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Abstract: The present article intends to develop efficient estimationstrategy to reduce the negative impact of random non - response
at both occasions in two occasion successive sampling. Utilizing the information on an auxiliary variable effective imputation strategy
was developed to cope with the non -response situation. Estimators for the current occasion are also derived as a particular case
when there is non-response either on the first occasion or on the second occasion. To study the efficacy of the suggested imputation
method, performances of the proposed estimators are performed in two different situations: with and without non-response. The pre-
eminence of the suggested estimator has been established through empirical studies carried over some natural population dataset and
artificially generated population dataset, which presentsthe soundness and usefulness of the suggested estimator in practice. Suitable
recommendations to the survey statistician are also made.

Keywords: Product estimation, ratio estimation, successive sampling, study variable, auxiliary variable, bias, mean square error,
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1 Introduction

A variety of practical problems can fall in the arena of applied and environmental sciences where various characters opt
to change with respect to different parameters; such changes are inherent behavior of the nature. Some type of changes
directly or indirectly affects the quality of living and surrounding of the human beings. This requires the continuous
monitoring of the real life situation in hand. The theory andpractice of surveying the same population at different points of
time technically called repetitive sampling or sampling over successive occasions or rotation sampling and have been given
considerable attention by the survey statisticians. Successive (rotation) sampling provides a strong tool for generating the
reliable estimates at different occasions. For example, monthly data on the prices of goods are collected to determine
the consumer price index, political opinion surveys are conducted at regular intervals to know the voters preference, etc.
Theory of successive sampling appears to have started with the work of [6]. He pioneered using the entire information
collected in the previous investigations (occasions). Further the theory of successive sampling was extended by [10,11,4,
3,2] and many others.
It is worth to be mentioned that most of the recent works of successive sampling are based on the problem of estimation
of population mean. However, in many practical situations an estimate of the population ratio or product of two characters
for the most recent occasion may be of considerable interest, such as, the ratio of corn acres to wheat acres, the ratio
of expenditure on labour to total expenditure, the product of cultivated area and yield rate, product of mortality rate and
area of a locality. For instance, if data on yield of corn and wheat from certain agricultural plot is available for previous
few seasons then one may estimate their ratio for the currentseason and may decide accordingly to cultivate suitable
crops for more income and if the data on income and expenditure are available for previous few financial years, then
one may estimate their yearly ratio and plan for suitable investment for the current year. Similarly, if data on the product
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of concentration and volume of a liquid are available from previous few experiments, then one may easily study the
characteristic and session wise variations of the liquid. The work of [14] and [15] are the few directions available in this
context. However, it may be noted that the above estimation strategies are based on single phase sampling ignoring the
changes of pattern over successive occasions as well as based on the assumptions that complete response available from
the units selected for the sample and if non - response occursin the sampled units then the observations are taken only
from the responding units of corresponding sample ignoringcompletely the non-responding ones. Thus, no mechanisms
are developed there to reduce the negative impact of non-response in such realistic situations. Non - response is an
unavoidable phenomenon in nature and estimates based on only the responding units may lead to biased estimate. For
example, the estimate based on the voters responding for exit polls may lead to biased estimates as non - responding ones
may indicate their trend to some different political party about which they do not want to reveal in public for security
reasons. It may be found that in some practical situations, data cannot always be collected from all the units selected in
the sample. As many respondents do not reply, available sample returns is incomplete. The resulting incompleteness is
called non-response. Repeated surveys are more prone to this problem than single occasion surveys. For examples, in
case of milk yield surveys the animal may be sold or may die during the survey period; in agricultural surveys, the yield
of some pickings may be damaged or lost or the enumerators mayfail to record them. [12] advocated three concepts:
missing at random (MAR), observed at random (OAR) and parameter distribution (PD). Rubin Defined: ”The data are
MAR if the probability of the observed missingness pattern,given the observed and unobserved data, does not depend
on the value of the unobserved data”. [5] have distinguished the meaning of missing at random (MAR) and missing
completely at random (MCAR) in a very nice way. Statisticians have long known that failure to account for the stochastic
nature of incompleteness can damage the actual conclusion.Therefore, we need to discover suitable mechanism to reduce
the negative impact of non-response in sample survey. Many methods are used to deal with non-response in sample
surveys. Imputation, the practice of ”filling up” missing data with plausible values, is one of them. It is typically used
when needed to substitute missing item value with certain fabricated values in the sample surveys. To deal with missing
values effectively, [13] and [7] suggested imputation methods that make incomplete datasets structurally complete and its
analysis simple. Imputation may also be carried out with theaid of an auxiliary variate, if such is available. For example,
([8,9]) used the information on an available auxiliary variate for imputation purpose. Later, [19,1,16] and [17] suggested
several new imputation methods using auxiliary information.
Motivated by the arguments and discussions, the objective of our present work is to reduce the negative impact of non-
response while estimating the ratio and product of two population character at current occasion in two-occasion successive
sampling. Following the MAR response mechanism, one efficient imputation strategy has been suggested to cope with
the problem of non-response situation. Estimators for the current occasion are derived when non-response occurs on
both the occasion or on the either of the occasion. The performances of our proposed estimators have been demonstrated
empirically and suitable recommendations are made.

2 Notations and Sample Structures on Two Occasions

Consider a finite populationU = (U1,U2,U3, ....,UN) of N units and y and x are the variables under study with population
meanY andX and z is the auxiliary variable which is stable over both the occasions with population meanZ. Let yk, xk
andzk be the values of y, x and z respectively for thekth(k = 1,2, ...,N) unit in the population. We wish to estimate the
parameterR(α) =

Y
Xα on the current (second) where,α is a scalar which takes values 1 and -1.

It is to be noted that:
i. For α = 1, R(α) → R(1) =

Y
X

(Ratio of two population means)
ii. For α =−1, R(α) → R(−1) =YX (Product of two population means)
We assume that there is random non-response at both the occasions. A simple random sample (without replacement)Sn
of n units is drawn on the first occasion. Let the number of non-responding units out of n units, which are drawn on the
first occasion, be denoted byr1, the set of non-responding units inSn by Ar1 and that of the responding units byArc

1. A
random sub-sampleSm of m= nλ units is retained (matched) for its use on the current (second) occasion from the units
which responded on the first occasion and it is assumed these matched units are completely responding at the current
(second) occasion as well. A fresh simple random sample (without replacement)Su of u= (n−m) = nµ units is drawn on
the second occasion from the entire population so that the sample size on the second (current) occasion is also n. Let the
number of non-responding units out of u units, which are drawn afresh on the current occasion, be denoted byr2, the set
of non-responding units inSu by Ar2 and that of responding units byArc

2. Hereλ andµ (λ + µ = 1) are the fractions of
the matched and fresh sample, respectively, at the current occasion. For every unit belonging to the responding unit sets,
the values on the study variables are observed, however, if they are belonging to the non-responding unit sets, the values
on the study variables are assumed to be missing and therefore, the imputed values are derived for such units which are

c© 2018 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.7, No. 2, 363-378 (2018) /www.naturalspublishing.com/Journals.asp 365

based on the responding units of the sample. We have considered that the occurrences of random non-response situation
follow the discrete probability distribution as presentedbelow.

2.1 Non-Response Probability Model

Suppose random non-response situations occur at the first occasion on the sampleSn of size n. Thenr1[r1 = 0,1, ....,(n−
2)] is the number of sampling units on which information could not be collected due to random non-response and the
observations of the respective variables on which random non-response occur can be taken from the remaining(n− r1)
units ofSn. Similarly r2[r2 = 0,1, ....,(u−2)] is the number of sampling units on which information could not be collected
due to non-response on the sampleSu of u units, drawn afresh on the second (current) occasion. Ifp1 and p2 be the
probabilities of a non-response on first and second (current) occasion respectively, thenr1 andr2 has the following discrete
distribution:

P(r1) =
n− r1

nq1+2p1

(

n−2
r1

)

pr1
1 qn−2−r1

1 ; r1 = 0,1, ....,(n−2) (1)

P(r2) =
u− r2

uq2+2p2

(

u−2
r2

)

pr2
2 qu−2−r2

2 ; r2 = 0,1, ....,(u−2) (2)

whereqi = 1− pi(i = 1,2) and
(n−2

r1

)

,
(u−2

r2

)

denote the total number of ways of obtainingr1 andr2 non-responses out of
(n-2) and (u-2) total possible non-responses, respectively, for instance, see [20].

The following notations are used hereafter:
Yh, Xh: Population means of the study variables y and x on thehth(h = 1, 2) occasion respectively.
Z: Population mean of the auxiliary variable z, stable over both the occasions.

Rh(α)=
Y2

X2
α ; (α = 1,−1):Population parameter under study on thehth (h = 1, 2) occasion.

yn, xn: Sample means of the variables y and x based on the sampleSn of size n on 1st occasion.
y(n−r1)

, x(n−r1): Sample means of the variables y and x based on the sampleArc
1 of responding units from sampleSn on

1st occasion.
yu, xu: Sample means of the variables y and x based on the sampleSu of size u drawn afresh on the 2nd occasion.
y(u−r2)

, x(u−r2): Sample means of the variables y and x based on the sampleArc
2 of responding units from sampleSu on

2nd occasion.
yhm, xhm: Sample means of the variables y and x based on the sampleSm of size m onhth (h = 1, 2) occasion.
zn, zm, zu: Sample mean of the auxiliary variable z based on sample sizes shown in suffices.
zr1, zr2: Sample mean of z based on the samplesAr1 andAr2 respectively.
Cy1, Cy2, Cx1, Cx2, Cz: Coefficients of variation of the respective variables shown in the suffices.
ρy1x1, ρy2x2, ρy2z, ρx2z: Correlation coefficients between the variables shown in the subscripts.

Rn(α) =
yn

xn
α ; R(n−r1)(α) =

y(n−r1)

x(n−r1)
α ; Ru(α) =

yu
xu

α ; R(u−r2)(α) =
y(u−r2)

x(u−r2)
α ; Rhm(α) =

yhm
xhm

α , (h = 1, 2)

fm = 1
m, fu = 1

u, fn = 1
n, f ∗ = 1

uq2+2p2
, f ∗∗ = 1

nq1+2p1
, fm− fn = f1, f ∗∗− fm = f2.

3 Formulation of Estimation Strategy

To estimate the population parameterR2(α) on the second (current) occasion, two different estimatorsare considered. One
estimatorTu is based on the sampleSu of sizeu(= nµ) drawn afresh on the second occasion and the second estimatorTm
is based on the sampleSm of sizem(= nλ ) common to both the occasions. EstimatorsTu andTm are structured to cope
with the problem of non-response which occurs on both the occasions.
Since, the information on the auxiliary variable z is readily available for the sampleSu, therefore, we propose the following
imputation method based on responding and non-responding units of the sampleSu to estimate the population parameter
under studyR2(α) as:

Ru(α).i =







R(u−r2)(α)exp(Z−zu
Z+zu

) i f i ∈ Arc
2

R(u−r2)(α)
Z−zi
Z−zr2

exp(Z−zu
Z+zu

) i f i ∈ Ar2
(3)
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Under the above imputation method, the estimatorTu for estimatingR2(α) can be derived as
Tu =

1
u ∑i∈Su Ru(α).i

=1
u[∑i∈Ar2 Ru(α).i +∑i∈Arc2

Ru(α).i ]

∴ Tu = R(u−r2)(α)exp(
Z− zu

Z+ zu
) (4)

The estimatorTm is based on the sampleSm, which utilize the information on an auxiliary variable z aswell as
information on the first occasion. Since there is non-response on the first occasion as well, therefore, we replace the
missing values on the first occasion by the derived imputed values and the estimator based on responding and non-
responding units of the sampleSm to estimateR1(α) is proposed as:

Rn(α).i =







R(n−r1)(α)exp(Z−zn
Z+zn

) i f i ∈ Arc
1

R(n−r1)(α)
Z−zi
Z−zr1

exp(Z−zn
Z+zn

) i f i ∈ Ar1
(5)

Therefore, following the imputation method, the estimatorof R1(α) based on the sample of size n is derived as
R∗

n(α) =
1
n ∑i∈Sn Rn(α).i

=1
n[∑i∈Ar1 Rn(α).i +∑i∈Arc1

Rn(α).i ]

∴ R∗
n(α) = R(n−r1)(α)exp(

Z− zn

Z+ zn
) (6)

In follow up the above discussion, we suggest the following ratio type estimator for the parameter under studyR2(α)
on the second (current) occasion based on the sampleSm of size m as

Tm = R2m(α)

R∗
n(α)

R∗
1m(α)

(7)

where,R∗
1m(α) = R1m(α)exp(Z−zm

Z+zm
)

Considering the convex linear combination of the estimatorsTu andTm, we have a class of estimators ofR2(α) as

T = φTu+(1−φ)Tm (8)

whereφ is an unknown constant to be determined to achieve the minimum mean square error of the class of estimators T.
Considering the occurrence of non-response either on the first occasion or on the second occasion, we have derived
estimators ofR2(α) on the current (second) occasion as special cases, which arediscussed below:

3.1 Special Cases

3.1.1 Case I: Non-response occurs only on the First Occasion

In this case non-response occurs only on the first occasion while we have complete response in the fresh sample of size
u and as per our assumption; we also have complete response inthe matched sample of size m retained from the sample
of size n drawn on the first occasion. Therefore, we considerr2 = 0 and suggest the estimator ofR2(α) based on the fresh
sample of size u drawn on current occasion as

T
′

u = Ru(α)exp(
Z− zu

Z+ zu
) (9)

Consequently the final estimators ofR2(α) based on the matched portion of sample of size m and the fresh sample of
size u on the second (current) occasion are constructed as

T
′
= φ

′
T

′

u +(1−φ
′
)Tm (10)

whereφ ′
is real constant to be determined by the minimization of the mean square error of the estimatorT

′
.
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3.1.2 Case II: Non-response occurs only on the Second (Current) Occasion

In this situation non-response is found only on the second (current) occasion while all the units on the first occasion will
respond i.e.,r1 = n. Accordingly, we suggest the following estimator ofR2(α) based on the matched portion of the sample
Sm retained from first occasion as

T
′′

m = R2m(α)

R
′′

n(α)

R∗
1m(α)

(11)

where,R
′′

n(α) = Rn(α)exp(Z−zn
Z+zn

) andR∗
1m(α) = R1m(α)exp(Z−zm

Z+zm
).

Hence, in this case the final estimator ofR2(α) based on the samplesSu and Sm on the second (current) occasion is
considered as

T
′′
= φ

′′
Tu+(1−φ

′′
)T

′′

m (12)

where,φ ′′
is real constant to be determined by the minimization of the mean square error of the estimatorT

′′
.

4 Properties of the Proposed Estimators T, T
′
and T

′′
:

SinceTu, Tm, T
′

u andT
′′

m all are exponential type estimators, they are biased forR2(α), therefore, the resulting estimators

T, T
′
andT

′′
defined in Equations (8), (10) and (12) are also biased forR2(α). The bias B(.) and mean square errors M(.)

of the proposed estimators up to the first order of approximations are derived under large sample approximations
(ignoring f.p.c.) using the following assumptions:

yu−r2
=Y2(1+e1), xu−r2 = X2(1+e2), yu =Y2(1+e

′

1), xu = X2(1+e
′

2), zu = Z(1+e3),

yn−r1
=Y1(1+e4), xn−r1 = X1(1+e5), yn =Y1(1+e

′

4), xn = X1(1+e
′

5), zn = Z(1+e6),
y1m =Y1(1+e7), x1m = X1(1+e8), zm = Z(1+e9), y2m =Y2(1+e10), x2m = X2(1+e11)

such thatE(ei) = E(e
′

j) = 0 and|ei |< 1 and
∣

∣

∣
e
′

j

∣

∣

∣
< 1 ∀ i = 1,2, ...,11 andj = 1,2,4,5.

Under the above transformations, the estimatorsTu, Tm, T
′

u andT
′′

m take the following forms:

Tu = R2(α)(1+e1)(1+e2)
(−α)exp(

−e3

2+e3
) (13)

Tm =
R2(α)(1+e10)(1+e11)

(−α)(1+e4)(1+e5)
(−α)exp( −e6

2+e6
)

(1+e7)(1+e8)(−α)exp( −e9
2+e9

)
(14)

T
′

u = R2(α)(1+e
′

1)(1+e
′

2)
(−α)exp(

−e3

2+e3
) (15)

T
′′

m =
R2(α)(1+e10)(1+e11)

(−α)(1+e
′

4)(1+e
′

5)
(−α)exp( −e6

2+e6
)

(1+e7)(1+e8)(−α)exp( −e9
2+e9

)
(16)

Therefore, we have the following theorems.

Theorem 4.1. Bias of the estimatorsT, T
′
andT

′′
to the first order of approximations are obtained as

B(T) = φB(Tu)+ (1−φ)B(Tm) (17)

B(T
′
) = φ

′
B(T

′

u)+ (1−φ
′
)B(Tm) (18)

B(T
′′
) = φ

′′
B(Tu)+ (1−φ

′′
)B(T

′′

m) (19)
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where,

B(Tu) = R2(α)[−α f ∗ρy2x2Cy2Cx2 −
1
2

fuρy2zCy2Cz+
α
2

fuρx2zCx2Cz+
1
2

α(α −1) f ∗C2
x2
+

3
8

fuC
2
z ] (20)

B(Tm) = R2(α)[
1
2

α(α −1)( f2C
2
x1
+ fmC2

x2
)−

1
8

f1C
2
z −α( f2ρy1x1Cy1Cx1 + fmρy2x2Cy2Cx2)+

1
2

f1(ρy2zCy2Cz−αρx2zCx2Cz)]

(21)

B(T
′

u) = R2(α) fu[−αρy2x2Cy2Cx2 −
1
2

ρy2zCy2Cz+
α
2

ρx2zCx2Cz+
1
2

α(α −1)C2
x2
+

3
8

C2
z ] (22)

B(T
′′

m) = R2(α)[
1
2

α(α −1)( fmC2
x2
− f1C

2
x1
)−

1
8

f1C
2
z −α( f1ρy1x1Cy1Cx1 + fmρy2x2Cy2Cx2)+

1
2

f1(ρy2zCy2Cz−αρx2zCx2Cz)]

(23)
Proof: The bias of the estimatorsT, T

′
andT

′′
are given by

B(T) = E(T −R2(α))
= φE(Tu−R2(α))+ (1−φ)E(Tm−R2(α))

∴ B(T) = φB(Tu)+ (1−φ)B(Tm) (24)

B(T
′
) = E(T

′
−R2(α))

= φ ′
E(T

′

u −R2(α))+ (1−φ ′
)E(Tm−R2(α))

therefore
B(T

′
) = φ

′
B(T

′

u)+ (1−φ
′
)B(Tm) (25)

B(T
′′
) = E(T

′′
−R2(α))

= φ ′′
E(Tu−R2(α))+ (1−φ ′′

)E(T
′′

m−R2(α))
therefore

B(T
′′
) = φ

′′
B(Tu)+ (1−φ

′′
)B(T

′′

m) (26)

Using the expansions ofTu, Tm, T
′

u andT
′′

m from equations (13), (14), (15) and (16) in the equations (24), (25) and (26)
and taking expectations up to first order of approximations,we have the expressions for the bias of the proposed
estimatorsT, T

′
andT

′′
as described in the equations (17), (18) and (19).

Theorem 4.2. Mean square errors of the estimatorsT, T
′
andT

′′
to the first order of approximations are obtained as

M(T) = φ2M(Tu)+ (1−φ)2M(Tm) (27)

M(T
′
) = φ

′2M(T
′

u)+ (1−φ
′
)2M(Tm) (28)

M(T
′′
) = φ

′′2M(Tu)+ (1−φ
′′
)2M(T

′′

m) (29)

where,

M(Tu) = R2
2(α)[ f

∗C2
y2
+α2 f ∗C2

x2
+

1
4

fuC
2
z −2α f ∗ρy2x2Cy2Cx2 − fuρy2zCy2Cz+α fuρx2zCx2Cz] (30)

M(Tm)=R2
2(α)[ f2(C

2
y1
+α2C2

x1
−2αρy1x1Cy1Cx1)+ f1(

1
4

C2
z+ρy2zCy2Cz−αρx2zCx2Cz)+ fm(C

2
y2
+α2C2

x2
−2αρy2x2Cy2Cx2)]

(31)

M(T
′

u) = R2
2(α) fu[C

2
y2
+α2C2

x2
+

1
4

C2
z −2αρy2x2Cy2Cx2 −ρy2zCy2Cz+αρx2zCx2Cz] (32)

M(T
′′

m) = R2
2(α)[ f1(

1
4

C2
z −C2

y1
−α2C2

x1
+2αρy1x1Cy1Cx1 +ρy2zCy2Cz−αρx2zCx2Cz)+ fm(C

2
y2
+α2C2

x2
−2αρy2x2Cy2Cx2)]

(33)
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Proof: It is obvious that the mean square error of the proposed estimatorT is given by
M(T) = E(T −R2(α))

2

= E[φ(Tu−R2(α))+ (1−φ)(Tm−R2(α))]
2

∴ M(T) = φ2M(Tu)+ (1−φ)2M(Tm)+2φ(1−φ)E[(Tu−R2(α))(Tm−R2(α))] (34)

Substituting the expressions ofTu andTm from equations (13) and (14) in equation (34) and taking expectations up to
first order of approximations, we obtain the expression for the mean square error of the estimatorT as presented in
equation (27).

The proofs of the mean square errors of the estimatorsT
′
andT

′′
defined in equations (28) and (29) can be derived in

similar ways.

It is to be noted that the estimatorsTu andTm are based on two non-overlapping samples of size u and m respectively.
The covariance type terms (i.e.,E[(Tu − R2(α))(Tm− R2(α))]) are of orderN−1, hence for large population, they are
ignored. Similarly, the other covariance type terms are also neglected.

5 Minimum Mean Square Errors of the Proposed Estimators T, T
′
and T

′′

From equations (27)-(29), It is cleared that the mean squareerrors of the estimatorsT, T
′

andT
′′

are functions ofφ ,
φ ′

andφ ′′
. Therefore, they are to be minimized with respect toφ , φ ′

andφ ′′
respectively and subsequently the optimum

values ofφ , φ ′
andφ ′′

are obtained as:

φopt =
M(Tm)

M(Tu)+M(Tm)
(35)

φ
′

opt =
M(Tm)

M(T ′

u)+M(Tm)
(36)

φ
′′

opt =
M(T

′′

m)

M(Tu)+M(T ′′
m)

(37)

Putting these optimum values ofφ , φ ′
andφ ′′

in the equations (27) - (29), we get the minimum mean square errors of our
suggested estimators as:

M(T)opt =
M(Tu)×M(Tm)

M(Tu)+M(Tm)
(38)

M(T
′
)opt =

M(T
′

u)×M(Tm)

M(T ′
u)+M(Tm)

(39)

M(T
′′
)opt =

M(Tu)×M(T
′′

m)

M(Tu)+M(T ′′
m)

(40)

6 Performances of the Proposed Estimators

In practice, non-response is one of the major problems encountered by survey statisticians because non-response situations
may be misleading as the estimate based on them may be biased.Thus to examine the effect of non-response on the
performances of our proposed methodology, the absolute percent relative biases and percent relative losses in efficiencies
of T, T

′
andT

′′
with respect to

i. The estimatorτ defined under the similar circumstances as the estimatorsT, T
′

andT
′′

but in the absence of non-
response and which is presented as

τ = ψT
′

u +(1−ψ)T
′′

m (41)
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ii. The sample estimatorR of R2(α) under complete response which is given as

R= ψ
′
Ru(α)+(1−ψ

′
)R2m(α) (42)

are obtained, where,ψ and ψ ′
are real constants to be determined by the minimization of the mean square error of

respectively.

Proceeding as above the bias and mean square error ofτ andR for large N (i.e., N→ ∞) are derived as

B(τ)opt = ψoptB(T
′

u)+ (1−ψopt)B(T
′′

m) (43)

M(τ)opt =
M(T

′

u)×M(T
′′

m)

M(T ′
u)+M(T ′′

m)
(44)

where,

ψopt =
M(T

′′

m)

M(T ′

u)+M(T ′′

m)
(45)

andB(T
′

u), B(T
′′

m), M(T
′

u) andM(T
′′

m) are given in the equations (22), (23), (32) and (33) respectively.

Again,
B(R)opt = ψ

′

optB(Ru(α))+ (1−ψ
′

opt)B(R2m(α)) (46)

M(R)opt =
M(Ru(α))×M(R2m(α))

M(Ru(α))+M(R2m(α))
(47)

where,

ψ
′

opt =
M(R2m(α))

M(Ru(α))+M(R2m(α))
(48)

B(Ru(α)) = α fuCx2[
1
2
(α −1)Cx2 −ρy2x2Cy2]R2(α) (49)

B(R2m(α)) = α fmCx2[
1
2
(α −1)Cx2 −ρy2x2Cy2]R2(α) (50)

M(Ru(α)) = fu[C
2
y2
+α2C2

x2
−2αρy2x2Cy2Cx2]R

2
2(α) (51)

M(R2m(α)) = fm[C
2
y2
+α2C2

x2
−2αρy2x2Cy2Cx2]R

2
2(α) (52)

We have designated the absolute percent relative biasesB∗, B∗′ andB∗′′ with respect toτ andB∗
R, B∗′

R andB∗′′
R with respect

to R and percent relative losses in precision L,L
′
andL

′′
with respect toτ andLR, L

′

R andL
′′

R with respect to R as:

B∗ =

∣

∣

∣

∣

B(τ)opt

B(T)opt

∣

∣

∣

∣

×100 (53)

B∗′ =

∣

∣

∣

∣

B(τ)opt

B(T ′
)opt

∣

∣

∣

∣

×100 (54)

B∗′′ =

∣

∣

∣

∣

B(τ)opt

B(T ′′
)opt

∣

∣

∣

∣

×100 (55)

L =
M(T)opt−M(τ)opt

M(T)opt
×100 (56)

L
′
=

M(T
′
)opt−M(τ)opt

M(T ′
)opt

×100 (57)
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L
′′
=

M(T
′′
)opt−M(τ)opt

M(T ′′)opt
×100 (58)

Also

B∗
R =

∣

∣

∣

∣

B(R)opt

B(T)opt

∣

∣

∣

∣

×100 (59)

B∗′

R =

∣

∣

∣

∣

B(R)opt

B(T ′)opt

∣

∣

∣

∣

×100 (60)

B∗′′

R =

∣

∣

∣

∣

B(R)opt

B(T ′′)opt

∣

∣

∣

∣

×100 (61)

LR =
M(T)opt−M(R)opt

M(T)opt
×100 (62)

L
′

R =
M(T

′
)opt−M(R)opt

M(T ′
)opt

×100 (63)

L
′′

R =
M(T

′′
)opt−M(R)opt

M(T ′′
)opt

×100 (64)

Where

B(T)opt = φoptB(Tu)+ (1−φopt)B(Tm) (65)

B(T
′
)opt = φ

′

optB(T
′

u)+ (1−φ
′

opt)B(Tm) (66)

B(T
′′
)opt = φ

′′

optB(Tu)+ (1−φ
′′

opt)B(T
′′

m) (67)

6.1 Simulation Study Using Artificially Generated Population

An important aspect of simulation is that one builds a simulation model to replicate the actual system. Simulation allows
comparison of analytical techniques and helps in concluding whether a newly developed technique is better than the
existing ones. Motivated by [18] and [21] who have been adopted the artificial population generation techniques, we have
generated five sets of independent random numbers of size N (N= 100) namelyx

′

1k
, y

′

1k
, x

′

2k
, y

′

2k
andz

′

k(k = 1,2, ...,N)
from a standard normal distribution with the help of R-software. By varying the correlation coefficientsρyx andρxz, we
have generated the following transformed variables of the population U with the values of n=70, m=50, u=20,σ2

y = 50,
µy = 10,σ2

x = 100,µx = 50,σ2
z = 50 andµz = 20 as

y1k= µy+σy [ρyx x
′

1k
+
√

1− (ρyx)2 y
′

1k
]

x1k= µx+σx x
′

1k

zk= µz+σz [ρxz x
′

1k
+
√

1− (ρxz)2 z
′

k]
y2k= y1k
andx2k= x1k.
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Table 1: Absolute percent relative biases ofT, T
′
andT

′′
with respect toτ andR

ARTIFICIAL POPULATION STUDY

α = 1

ρyx → 0.6 0.9
p1 p2 ρxz ↓ B∗ B∗′ B∗′′ B∗

R B∗′
R B∗′′

R B∗ B∗′ B∗′′ B∗
R B∗′

R B∗′′
R

0.05 0.05

0.2

141.1 144.3 98.2 151.2 154.7 105.2 141.7 144.9 98.3 151.1 154.5 104.7
0.1 137.9 144.3 96.4 147.8 154.7 103.3 138.6 144.9 96.5 147.7154.5 102.9
0.15 134.7 144.3 94.6 144.4 154.7 101.4 135.4 144.9 94.8 144.4 154.5 101.1

0.1 0.05 135.6 138.8 98.2 145.4 148.8 105.2 136.3 139.5 98.3 145.3 148.7 104.7
0.1 132.5 138.8 96.4 142 148.8 103.3 133.2 139.5 96.5 142 148.7 102.9
0.15 129.4 138.8 94.6 138.8 148.8 101.4 130.2 139.5 94.8 138.8 148.7 101.1

0.15 0.05 130.2 133.3 98.2 139.6 142.9 105.2 130.9 133.9 98.3139.5 142.8 104.7
0.1 127.1 133.3 96.4 136.3 142.9 103.3 127.9 133.9 96.5 136.3142.8 102.9
0.15 124.2 133.3 94.6 133.1 142.9 101.4 124.9 133.9 94.8 133.1 142.8 101.1

0.05 0.05

0.8

163.3 172.1 96.7 224.6 236.8 133.1 144.2 147.4 98.4 154.2 157.5 105.2
0.1 155.1 172.1 93.6 213.3 236.8 128.8 141.1 147.4 96.7 150.8157.5 103.4
0.15 147.4 172.1 90.6 202.8 236.8 124.6 138 147.4 95.1 147.5 157.5 101.7

0.1 0.05 157.8 166.5 96.7 217.1 229 133.1 138.7 141.8 98.4 148.2 151.6 105.2
0.1 149.8 166.5 93.6 206.1 229 128.8 135.6 141.8 96.7 145 151.6 103.4
0.15 142.3 166.5 90.6 195.8 229 124.6 132.6 141.8 95.1 141.7 151.6 101.7

0.15 0.05 152.2 160.7 96.7 209.5 221.1 133.1 133.1 136.1 98.4142.3 145.5 105.2
0.1 144.4 160.7 93.6 198.7 221.1 128.8 130.1 136.1 96.7 139.1145.5 103.4
0.15 137.1 160.7 90.6 188.7 221.1 124.6 127.1 136.1 95.1 135.9 145.5 101.7

α =−1

ρyx → 0.6 0.9
p1 p2 ρxz ↓ B∗ B∗′ B∗′′ B∗

R B∗′
R B∗′′

R B∗ B∗′ B∗′′ B∗
R B∗′

R B∗′′
R

0.05 0.05

0.2

98.8 101.5 97.5 118.6 121.8 117 102.4 104.6 98.1 117.8 120.3 112.9
0.1 98 101.5 96.7 117.6 121.8 116 101.6 104.6 97.3 116.9 120.3112
0.15 97.1 101.5 95.9 116.6 121.8 115.1 100.7 104.6 96.5 115.9120.3 111.1

0.1 0.05 94.8 97.4 97.5 113.8 116.9 117 98.3 100.4 98.1 113.1 115.5 112.9
0.1 94 97.4 96.7 112.8 116.9 116 97.4 100.4 97.3 112.1 115.5 112
0.15 93.1 97.4 95.9 111.8 116.9 115.1 96.6 100.4 96.5 111.1 115.5 111.1

0.15 0.05 90.8 93.3 97.5 109 112 117 94.1 96.1 98.1 108.3 110.6112.9
0.1 90 93.3 96.7 108 112 116 93.3 96.1 97.3 107.3 110.6 112
0.15 89.1 93.3 95.9 107 112 115.1 92.4 96.1 96.5 106.4 110.6 111.1

0.05 0.05

0.8

105.1 103.3 101.5 115.4 113.4 111.5 105.5 104.2 101 120.6 119.1 115.6
0.1 104.2 103.3 100.7 114.4 113.4 110.6 104.4 104.2 100.1 119.4 119.1 114.4
0.15 103.3 103.3 99.9 113.5 113.4 109.7 103.3 104.2 99.1 118.2 119.1 113.3

0.1 0.05 101 99.3 101.5 110.9 109.1 111.5 1011.3 100.2 101 115.8 114.5 115.6
0.1 100.1 99.3 100.7 109.9 109.1 110.6 100.2 100.2 100.1 114.6 114.5 114.4
0.15 99.2 99.3 99.9 108.9 109.1 109.7 99.1 100.2 99.1 113.4 114.5 113.3

0.15 0.05 96.8 95.4 101.5 106.4 104.8 111.5 97.1 96.2 101 111.1 110 115.6
0.1 95.9 95.4 100.7 105.4 104.8 110.6 96.1 96.2 100.1 109.9 110 114.4
0.15 95 95.4 99.9 104.4 104.8 109.7 95 96.2 99.1 108.7 110 113.3
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Table 2: Percent relative losses in precision ofT, T
′
andT

′′
with respect toτ andRPREs of different estimators

ARTIFICIAL POPULATION STUDY

α = 1

ρyx → 0.6 0.9
p1 p2 ρxz ↓ L L

′
L
′′

LR L
′

R L
′′

R L L
′

L
′′

LR L
′

R L
′′

R
0.05 0.05

0.2

4.6 1 1 -17.3 -18.5 -21.8 4.4 0.9 0.9 -12.4 -13.4 -16.6
0.1 5.6 2 2 -16.1 -18.5 -20.6 5.3 1.7 1.7 -11.4 -13.4 -15.6
0.15 6.5 3 3 -14.9 -18.5 -19.3 6.1 2.6 2.6 -10.4 -13.4 -14.6

0.1 0.05 8.2 1 1 -12.9 -14.1 -21.8 8 0.9 0.9 -8.2 -9.2 -16.6
0.1 9.2 2 2 -11.7 -14.1 -20.6 8.8 1.7 1.7 -7.2 -9.2 -15.6
0.15 10.2 3 3 -10.5 -14.1 -19.3 9.7 2.6 2.6 -6.2 -9.2 -14.6

0.15 0.05 11.8 1 1 -8.4 -9.6 -21.8 11.6 0.9 0.9 -4 -5 -16.6
0.1 12.8 2 2 -7.2 -9.6 -20.6 12.4 1.7 1.7 -3 -5 -15.6
0.15 13.8 3 3 -6 -9.6 -19.3 13.3 2.6 2.6 -2 -5 -14.6

0.05 0.05

0.8

4.5 0.8 0.8 -15.2 -16.2 -19.7 4.5 0.7 0.7 -16.4 -17.3 -21.2
0.1 5.3 1.6 1.6 -14.2 -16.2 -18.7 5.3 1.4 1.4 -15.6 -17.3 -20.3
0.15 6.2 2.4 2.4 -13.2 -16.2 -17.7 6 2.1 2.1 -14.7 -17.3 -19.4

0.1 0.05 8.2 0.8 0.8 -10.7 -11.7 -19.7 8.5 0.7 0.7 -11.7 -12.5 -21.2
0.1 9.1 1.6 1.6 -9.7 -11.7 -18.7 9.2 1.4 1.4 -10.8 -12.5 -20.3
0.15 9.9 2.4 2.4 -8.7 -11.7 -17.7 9.9 2.1 2.1 -9.9 -12.5 -19.4

0.15 0.05 12 0.8 0.8 -6.2 -7.2 -19.7 12.4 0.7 0.7 -6.9 -7.8 -21.2
0.1 12.8 1.6 1.6 -5.2 -7.2 -18.7 13.1 1.4 1.4 -6.1 -7.8 -20.3
0.15 13.6 2.4 2.4 -4.2 -7.2 -17.7 13.8 2.1 2.1 -5.1 -7.8 -19.4

α =−1

ρyx → 0.6 0.9
p1 p2 ρxz ↓ L L

′
L
′′

LR L
′

R L
′′

R L L
′

L
′′

LR L
′

R L
′′

R
0.05 0.05

0.2

3.5 -0.4 -0.4 -22 -21.5 -26.9 3.8 0 0 -20.7 -20.7 -25.5
0.1 4.4 0.6 0.6 -20.8 -21.5 -25.6 4.8 1 1 -19.5 -20.7 -24.3
0.15 5.4 1.6 1.6 -19.5 -21.5 -24.4 5.7 1.9 1.9 -18.3 -20.7 -23.1

0.1 0.05 7.3 -0.4 -0.4 -17.2 -16.7 -26.9 7.7 0 0 -15.9 -15.9 -25.5
0.1 8.3 0.6 0.6 -15.9 -16.7 -25.6 8.6 1 1 -14.7 -15.9 -24.3
0.15 9.3 1.6 1.6 -14.7 -16.7 -24.4 9.6 1.9 1.9 -13.5 -15.9 -23.1

0.15 0.05 11.2 -0.4 -0.4 -12.3 -11.8 -26.9 11.5 0 0 -11.1 -11.1-25.5
0.1 12.1 0.6 0.6 -11.1 -11.8 -25.6 12.4 1 1 -9.9 -11.1 -24.3
0.15 13.1 1.6 1.6 -9.8 -11.8 -24.4 13.4 1.9 1.9 -8.7 -11.1 -23.1

0.05 0.05

0.8

6.3 2.8 2.8 -15.1 -18.5 -19.4 6.3 2.6 2.6 -17.3 -20.6 -21.9
0.1 7.2 3.7 3.7 -14 -18.5 -18.4 7.2 3.5 3.5 -16.2 -20.6 -20.7
0.15 8.1 4.6 4.6 -12.9 -18.5 -17.3 8.1 4.4 4.4 -15.1 -20.6 -19.6

0.1 0.05 9.8 2.8 2.8 -10.8 -14.2 -19.4 9.9 2.6 2.6 -12.8 -16.1 -21.9
0.1 10.7 3.7 3.7 -9.7 -14.2 -18.4 10.8 3.5 3.5 -11.7 -16.1 -20.7
0.15 11.6 4.6 4.6 -8.6 -14.2 -17.3 11.7 4.4 4.4 -10.5 -16.1 -19.6

0.15 0.05 13.4 2.8 2.8 -6.4 -9.8 -19.4 13.5 2.6 2.6 -8.2 -11.5 -21.9
0.1 14.3 3.7 3.7 -5.3 -9.8 -18.4 14.4 3.5 3.5 -7.1 -11.5 -20.7
0.15 15.2 4.6 4.6 -4.2 -9.8 -17.3 15.3 4.4 4.4 -6 -11.5 -19.6

6.2 Numerical Illustration Using Real Population

We have considered the following real populations to demonstrate the efficacy of the proposed estimation strategies in
Tables 3 - 4.
i). The Educational Attainment by the United States (Table No- 233)
Y1: Percent of persons 25 years and over who have completed a Bachelor’s Degree in 2008 in a state in United States.
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X1: Percent of persons 25 years and over who have completed HighSchool in 2008 in a state in United States.
Y2: Percent of persons 25 years and over who have completed a Bachelor’s Degree in 2009 in a state in United States.
X2: Percent of persons 25 years and over who have completed HighSchool in 2009 in a state in United States.
Z: Percent of persons 25 years and over who have completed an Advanced Degree in the year 2006 in a state in United
States.
N = 50,Y1= 27.36,X1= 86.58,Y2= 27.59,X2= 86.88,Z= 9.76,Cy1= 2.08,Cx1= 0.95,Cy2= 2.10,Cx2= 0.98,Cz= 3.33,
ρy1x1= -0.09,ρy2x2= -0.11,ρy2z= 0.95,ρx2z= -0.16.

ii). Community Hospitals of the United States (Table No- 174)
Y1: Number of hospitals of a state in United States in 2008.
X1: Total number of patients admitted in all hospitals of a state in United States in 2008.
Y2: Number of hospitals of a state in United States in 2009.
X2: Total number of patients admitted in all hospitals of a state in United States in 2009.
Z: Total number of beds in all hospitals of a state in United States in 2008.
N= 50,Y1= 98.24,X1= 701.16,Y2= 98.20,X2= 696.61,Z= 15.80,Cy1= 2.65,Cx1= 2.32,Cy2= 2.68,Cx2= 2.32,Cz= 2.22,
ρy1x1= 0.76,ρy2x2= 0.74,ρy2z= 0.79,ρx2z= 0.98.
Survey data are collected from the Statistical Abstract of the United States 2012 published by the United States Census
Bureau.

Table 3: Percent relative losses in precision from Education Survey(Table No-233)

α p1 p2 L L
′

L
′′

LR L
′

R L
′′

R

1

0.05 0.05 12.0 11.0 11.0 -56.9 -76.6 -58.6
0.1 20.5 19.6 19.6 -41.6 -76.6 -43.3
0.15 27.4 26.5 26.5 -29.4 -76.6 -31.0

0.1 0.05 12.9 11.0 11.0 -55.2 -74.9 -58.6
0.1 21.5 19.6 19.6 -39.9 -74.9 -43.3
0.15 28.4 26.5 26.5 -27.7 -74.9 -31.0

0.15 0.05 13.9 11.0 11.0 -53.4 -73.1 -58.6
0.1 22.5 19.6 19.6 -38.1 -73.1 -43.3
0.15 29.4 26.5 26.5 -25.9 -73.1 -31.0

-1

0.05 0.05 -65.9 -67.0 -67.0 -147.4 -47.5 -149.0
0.1 -32.9 -34.0 -34.0 -98.2 -47.5 -99.8
0.15 -11.8 -12.9 -12.9 -66.8 -47.5 -68.4

0.1 0.05 -64.7 -67.0 -67.0 -145.7 -45.8 -149.0
0.1 -31.7 -34.0 -34.0 -96.5 -45.8 -99.8
0.15 -10.7 -12.9 -12.9 -65.1 -45.8 -68.4

0.15 0.05 -63.5 -67.0 -67.0 -143.9 -44.0 -149.0
0.1 -30.5 -34.0 -34.0 -94.7 -44.0 -99.8
0.15 -9.5 -12.9 -12.9 -63.3 -44.0 -68.4
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Table 4: Percent relative losses in precision from Hospital Survey (Table No-174)

α p1 p2 L L
′

L
′′

LR L
′

R L
′′

R

1

0.05 0.05 1.5 0.6 0.6 -2.3 -2.9 -3.3
0.1 2.0 1.1 1.1 -1.7 -2.9 -2.7
0.15 2.6 1.7 1.7 -1.1 -2.9 -2.0

0.1 0.05 2.4 0.6 0.6 -1.3 -1.9 -3.3
0.1 3.0 1.1 1.1 -0.7 -1.9 -2.7
0.15 3.6 1.7 1.7 -0.1 -1.9 -2.0

0.15 0.05 3.5 0.6 0.6 -0.2 -0.8 -3.3
0.1 4.0 1.1 1.1 0.4 -0.8 -2.7
0.15 4.6 1.7 1.7 1.0 -0.8 -2.0

-1

0.05 0.05 21.1 15.1 15.1 -17.4 -39.8 -26.4
0.1 21.6 15.5 15.5 -16.7 -39.8 -25.8
0.15 22.0 15.9 15.9 -16.1 -39.8 -25.1

0.1 0.05 26.8 15.1 15.1 -9.0 -31.4 -26.4
0.1 27.2 15.5 15.5 -8.4 -31.4 -25.8
0.15 27.6 15.9 15.9 -7.7 -31.4 -25.1

0.15 0.05 32.0 15.1 15.1 -1.2 -23.6 -26.4
0.1 32.4 15.5 15.5 -0.5 -23.6 -25.8
0.15 32.9 15.9 15.9 -0.1 -23.6 -25.1

6.3 Efficiency Comparison

To elucidate the efficacy of our proposed estimators, we havecompared our estimators with the sample estimators ofR2(α)

under the similar circumstances as the estimatorsT, T
′

andT
′′

using the real populations discussed in section 6.2. We
have made comparison of
i). The estimatorsT andT

′
with R∗ which is the sample estimator ofR2(α) when non-response occurs on both the first

occasion as well as on the second (current) occasion and is defined as

R∗ = λR(u−r2)(α)+(1−λ )R2m(α) (68)

where,λ is real constant to be determined by the minimization of the mean square error ofR∗.
ii). The estimatorT

′
with R which is the sample estimator ofR2(α) when non-response occurs only on the first occasion

which is defined in the equation (42).
The bias and mean square error ofR∗ for large N (i.e., N→ ∞) are derived as

B(R∗)opt = λoptB(R(u−r2)(α))+ (1−λopt)B(R2m(α)) (69)

M(R∗)opt =
M(R(u−r2)(α))×M(R2m(α))

M(R(u−r2)(α))+M(R2m(α))
(70)

and

λopt =
M(R2m(α))

M(R(u−r2)(α))+M(R2m(α))
(71)

where,

B(R(u−r2)(α)) = α f ∗Cx2[
1
2
(α −1)Cx2 −ρy2x2Cy2]R2(α) (72)

M(R(u−r2)(α)) = R2
2(α) f ∗[C2

y2
+α2C2

x2
−2αρy2x2Cy2Cx2] (73)

andB(R2m(α)) andM(R2m(α)) are given in the equations (50) and (52).

Therefore,PRE[T(orT
′′
)]= M(R∗)opt

M[T(orT′′
)]opt

×100

PRE[T
′
]= M(R)opt

M[T ′
]opt

×100
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Table 5: PREs of different estimators

Educational attainment by United States (Table No - 233) Community hospitals of United States (Table No - 174)

α = 1

p1 p2 PRE(T) PRE(T
′
) PRE(T

′′
) p1 p2 PRE(T) PRE(T

′
) PRE(T

′′
)

0.05 0.05 158.95 176.57 160.62 0.05 0.05 103.67 102.92 104.61
0.1 145.36 176.57 147.05 0.1 104.42 102.92 105.37
0.15 134.59 176.57 136.3 0.15 105.17 102.92 106.14

0.1 0.05 157.21 174.85 160.62 0.1 0.05 102.65 101.91 104.61
0.1 143.6 174.85 147.05 0.1 103.39 101.91 105.37
0.15 132.8 174.85 136.3 0.15 104.13 101.91 106.14

0.15 0.05 155.39 173.05 160.62 0.15 0.05 101.55 100.82 104.61
0.1 141.75 173.05 147.05 0.1 102.27 100.82 105.37
0.15 130.93 173.05 136.3 0.15 103 100.82 106.14

α =−1

p1 p2 PRE(T) PRE(T
′
) PRE(T

′′
) p1 p2 PRE(T) PRE(T

′
) PRE(T

′′
)

0.05 0.05 250.62 147.52 252.29 0.05 0.05 118.9 139.8 128.06
0.1 203.43 147.52 205.12 0.1 119.83 139.8 129.11
0.15 173.47 147.52 175.19 0.15 120.76 139.8 130.16

0.1 0.05 248.88 145.8 252.29 0.1 0.05 110.4 131.4 128.06
0.1 201.67 145.8 205.12 0.1 111.21 131.4 129.11
0.15 171.68 145.8 175.19 0.15 112.02 131.4 130.16

0.15 0.05 247.07 144.01 252.29 0.15 0.05 102.49 123.6 128.06
0.1 199.82 144.01 205.12 0.1 103.2 123.6 129.11
0.15 169.82 144.01 175.19 0.15 103.91 123.6 130.16

7 Perspective

The following conclusions can be drawn from the above study:
I. From simulation study:
a) Table-1 interprets that for fixed values ofρyx andρxz, the absolute percent relative biases ofT, T

′
andT

′′
(i.e.,B∗, B∗′

and B∗′′ with respect toτ and B∗
R, B∗′

R and B∗′′
R with respect toR) are getting reduced with different choices of the

non-response ratep1 andp2 on the first and second (current) occasion respectively. This behavior is highly desirable as it
conclude that for different choices of non-response rate onthe first occasion or on the second occasion or on both the
occasions, our proposed methodology provides estimates along with reduced bias. This phenomenon establishes that the
suggested methodology is competent enough in reducing the negative effect of non-response to great extent.
b) Table-1 also exhibits that for fixed non-response ratesp1 andp2 and for fixed value ofρxz, our estimatorsT, T

′
andT

′′

provide estimates with less bias for increasing values ofρyx. The same behavior is noticed if we increaseρxz with the
fixed value ofρyx kipping p1 andp2 as fixed. These behaviors states that the estimatorsT, T

′
andT

′′
will give estimates

with reduced absolute bias if the study variables y and x are highly correlated with the auxiliary character z.
c) Table-2 explains that if we fix the correlation coefficients between x and z and y and z, we observe that the loss in the
precision of our proposed estimators are not too high, even the percent relative losses ofT, T

′
andT

′′
with respect to the

sample estimatorR, are becoming negative (i.e. gains), for different values of non-response ratesp1 and p2. The same
behavior is noticed if we fix the non-response ratesp1 andp2 while the values ofρyx andρxz are varying.
II. Using the real populations:
a) From Table-3 and Table-4 we can observe the same behaviorsin the percent relative losses ofT, T

′
andT

′′
as in

Table-2. This behavior is highly desirable, as it pays in terms of enhance precision of estimates as well as reduces the
cost of survey.
b) In Table-5, it can be observed that for various choices ofp1 andp2 (non-response rates on first and second occasions)
our proposed estimatorsT, T

′
and T

′′
are more efficient than the sample estimators ofR2(α) under the similar

circumstances.

Thus, the above analysis indicates the effectiveness of ourproposed methods of imputation and vindicates the
competent of suggested estimators in reducing the negativeeffect of non-response situations more precisely. It is to be
noted that the absolute percent relative biases are less andlosses in precision are not appreciable and even in many cases
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negative losses (gains) are noticeable which establishes the practicability of our proposed estimation procedures. So, they
may be recommended to the survey statisticians and practitioners for their use in real life problems.
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[12] L.M.A Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G.B West, Proceedings of the National Academy of Sciences of the United

States of America104, 7301-7306 (2007).
[13] T.W. Swan, Economic Record32, 334-361 (1956).
[14] C.T.H Baker, G.A Bocharov, C.A.H Paul, Journal of Theoretical Medicine2, 117-128 (1997).
[15] C. Bianca, Math. Models Methods Appl. Sci.21, 389-419 (2011).
[16] C. Bianca, M. Pennisi, Nonlinear Analysis: Real World Applications13, 1913-1940 (2012).
[17] C. Bianca and L. Fermo, Computers & Mathematics with Applications61, 277-288 (2011).
[18] H. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in AppliedMathematics,

Volume 57, Springer, Berlin, 2011.
[19] A. Casal and M. Freedman, IEEE Transactions on Automatic Control25, 967-973 (1980).
[20] S. Ruan and J. Wei, Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis10, 863-874 (2003).
[21] R. Rand and A. Verdugo, Communications in Nonlinear Science and Numerical Simulation12, 859-864 (2007).
[22] O. Galor, From stagnation to growth: unified growth theory, In: Aghion, P., Durlauf, S. (Eds.), Handbook of EconomicGrowth,

vol. 1A. Amsterdam, North-Holland, 2005.
[23] C. Bianca, Nonlinear Analysis: Real World Applications 13, 2593-2608 (2012).
[24] C. Bianca, Appl. Math. Inf. Sci.6, 495-499 (2012).
[25] C. Bianca, Physics of Life Reviews (2012), http://dx.doi.org/10.1016/j.plrev.2012.09.002.

Reba Maji is an Assistant Professor of Mathematics in Sarojini Naidu
College for Women, Kolkata, India. She has more than 7 years of teaching
experience. Currently she is pursuing her PhD degree in Statistics from IIT
(ISM) Dhanbad, India. Her research fields are Sample Surveysand Estimation of Parameters.
She has several research papers published/accepted in reputed national/international
journals of Mathematics and Statistics. She is referee of aninternational journal of Statistics.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


378 R. Maji et al.: Effective estimation of ratio and product...

Garib Nath Singh is a Professor of Statistics in the Department of Applied Mathematics
at Indian Institute of Technology (Indian School of Mines),Dhanbad, India. His research
areas are Sample Surveys and Data Analysis. He has 28 years ofteaching experience and
produced 12 Ph.Ds and more than 150 research papers which arepublished in various journals
of repute. He has also visited USA, Sri Lanka and Australia and delivered lectures in various
international conferences.

Arnab Bandyopadhyay is an Assistant Professor of Mathematics in
Asansol Engineeing College, India. He has more than 10 yearsteaching
experience and more than 5 years research experience. His field of research
interest is Statistical Sample Surveys. He has published several international journals
of repute and currents dealing two research projects fundedby Govt. of India. He is guiding
several researchers for pursuing their career for Ph. D. degree in Mathematics/ Statistics.

c© 2018 NSP
Natural Sciences Publishing Cor.


	Introduction
	Notations and Sample Structures on Two Occasions
	Formulation of Estimation Strategy
	Properties of the Proposed Estimators T, T' and T'':
	Minimum Mean Square Errors of the Proposed Estimators T, T' and T''
	Performances of the Proposed Estimators
	Perspective

