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Abstract: In a recent days, progressive hybrid censoring scheme basedon combination of Type-I and Type-II progressive censoring
schemes has been discussed and studied quite extensively inliterature of reliability analysis. In this paper, we use the entropy
decomposition in progressive hybrid censoring data to obtain expression in a simple form for the entropy of progressively hybrid
Type-I and Type-II censored data. Moreover, We compute the entropy in progressive hybrid Type-1 and Type II censored samples for
the scaled exponential distribution to illustrate the existence of the presented method.
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1 Introduction

Censoring schemes are found to be the famous and most
common to use in the experiment of life-testing due to its
advantages in saving cost and time. During last few years,
the progressive censoring schemes proved to be an
important tool in reliability analysis as compared to other
censoring schemes presented in literature so far. The
progressive censoring is flexible and more general
censoring than Type-I and Type-II censoring mechanism.
This permits the removal of live experiment unit in
different intermittent times during the experiment in
addition to the removal at the termination of the
experiment. Balakrishnan and Cramer [1] presented
progressively Type-II censored samples as: Let n units be
placed in test at time zero. Immediately following the first
failure, R1 surviving units are removed form the test at
random. Then immediately following the second failure,
R2 surviving units are removed form the test at random.
This process continues until at the time ofmth observed
failure, the remanding:
Rm = n − R1 − R2 − ..... − Rm−1 − m, which are all
removed from the experiment. So the life testing stops at
the mth failure. The observed failure times
X = (X1:m:n,X2:m:n, ....,Xm:m:n) constitute progressive
Type-II censored OS. In this scheme, either experiment
may last quite a long time or stop too early. Therefore,
Kundu and Joarder [2] and Childs et al. [3] suggested a

progressive hybrid schemes. According to this scheme,
Type-I progressive hybrid censored data follows if we end
experiment at a pre planned time T which comes before
the mth failure and Type-II progressive hybrid censored
data follows if experiment continues until time T even if
the mth failure occurs before T. This sampling scheme
will likely give more information about the tail of the
distribution under consideration because of the
progressive censoring and the limit of experimental time
which is T. Moreover, progressive hybrid censored data
overcomes the disadvantages arise by using censored data
of Type-I and Type-II. For example, the time of
termination of experiment is uncontrolled in censoring of
Type-II, whereas the efficiency level is uncontrolled in
Type-I censored data. Many researches have been done to
consider the entropy information from random samples in
an ordered data, one can see, [4], [5], [6], [7], [8] and
references therein. To determine the best possible efficient
censoring scheme, the role of the entropy is very
important. Abo-Eleneen [9] and [10] studied the entropy
and the optimal scheme in progressive censoring of
Type-II. Cramer and Bagh [11] explored plans of
maximum/minimum entropy For progressive Type-II
censoring schemes. Awad [12] discussed the optimal
scheme that maximizes the informational efficiency with
respect to some different optimality based on entropy
measures for Pareto distribution. Morabbi and Razmkhah
[13] studied entropy in hybrid censoring data. In this
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article, an exact expressions for entropy information
contained in both types of progressively hybrid censored
data is derived. We illustrate this expressions based on
presented plan for optimal censoring by applying it to life
time distribution.

2 Entropy in progressive Type-I hybrid
censoring

In this section, we obtain an exact expression for the
entropy in progressive hybrid Type-I censoring scheme.
First, we present some necessary tools. Suppose
U1, · · · ,Un is i.i.d. random sample of sizen from
absolutely continuous distribution with cumulative
distribution function (cdf)G(u;θ ) and probability density
function (pdf)g(u;θ ) whereθ is a real valued parameter
and the sample is arranged in ascending order. Morabbi
and Razmkhah [13] presented the following result.
Lemma 2.1. Suppose Ur represent
{min((Ur:n,T ), I(Ur:n ≤ T ))}. Then

1.The entropy inU1 can be obtained as

HU1 = G1:n(1− logn)−
∫ T

0
logh(u)g1:n(u;θ )du,

2.The conditional entropy inUr+1 given Ur, can be
obtained as

HUr+1|Ur = {(1− log(n− r+1)}{1−Cr−1
n Ḡn−r+1(T )}−

∫ T
0 logh(u)gr:n(u;θ )du,

whereh(u) = g(u)
1−G(u) , is the hazard function.

Let U = (U1:m:n, · · · ,Um:m:n) constitute Type-II
progressive censored OS from a sample of size n. Then
likelihood function presented by[15] as

g1···m:m:n(U;θ ) =
m

∏
r=1

cr−1g(ur:m:n;θ )[1−G(ur:m:n;θ )]Rr ,

(1)
wherecr = n−R1−R2−R3 · · ·−Rr − r), f1···m:m:n(U;θ )
is joint density function of (U1:m:n,U2:m:n · · · ,Um:m:n).
Balakrishnan et al. [14] and Abo-Eleneen [9] established
the following expression for the entropy of progressive
Type-II censored order statistics.
Lemma 2.2. The entropy of progressive Type-II censored
order statistics,H1···m:m:n(U), in terms of the hazard
function h(u) = g(u)/Ḡ(u) is given as a summation of
single integrals as

H1···m:m:n(U;θ )=m− logc−
∫ ∞

−∞
logh(u)

m

∑
r=1

gr:m:n(u;θ )du,

(2)
where,c = ∏m

r=1 cr−1 andgr:m:n(u) is the pdf of ther-th
progressively Type-II censored order statistic. The
marginal densitygr:m:n is given by [16], as

gr:m:n(u;θ ) =
r

∑
j=1

c j,rg(u j;θ )(1−G(u j;θ ))c j−1−1, (3)

where

c j,r =
r

∏
k=1,k 6= j

ck−1

ck−1− c j−1
,and

r

∑
j=1

c j,r = 1.

The joint pdfg1···m:m:n(U) presented by [15] can be written
as

g1···m:m:n(U;θ ) = g1:m:n(u;θ )
m−1

∏
r=1

gr+1|r:m:n(ur+1|ur;θ ),

(4)
wheregr+1|r:m:n(ur+1|ur;θ ) is the conditional density of
Ur+1:m:n given Ur:m:n. Note that this conditional density
function is the density of the first order statisticsY1:cr−1,

where Y has the pdf, g(y;θ)
1−G(ur;θ) with sample size

(n−R1−·· ·Rr − r). Then we have

gr+1|r:m:n(ur+1|ur;θ ) = cr−1
g(ur;θ)

1−G(ur−1;θ){
1−G(ur;θ)

1−G(ur−1;θ)}
cr−1−1,ur > ur−1.

(5)
Following [2] and [3], the experiment is terminated at
min(Um:m:n,T ) in a Type-I progressive hybrid censoring
scheme. Hence, progressive hybrid censored Type-I data
may be recorded asT = (T1:m:n, · · · ,Tm:m:n), with
Ti:m:n = (Xi,δi), for i = 1, · · · ,m and
Xi = min(Ui:m:n,T ),δi = I(Ui:m:n ≤ T ). To obtain the joint
density ofT denoted byg1:m:n,··· ,m:m:n(t1, · · · , tm), we can
use the decomposition

g1···m:m:n(t1, · · · , tm) = g1:m:n(t1)
m−1

∏
r=1

gr+1:m:n|i:m:n(tr+1|tr),

(6)
wheregr+1|r:m:n(tr+1|tr) can be obtained, if we consider
onlyUi:m:n ≤ T .

Now, we obtain a simple expression for the entropy in
progressive hybrid Type-I censored data as the following.
Theorem 2.1. The entropy in the progressive hybrid Type-
I censoring dataHI

T∧m:m:n is

HI
T∧m:m:n = ∑m

r=1{(1− logcr−1
)(1−Cr−1

cr−1
Ḡcr−1+1(T ))−

∫ T
0 logh(u)gr:m:n(u;θ )du}.

Proof. Using the Markov chain property of the order
statistics from progressive Type II censored samples
([15]), we have the following decomposition

g1···m:m:n(t1, · · · , tm) = g1:m:n(t1)∏m−1
r=1 gr+1|r:m:n(tr+1|tr).

(7)
Therefore, the entropy of Type-I hybrid censored sample
can be written as

H1···m:m:n = H1:m:n +H2:m:n|1:m:n + · · ·+Hm:m:n|m−1:m:n,
(8)

where Hr+1:m:n|r:m:n is the expected entropy inTr+1:m:n

given Tr:m:n = ur. Sincegr|r−1(tr|tr − 1), for Ur:m:n ≤ T ,
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can be interpreted as the pdf of
(min{Y1:cr−1 ∧T}, I(Y1:cr−1 ≤ T ), whereY1:cr−1 is the first
order statistic of a random sample of sizeci−1 from
random variable truncated from a left with pdfg(y)1−G(ui)

for
y ≥ ur−1. Using Lemma 2.1 we can obtain the conditional
entropy inY1:cr−1 givenur−1:m:n = ur−1 as

Hmin(Y1:cr−1
∧T) = {(1− logcr−1

)(1−Cr−1
cr−1

Ḡcr−1+1(T ))−
∫ T
0 logh(t) fY1:cr−1

(t|tr−1)dt.

Hence, the average of the conditional information can be
written in[9] as

Hr:m:n|r−1:m:n = Hmin(Y1:cr−1
∧T )

= (1− logcr−1
)(1−Cr−1

cr−1
Ḡcr−1+1(T ))−

∫ T

0
logh(t)gr:m:n(t)dt.

Then, Theorem 2.1 follows from Equation (8).

3 Entropy in progressive Type-II hybrid
censoring

In this section, we obtain the entropy in progressive
Type-II hybrid censoring scheme. Following, Childs et al.
[3] the progressive Type-II hybrid censoring scheme can
be defined in the following two setting, first experiment
continues up to timeT if Um:m:n < T without any further
dragging to the survival units after the failuremth second
experiment ends atUm:m:n if Um:m:n > T , Hence, we have
a numberRm of survival units still under the experiment
even after themth failure has occurred whenUm:m:n < T .
Therefore, the progressively Type-II hybrid censored data
can be denoted by(T1, ...,Tm+Rm), whereTi = Ui:m:n, for
i = 1, ...,m, and
Tm+i = (min{Un−Rm+i:n,T}, I(Un−Rm+i:n ≤ T )), for
i = 1, ...,Rm.
Theorem 3.1. The entropy in the progressive Type-II
hybrid censoring dataHII

T∨m:m:n is

HII
T∨m:m:n = H1···m:m:n +Hc −H(n−Rm)∧T :n,

whereH1,··· ,m:m:n, Hc and H(n−Rm)∧T :n represent entropy
for Type-II progressive censoring, entropy for Type-I
censoring and Type-II hybrid censoring, respectively.
Proof. Using the Markov chain property of the order
statistics from progressive Type II censored samples we
have the following decomposition

g1···m+Rm:m:n(t1, · · · , tm) = g1···m:m:n(t1. · · · , tm)gm+1···m+Rm|m(tm+1, . . . , tm+Rm |tm),

(9)
where g1...m:m:n is the joint density function of the
progressively Type-II censored data andgm+1···m+Rm|m:m:n
is the conditional joint density of the Type-I hybrid
censored data, givenTm = tm. ThusTm =Un−Rm:n.
Using Equation (9), the following decomposition follows
from the strong additivity of the entropy

HII
T∨m:m:n = H1···m:m:n +Hm+1,··· ,m+Rm|m:m:n,

where,H1,··· ,m:m:n andHm+1m+Rm|m:m:n are the entropy in
the progressively Type-II censored data
(U1:m:n, · · · ,Um:m:n) and the average of the conditional
entropy in the Type-I hybrid censored data
(Tm+1, · · · ,Tn+Rm) givenTn−Rm:n respectively.
Now, we consider the decomposition of
gm+1···m+Rm|m(tm+1, . . . , tm+Rm |um) as

gm+1···m+Rm|m(tm+1, . . . , tm+Rm |um) = gm+1|m:m:n(tm+1|tm)∏m+Rm
r=m+1 gr+1|r:m:n(tr+1|tr).

(10)
Since gm+r|m+r−1:m:n(tm+r|tm+r−1) is the conditional
density of min (Un−Rm+r:n,T ), given min
(Un−Rm+r−1:n,T ). Using Lemma 2.1, we can obtain the
average of the conditional entropyHm+1···m+Rm|m:m:n as

Hm+1···m+Rm |m:m:n =
n

∑
r=n−Rm+1

{(1− log(n− r+1)}{1−Cr−1
n−r+1Ḡn−r+1(T)}

−

∫ T

0
logh(u)gr:n(u)du}.

We can re-expressHm+1···m+Rm|m:m:n as

Hm+1···m+Rm|m:m:n =

∑n
r=1

[

{1− log(n− r+1)}{1−Cr−1
n−r+1Ḡ

n−r+1(T )}−
∫ T
0 logh(x)gr:n(u)du

]

−∑n−Rm
r=1

[

(1− log(n− r+1)}{1−Cr−1
n−r+1F̄

n−r+1(T )}
∫ T

0 logh(x)gr:n(u)du
]

= Hc −H(n−Rm)∧T :n,

this completes the proof.

4 An application

EXAMPLE 2.1. For the exponential distribution with pdf
g(x;λ ) = 1

λ exp(−x/λ ),x > 0, λ > 0 and cdf
G(x;λ ) = 1− exp(−x/λ ) the hazard function is 1/λ .
Using Theorem 2.1, the entropy in Type-I hybrid
censored data with a censoring timeT can be readily
obtained as

HI
T∧m:m:n = ∑m

r=1{(1− logcr−1
)(1−Cr−1

cr−1
Ḡcr−1+1(T/λ ))− log(T/λ )Gr:m:n(T/λ )}.

(11)
Also, in Theorem 3.1 using Lemma 2.2 and Lemma 2.1
for computing the entropy in Type-II progressive censored
data and the entropy in Type-II censored data respectively,
we may obtain the entropy in progressively Type-II hybrid
censored data as follows

H II
T∨m:m:n = m− logc− log

1
λ

m

∑
r=1

Gr:m:n(T/λ )dx

+
n−Rm+1

∑
r=1

[

(1− log(n− r+1)}{1−Cr−1
n−r+1Ḡn−r+1(T/λ )}

]

− log(1/λ )
n−Rm+1

∑
r=1

Gr:n(T/λ ), (12)
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Table 1: Best ten censoring schemes of Type-I and Type-II
progressive hybrid from scaled exponential distribution for (n =
10,m = 5)

n m Censoring scheme H I
T∧m:m:n Censoring scheme H II

T∨m:m:n
10 5 (0,0,1,4,0) 5.373 (0,0,1,4,0) 4.985
10 5 (0,0,2,3,0) 3.850 (0,0,2,3,0) 3.159
10 5 (5,0,0,0,0) 3.015 (5,0,0,0,0) 2.881
10 5 (4,1,0,0,0) 2.917 (4,1,0,0,0) 2.784
10 5 (3,2,0,0,0) 2,750 (3,2,0,0,0) 2.637
10 5 (0,0,3,2,0) 2.665 (2,3,0,0,0) 2.510
10 5 (0,0,2,3,0) 2.600 (0,0,3,2,0) 2.429
10 5 (2,2,1,0,0) 2.338 (0,0,0,0,5) 2.170
10 5 (0,1,2,2,0) 2.226 (0,1,2,2,0) 1.952
10 5 (0,2,1,2,0) 2.052 (0,2,1,2,0) 1.748

where

Gr:m:n(x) = 1−
r

∑
j=1

c j,rg(x j)(1−G(x j)
c j−1−1,

and

Gr:n(x) =
n

∑
j=r

Cn
j [G(x)] j [1−G(x)]n− j.

Since progressive censoring is a diverse censoring plan
specifically there is a flexibility in the choice of
(R1, · · · ,Rm), for example, if we taken = 10 andm = 5,
we obtain a total of censoring schemes

(n−1
m

)

, which gives
a value of 126. We consider some different values forRis
in the censoring scheme(R1, · · ·Rm), when n = 10 and
m = 5. For the special caseθ = 2, and the median of the
scaled exponential distribution as the pre-fixed censoring
time i.e. (T = θ log2,). Table 1 provides the values of
HI

T∧m:m:n and HII
T∨m:m:n. The entries were calculated by

Equations (11), (12), and MATHEMATICA. We may
specified the optimal progressive hybrid censoring
schemes out of 126 possible schemes for which the
maximum entropy is attained. In Table 1, we record the
ten best progressive hybrid censoring schemes based on
maximizing the entropy. Table 1 shows that the entropy in
progressive Type-II hybrid censoring and the entropy in
progressive Type-I hybrid censoring are maximized at
censoring scheme(0,0,1,4,0), for all censoring schemes
and for the chosen censoring TimeT .
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