfeld37] investment data set. This data
is a classic data set that has been used for decades to dameldgmonstrate estimators for panel data motehe used
data of our application consists of time series of 10 yeablyenvations (1935-1944) on 5 large US manufacturing firms
for the following three variables: gross investméyt market value of the firm at the end of the previous yeay, and
value of the stock of plant and equipment at the end of theipuswear(X,).

First, the randomness of the parameters has been examingsihgySwamy’s §] test° The value of the test statistic
x(212> = 245.72 with p-value = 0.0001, so the appropriate modehisrdata is the stochastic parameter model. Estimation

results have been presented in Table 7. These resultstediea SMG estimator have smallest standard errors and high
t-values. Moreover, SMG estimator has the smallest valtiab goodness-of-fit measures as in Table 8.

8 Conclusion

In this paper, we examined FGLS (PLS-SC, SPR, SPR-SC, andRM&H) and SMG estimators of panel data models
when the errors are first-order serially correlated and ¢geassion parameters are stochastic, non-stochastigxedm
stochastic. Moreover, we carried out Monte Carlo simutastudy to investigate small samples performance for these
estimators. Simulation results indicate that SPR and SMi&ticient alternatives estimators for SPR-SC in stocbasti
parameter models. But in non-stochastic parameter matielSMG estimator is more efficient than SPR and SPR-SC
estimators and then it is an efficient alternative estimioPLS-SC, practically. While in mixed-stochastic paraene
models, the SMG estimator only is an efficient alternativierestor for MSPR-SC. Also, the results of real data appiarat
indicate that SMG estimator has the smallest values of altigess-of-fit measures. Consequently, we conclude that the
SMG estimator is more efficient than FGLS estimators of pda& models, especially in small samples and the model
includes one or more non-stochastic parameter.

9 This data set, even though dated, is of manageable size fassroom use and has been used by Zellner
[38] and Taylor B9]. For more details about this data set, see Kleiber and iZeilgtQ]. It available at
https://www.wiley.com/legacy/wileychi/baltagi/sugrtinfeld.fil

10 The null hypothesis of this tedtly : 8 = - -- = By = B. The power of this test examined by Abonaz28]|
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Table 7: Estimation results of different estimators for Grunfeldastment data set.
Estimator Variable Coefficient Standard Error t-value fuea

PLS-SC
intercept  6.4948 34.1773 0.1900 0.4251
X1 0.0629 0.0405 1.5511 0.0638
Xo 0.0096 0.2197 0.0439 0.4826
SPR
intercept  12.8415 20.4223 0.6288 0.2663
X1 0.0736 0.0308 2.3869 0.0105
X2 0.1237 0.1079 1.1463 0.1287
SPR-SC
intercept  11.1976 8.1809 1.3687 0.0888
X1 0.0721 0.0300 2.4020 0.0102
X2 0.0931 0.1045 0.8903 0.1889
SMG
intercept  10.2926 4.0986 2.5113 0.0078
X1 0.0772 0.0299 2.5871 0.0064
Xo 0.1291 0.1005 1.2841 0.1027
Table 8: Goodness-of-fit measures.
Measure PLS-SC SPR SPR-SC SMG
MAE: Mean absolute error 93.4543 81.8989 82.4011 80.2713
MSE: Mean square error 17195.4489 11636.9245 12357.534013019532
RMSE: Root of mean square error 135.2511 111.2638 114.6564 08.8181

AIC: Akaike’s information criterion 686.1274 666.6043 66084 664.3816
BIC: Bayesian information criterion 691.8635 672.3404 8485 670.1177
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