
Sohag J. Math. 7, No. 2, 33-36 (2020) 33

Sohag Journal of Mathematics
An International Journal

http://dx.doi.org/10.18576/sjm/070202

Note on Euler-Bernoulli Equation

Anvar Hasanov1 and Junesang Choi2,∗

1Institute of Mathematics, National University of Uzbekistan, Durmon yuli str. 29, Tashkent 100125, Uzbekistan
2Department of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea

Received: 14 Feb. 2018, Revised: 2 Nov. 2019, Accepted: 23 Dec. 2019

Published online: 1 May 2020

Abstract: The Euler-Bernoulli equation, which is a fourth-order partial differential equation, and its related ones have been investigated

in diverse ways. Here, by suitably choosing the transverse displacement function, the fourth-order partial differential equation reduces

to a fourth-order ordinary differential equation. Then we solve the fourth-order ordinary differential equation using the theory of

generalized hypergeometric functions.
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1 Introduction

Since Daniel Bernoulli and Leonard Euler developed the
theory of the Euler-Bernoulli beam problem, its related
ones have been investigated in diverse ways (see, e.g. [1],
[2], [3], [5], [6], [10], [11] and the references cited
therein). Here we consider a rectangular rod length l

(0 ≤ x ≤ l), height h and width b. Let u(t,x) be the
transverse displacement at time t and position x from one
end of the rod (or beam) taken as the origin. Then the
u(t,x) satisfies the following fourth-order partial
differential equation (see, e.g., [11, p. 333])

12S ρ utt +E bh3 uxxxx = 0, (1)

where ρ is rod density, S is cross sectional area, E is
modulus of elasticity of the rod material. Letting

12S ρ = xη (η = constant) and E bh3 = a2 = constant,
(2)

equation (1) takes in the following form

xη utt + a2 uxxxx = 0
(

x ∈ R
+; η ∈ R

+
0

)

. (3)

Here and in the following, let C, R+, and Z
−
0 be the sets of

complex numbers, positive real numbers, and non-positive
integers, respectively, and let R+

0 := R+∪{0}.
In this paper, by choosing u(t,x) in (3) as in (16), the

fourth-order partial differential equation (3) reduces to a
fourth-order ordinary differential equation. Then we
present a general solution of the equation (16) using the
theory of generalized hypergeometric functions.

2 Generalized hypergeometric function

and its associated differential equation

Consider the following generalized hypergeometric
function (see, e.g. [9, Section 1.5])

2F3 (a1, a2 ; c1, c2, c3 ; x) =
∞

∑
m=0

(a1)m (a2)m

(c1)m (c2)m (c3)m m!
xm

(4)
(

c j ∈ C\Z−
0 ( j = 1, 2, 3)

)

,

where (λ )m is the Pochhammer symbol (see, e.g. [9,
Section 1.1]). The function (4) satisfies the following
fourth order ordinary differential equation (see, e.g. [7,
pp. 74-80])

x3 d4u

dx4
+(c1 + c2 + c3 + 3) x2 d3u

dx3

+(c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1− x) x
d2u

dx2

+[c1 c2 c3 − (a1 + a2 + 1)x]
du

dx
− a1 a2 u = 0.

(5)
Let u(x) be a solution of (5). We find the other linearly
independent solutions of (5) in a neighborhood of x = 0.
To do this, let

u(x) := xγ w(x) (γ is a constant). (6)
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Applying (6) to equation (5), we get

x3 d4w

dx4
+(4γ + c1 + c2 + c3 + 3) x2 d3w

dx3

+
[

6γ(γ − 1)+ 3γ(c1+ c2 + c3 + 3)

+ (c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1− x)
]

x
d2w

dx2

+
[

4γ(γ − 1)(γ − 2)+ 3γ(γ − 1)(c1 + c2 + c3 + 3)

+ 2γ(c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1− x)

+ c1c2c3 − (a1 + a2 + 1)x
]dw

dx

+
[

γ
{

(γ − 1)(γ − 2)(γ − 3)

+ (γ − 1)(γ − 2)(c1 + c2 + c3 + 3)

+ (γ − 1)(c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1)

+ c1c2c3

}

x−1

− γ(γ − 1)− γ(a1+ a2 + 1)− a1a2

]

w = 0.

(7)

Using the following factorization in (7)

(γ − 1)(γ − 2)(γ − 3)+ (γ − 1)(γ − 2)(c1 + c2 + c3 + 3)

+ (γ − 1)(c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1)+ c1c2c3

= (γ + c1 − 1)(γ + c2 − 1)(γ + c3 − 1),
(8)

we obtain

x3 d4w

dx4
+(4γ + c1 + c2 + c3 + 3) x2 d3w

dx3

+
[

6γ(γ − 1)+ 3γ(c1+ c2 + c3 + 3)

+ (c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1− x)
]

x
d2w

dx2

+
[

4γ(γ − 1)(γ − 2)+ 3γ(γ − 1)(c1 + c2 + c3 + 3)

+ 2γ(c1c2 + c2c3 + c3c1 + c1 + c2 + c3 + 1− x)

+ c1c2c3 − (a1 + a2 + 1)x
]dw

dx

+
[

γ(γ + c1 − 1)(γ + c2 − 1)(γ + c3 − 1)x−1

− (γ + a1)(γ + a2)
]

w = 0.

(9)

To vanish the term x−1 (see, e.g. [8, Section 18.2]), we
should have

γ(γ + c1 − 1)(γ + c2 − 1)(γ + c3 − 1) = 0, (10)

which gives the following four solutions

γ = 0, γ = 1− c1, γ = 1− c2, γ = 1− c3. (11)

Applying each of the four solutions in (11) to (9), we
obtain the following four linearly independent solutions
of (5)

u1 = 2F3 (a1, a2 ; c1, c2, c3 ; x) , (12)

u2 =x1−c1
2F3

(

1− c1+ a1, 1− c1 + a2 ;

2− c1, 1+ c2− c1, 1+ c3− c1 ; x
)

,

(13)

u3 =x1−c2
2F3

(

1− c2+ a1, 1− c2 + a2 ;

2− c2, 1+ c1− c2, 1+ c3− c2 ; x
) (14)

and
u4 =x1−c3

2F3

(

1− c3+ a1, 1− c3+ a2 ;

2− c3, 1+ c1− c3, 1+ c2− c3 ; x
)

.

(15)

3 A solution of Euler-Bernoulli equation (3)

In (3), letting

u =p(t;a)ω(σ), where p(t;a) :=
(

−a2 t2
)−1

and σ :=−
4

a2 t2 (η + 4)4
xη+4

,

(16)

where x ∈ R+, η ∈ R
+
0 , and a2 is the same as in (2), we

find the fourth-order partial differential equation (3)
which reduces to a fourth-order ordinary differential
equation (25) or (26). Then we solve the fourth-order
ordinary differential equation (26) using the differential
equation satisfied by 2F3 in Section 2.

Theorem 1. The four linearly independent solutions of

the Euler-Bernoulli equation in the form (26) are given as

follows:

u1 = p(t;a)2F3

(

1,
3

2
;

α + 3

4
,

α + 1

2
,

3α + 1

4
; σ

)

,

(17)

u2 = p(t;a)σ
1−α

4 1F2

(

7−α

4
;

α + 3

4
,

α + 1

2
; σ

)

, (18)

u3 = p(t;a)σ
1−α

2 1F2

(

4−α

2
;

5−α

4
,

α + 3

4
; σ

)

, (19)

and

u4 = p(t;a)σ
3
4 (1−α)

1F2

(

9− 3α

4
;

3−α

2
,

5−α

4
; σ

)

,

(20)
where α := η

η+4
.

Proof. For simplicity, let p := p(t;a). We find

utt = ptt ω + 2 pt ωσ σt + pωσσ σ2
t + pωσ σtt (21)

and

uxxxx =pxxxx ω + 6 pxx ωσ σxx + 4 pxxx ωσ σx + 6 pxx ωσσ σ2
x

+ 4 px ωσσσ σ3
x + 12 px ωσσ σx σxx + 4 px ωσ σxxx

+ pωσσσσ σ4
x + 6 pωσσσ σ2

x σxx

+ 3 pωσσ σ2
xx + 4 pωσσ σx σxxx + pωσ σxxx.

(22)
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Substituting (21) and (22) into (3), we obtain

a2 pσ4
x ωσσσσ +

(

4a2 px σ3
x + 6a2 pσ2

x σxx

)

ωσσσ

+
(

6a2 pxx σ2
x + 12a2 px σx σxx + 3a2 pσ2

xx + xη pσ2
t

+ 4a2 pσx σxxx

)

ωσσ

+
(

2xη pt σt + xη pσtt + 6a2 pxx σxx + 4a2 pxxx σx

+ 4a2 px σxxx + a2 pσxxx

)

ωσ +
(

a2 pxxx + xη ptt

)

ω = 0.
(23)

Considering px = 0 in (23), we get

a2 pσ4
x ωσσσσ + 6a2 pσ2

x σxx ωσσσ

+ p
(

3a2 σ2
xx + xη σ2

t + 4a2 σx σxxx

)

ωσσ

+
(

2xη pt σt + xη pσtt + a2 pσxxxx

)

ωσ + xη ptt ω = 0.
(24)

Using

σx =−
4

a2 t2 (η + 4)3
xη+3

, . . . , ptt =−6a2 p2

in (24), we have

σ3 ωσσσσ + 6
η + 3

η + 4
σ2 ωσσσ

+

(

η + 3

η + 4
·

7η + 17

η + 4
−σ

)

σ ωσσ

+

(

η + 3

η + 4
·

η + 2

η + 4
·

η + 1

η + 4
−

7

2
σ

)

ωσ −
3

2
ω = 0.

(25)
Setting α := η

η+4
in (25), we obtain

σ3 ωσσσσ +

(

α + 3

4
+

α + 1

2
+

3α + 1

4
+ 3

)

σ2 ωσσσ

+
(α + 3

4
·

α + 1

2
+

α + 1

2
·

3α + 1

4
+

3α + 1

4
·

α + 3

4

+
α + 3

4
+

α + 1

2
+

3α + 1

4
+ 1−σ

)

σ ωσσ

+
[α + 3

4
·

α + 1

2
·

3α + 1

4
−
(

1+
3

2
+ 1

)

σ
]

ωσ −
3

2
ω = 0.

(26)
Comparing (9) (γ = 0) with (26) and setting

a1 = 1, a2 =
3

2
, c1 =

α +3

4
, c2 =

α +1

2
, c3 =

3α +1

4
, x = σ

in (12), we obtain the following four linearly independent
solutions of (26):

ω1 = 2F3

(

1,
3

2
;

α + 3

4
,

α + 1

2
,

3α + 1

4
; σ

)

, (27)

ω2 = σ
1−α

4 1F2

(

7−α

4
;

α + 3

4
,

α + 1

2
; σ

)

, (28)

ω3 = σ
1−α

2 1F2

(

4−α

2
;

5−α

4
,

α + 3

4
; σ

)

, (29)

and

ω4 = σ
3
4 (1−α)

1F2

(

9− 3α

4
;

3−α

2
,

5−α

4
; σ

)

. (30)

Considering (16), we obtain the desired solutions.

4 Conclusion remark

In this paper, by suitably choosing the transverse
displacement function, the Euler-Bernoulli equation; a
partial differential equation, reduces to a fourth-order
ordinary differential equation, which is shown to be
solved using the theory of generalized hypergeometric
functions. Certain similar partial differential equations are
believed to be solved by applying the method used here.
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