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Abstract: The problem of estimating the stress-strenBts P(Y < X) whenX andY are two independent ordinary samples was
considered by many authors. In this paper, the problem ohatibn of R= P(Y < X) whenX andY are two independent k-upper
record values from the Kumaraswamy distribution is comsideMaximum likelihood (ML) and Bayes techniques are us®dlis
purpose. The maximum likelihood estimator is used to canstroth an exact confidence interval and percentile begstonfidence
interval of the stress-strength. Bayes estimators have theecloped under both symmetric (squared error) and asymer{le NEX)
loss functions. Monte Carlo simulations are performed togare the performances of the different methods.

Keywords: Stress—strength model; K-upper record; Kumaraswamy iloision; Maximum- likelihood estimator; Bootstrap
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1 Introduction

In the statistical literatur® = P(Y < X) is known as the stress-strength parameter. This problesasaim the classical
stress-strength reliability where one is interested iressing the proportion of the times the random strengthf a
component exceeds the random stiést which the component is subjected. Also This problem arisestate where

X andY represent lifetimes of two devices and one wants to estithatprobability that one fails before the other. For
example, if we have a failure voltage levels of two types et#ical cable insulation when specimens were subjected
to an increasing voltage stress in a laboratory test, “wdrdegested” in finding the type of insulation that has longer
life. Specifically, letX represent the life time of a type 1 insulation, andMetepresent the same for type 2 insulation.
Then the lower confidence limit fa?(Y < X) with a value greater than®indicate the superiority of type 1 insulation in
terms of longevity. Constantine and Karsdhdonsider the case whefiandY are independent gamma random variables.
Ahmed et al. 2] and Surles and Padgeg][considered the estimation &whereX andY are Burr-X random variable.
Ghosh and Sur] considered the recent developments of Bayesian infefenséress-strength models. Kundu and Gupta
[5] developed the inference procedures®nnder classical and Bayesian frame work, wieandY are independent
generalized exponential distribution. Ragab et@]lcpnsidered the estimation ( Bayes and modified MLRafthenX
andY are distributed as two independent three-parameter derget@xponential random variables with different shape
parameters but having the same location and scale paramateecent account on inference ab&uwhenX andY

are exponentially distributed is given by Jiang and WorigGreco and Venturagd] considered robust inference for the
stress—strength reliability. Rezaei et 8. fliscussed the problem of estimation Bf whenX andY are two independent
generalized Pareto distributions with different paramse#lso, the problem of estimation Bf involving two independent
modified Weibull distributions is considered by Soliman lef &0]. Baklizi [11] has considered a similar problem for the
exponential distribution based on record values, usingB@yesian approach. Nadar et dlZ] discussed the problem of
estimation oRwhenX andY are two independent Kumaraswamy'’s distribution based cordevalues. As can be seen
from the cited literature, the developments in this fieldered a variety of data types including complete data, cealsor
data as well as data with explanatory variables. Howevergtlare many situations in which only observations more
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extreme than the current extreme value are recorded. Iflikergation is greater than all the preceding observations i
is called an "upper” record. On the other hand, if the obg@mds smaller than all the preceding observations then it
is called a " lower” record. Industrial stress testing is é&unal example where only items that are weaker than all the
observed failed items are destroyed, see for example AhamatArghami [L3]. A growing interest in the inferences of
records has arisen in the last two decades, but not much baglbee in the Bayesian framework. Detailed discussions of
record data and its applications can be found in Arnold dtld], Ahsanullah 5] and Soliman et al.]6]. An k—upper
record values process is defined in terms ofldRdargestX yet seen. For a formal definition, we consider the definition
in Arnold et al. [L4], for the continuous case.

LetT;x =k, and forn> 2

Took=min{j:j>T X >Xr ke b

whereX;.m denotes thé" order statistic in a sample of sire The sequence d—upper record values are then defined
by Rn (k) = X7, —k+1:T, for n > 1. Note that fork = 1, an upper record value is recovered. See, Ahmadi eL 3L In

this paper, it is shown how—upper record data can be used to provide point estimatiocamiidence intervals for the
stress-strength reliability modBI= P(Y < X) from the Kumaraswamy distribution with different paramst&Ve obtain
the MLE of Rand its exact distribution. The exact distribution is useddnstruct an exact confidence interval. Nadar and
Kizilaslan [L8] have considered a similar problem for Kumaraswamy's ilistion based on record values. The interest
in developing inference procedures ®arises because of its applications to a variety of fields.

A random variable X said to have a Kumaraswamy distributitemoted by X~ Kw(a, b).

The distribution function (cdf) is

F(xab)=1—(1—x®P, 0<x<1, (1)
and hence the probability density function (pdf) given by

f(xab)=ab@1(1-x»"1  0<x<1, )

wherea>0andb>0 are the shape parameters. It is known that X is Kumaraswhsty 4n X is the two parameters
generalized exponential distribution. Kumaraswa8] developed a more general (pdf) with hydrological applaras,
which is known as Kumaraswamy distribution. This distribnthas been studied by many authors, see Sundar and
Subbiah 20], Fletcher and Ponnamblar@]], Seifi et al. P2, Ponnambalam et al2B], Ganiji et al. 4] and Nadarajah
[25]. The main aim of this paper is to focus on the estimationRoE P(Y < X), where X andY follow the
Kumaraswamy distribution based &n-upper record data. In section 2, we obtain the maximum hikeld estimation
(MLE) of R and its exact distribution. The exact distribution is usedonstruct an exact confidence interval. The
parametric bootstrap percentile confidence interval of Brésented in section 3. Bayesian confidence intervals with
exact confidenc interval of R are presented in section 4.,AfsBayesian setting, the symmetric and asymmetric point
estimations oR are obtained and discussed in section 5. In section 6, tweerigal examples using simulaté&elipper
record data are illustrated and the results of differentiogs are discussed. The different methods have been comnpare
using simulation study and their results have been reparntséelction 7. The conclusions is presented in the final sectio

2 Maximum likelihood estimation

To formulate the present problem, Kt~ Kw(a,b;) andY ~ Kw(a,by) are two independently distributed . (here ”
"means follows or has the distribution). Therefore , be tiness strength reliability model define as:

R=p(Y <X)=[% [*, f(xy)dydx
= [* G(X)dF (x) N
=l {1_ (1- Xa)bz} abp 1 (1—x)Ptdx,

wheref (x,y) the joint probability density function, then

b,
R=—5—. 4
b1+ by @
Our interest is in estimatin® under assumption that the available data for BotandY are k-upper record values. Let
r=(ry,......,rn) be the first n of k-upper record values frédw(a, by ) ands= (s, ........ ,Sm) Letbe the first m of k-upper
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record values fronkKw(a, by), where a is known. The likelihood functions (for andby) based on the observed samples
rand s are given in Arnold et al. [14], respectively, by

n ’ n a-1
L (k) = (1 F () [ = ey = KB (-1 [ oy ©)
and
g’?‘*l
Lo (ba|s) = K™ (1— G(sm rll G = kMa"bJ (1<) kbzrl(ll sa) (6)

Thus the joint log-likelihood function (for 1 and 2) basedtba observed samples r and s can be written as

| (by,by|r,s) =log (L1 x L2) = nlog (k) + mlog (k) + nlog(a) + mlog(a) + nlog(bz) + mlog(by)
+kbylog(1—rg) +kbzlog(1—sy) +(a—1) 3L log(ri) — 5Ly log (1 —rf) ©)
+(@-1) 3, log(s)) — 3], log (1 - 5?)

The MLE’s ofb; andb, sayBl andb, respectively, can be obtained as the solutions of

0! (b, bar,s) _
T b]_ + k|Og( ) = 0, (8)
and 31 (by.balr. )
1,02|I,S
From equations (8) and (9), we obtain
~ —n
b= klog(1—ra)’ (10)
and m
b, = Klog(1—)" (11)

Since ML estimators are invariant, so the ML estimatorR becomes:

Ry — b, B log(1—r3)
" T bitb, log(1-rd)+log(l-sk)

To study the distribution oRy. we need the distribution df, andb,. The (pdf) ofry, is given by (see, Arnold et al. [14])

(12)

n

felfe) = gy (~100(1—F ()" (L= F (1)1 ()
- A A gyt 1 rat, (139

(n—1)!
Consequently, the (pdf) @ = by = Wln—rﬁ)’ is given by

(—1)* tpinn (—nb1>
fz, (Z1) = ex , 71> 0, 14
Zl( 1) I_(n)ilprl p Z]_ 1 ( )
similarly, the (pdf) ofz, = b, = Hogtisey + IS given by
(—1)*™ 0] (—mb2>
f, () = ex , 22> 0. 15
Zz( 2) [_ (m) ng,l p 22 2 ( )
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Now, we can writeRy. = = +22 =1 +22 ey . Therefore, using (14) and (15) we h%éz ~ Fonom. MoreoverZ,andZ, are

independently distributed. Th@is ~ bz':?l” —=22m whereFon om is @ scaled F distribution with 2n and 2m degrees of freedom.
It follows that the distribution oRy,_ is that
(16)

A b n.zZzm
RMLN< 2F22)

by

Which can be obtained using simple transformation tectesqiihg 1 — a) 100% confidence interval &fcan be obtained

as N N
1Fy 2 onom \ 2R a2 nom \
{(1+ e ) 7<1+ o/ ) } an
Vi) Vi)

whereF;_ (g 2) 2n2m @ndF(q 2) 2n2m are the lower and uppéa /2)th percentile points of & distribution.

3 Bootstrap Confidence Intervals

It is well known that the record value are inpractice and thmgle size are often very small. However, confidence
intervals based on the asymptotic results do not performwetl for small sample size. So, in this section we obtain the
confidence interval of based on the parameteric percemdédirap method suggested by Efr@i][. When the available
data are the two sets of k-upper record viues, the algorithradtimating the confidence interval of using-the pararicete
percentile bootstrap method is illustrated below.

The following step are followed to obtain the k -upper redoodtstrap samples frow(a, b1) andKw(a, by).

Step 1Based on the original k-upper record values.....,rn) and(sy, ...... ,Sm), compute the MLEﬁl, 62 andRyL using
10, 11 and 12 respectively.

Step 2Uséy, b, to generate a bootstrap sample of k-upper records...., ) and(s;, ......, s, from the Kumaraswamy
distribution and comput®* using(12).

Step 3Repeat step 2, N times representing N bootstrap MIiERbased on N different bootstrap samples.

Step 4Arrangd?* in an ascending order to obtain the bootstrap sa{wpﬂé ¢[2], ........ , ¢[N]} wherg(¢ =R").

Step 5LeiG(z) = p(F?* < z) be the cumulative distribution &t*. DefineFAzboot ~1(z) for a givenz. The approximate
bootstrap1 — a) 100% confidence intervals &is given by(Rboot( ), Rooot (1— %))

4 Bayes Estimations for R
4.0.1 Exact confidenc interval

In this section we discuss the Bayesian estimator oRtHeis assumed here that the paramebgrandb, are independent
and follow the gamma prior distributions. Therefore, thiepdensity function ob; andb, becomes

m (b)) = r (lal) 1t exp(—pPiby) , b1 >0, (18)
and
o 0r) = (2 i enpt ) b0, 19)

where,a1, a2, 31 and 3, are chosen to reflect prior knowledge abbutand k. From Egs. (5- 6) and (18- 19), we can
show that the posterior (pdf) @f is given by

b [y — KIn (1—r)] "™ ™ exp(—by (B — kIn (1—18)))

g (ba|r) = F(n+a) , (20)
and the posterior (pdf) df, is given by
7% (byls) = b2 1 (B, — kin (1— <)) ™ %2 exp(—by (B — kIn (1— ) . 1

r(m+ay)
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Using the posteriors density bfandb, given in (20) and (21), the joint posterior bfandb; is given by

b} "5 %2 (1) (1) 2By Kin(a—rf)" L
15 (b, bor,8) = 2 2 Finra ) (22)

X [B2— kIn(1— )™ "2 exp(—Bab1 — Bobz) by, b > 0.

by using the following simple transformation technique

by by

- b1+b2: w

w=b;+by , R

)

we can obtain the joint posterior distributionRfindw as

W(n+m+or1+a2)—1R(m+a2)—1(1_R)(n+a1)—1(1_rﬁ)kw1 [B1—KIn(1-r2)" a1

5 (Rw) = T (nrayl (mraz) (23)
1_% leRl mH-as
X [1_—@} [B2 —kIn (1—s3)]™ "2 exp(— (B2 — B1) R+ B) w) ,w > 0.

Using equation (23) with integrating out of, the posterior distribution dRis given by
5 (RIr,s) = QR™ )71 (1 - R)™ "1 (14 Rd) °, (24)

where

_ F(n+m+a;+az)
Q= r(n+oay)l (m+ay)
D=n+m+a;+ ay,
g— Po—B1)—KIn(1-s) +kin(1-r7)
BL—KIn(1-r3) '

Bz — kln(l—Sﬁq)]maz
B1—KIn(1—rg)

)

It follows that
25y (B —KIn(1=r5)) ~ i1, and D (B2 —KIn (1= ) ~ X,
By the independence of two random quantities, we have

201 (B —KIn(1-13) /(2(n+ay) -
2, (B—kIn(1—)) / (2(m+az)) ~ 2ntau.2miaz):

hence,
by (Bi—Kin(1-r8)(n+ay)
by (B—kin(1—s))(m+ap) Anrou2meaz):
Using simple transformation techniques with= <<I§321:|1‘|':(<11:$; E;ﬁo{% ’

for Ras follows

we can obtain thél — o) 100% confidence interval

{ (1+ AFO!/Z-,Z(HJrGl)-,Z(erGz)) o (14 AF1*0/2,2(N+01)’2(”1+02)) _1} ' (25)

5 Bayes Point Estimations of R

Sometimes the use of symmetric loss function, namely squemrer loss function (SEL), was found to be inappropriate,
as for example, an overestimation of the reliability fuantis usually much more serious than an underestimation. In
this case, an asymmetric loss function might be more apjatep”™A number of asymmetric loss functions are proposed
for use, among these, one of the most popular asymmetriduossions is linear-exponential loss function (LINEX)
which was introduced by Variar2g]. The LINEX loss function rises approximately exponenyian one side of zero
and approximately linearly on the other side. Recently, yrearthors considered asymmetric loss functions in relighbil
and life testing, such as Basu and Ebrahi2g][ Soliman et al. 8] and Ren et al.31]. Under the assumption that the
minimal loss occurs & = R, the LINEX loss function foR can be expressed as

L(A) oc exp(cA) —cA—1; c#0. (26)
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WhereA = (F?— R), Ris an estimator oR. The sign and magnitude of the shape paranetepresents the direction and
degree of asymmetry respectively €I~ 0), the overestimation is more serious than underestimadiod vice-versa. For
c closed to zero, the LINEX loss is approximately squaredrdoss and therefore almost symmetric. For more details
aboutL(A) see Zellner32] and Calabria and Pulcin®?]. The posterior expectation under the LINEX loss functigf)(
is

Er(L(A)) = exp(cR)Er[exp(—cR)] — ¢(R— Er(R)) — 1, (27)

whereER(.) denotes the posterior expectation with respect to the postiensity ofR. The Bayes estimator &, denoted
by RgL under the LINEX loss function is the valiRwhich minimizes (27), that is

a -1

ReL = — log{ER[exp(—cR)]}. (28)
provided that the expectatidtr[exp(—cR)] exists and is finite.
In the following subsections, we obtain the Bayes pointnestion ofR relative to both a squared error loss function
(SEL) and LINEX loss function.

Bayes estimation under a squared error loss function .
Under squared error loss functitfR, R) = (R— R)?, the Bayes estimate &, denoted byRgsis the posterior mean

Rys = Jg QR™@2) (1—R)™ W~ (14 Rd) P

oMt a1 (18 -D
=Q 3 (U (7" foRY (1+dR) CdRy (29)
n+a;—1 (_1)i(in+011*1
=Q _zl —aE oF1[D,Ei+ 1 E+2,—d],
=
whereE; = m+ a2+ i, andzFi[a, b; c; 7 is the hypergeometric function.
Bayes estimation under LINEX loss function .
Relative toLINEX loss function, the Bayes estimateR®tlenoted byRg, is given by
ReL = —log | g exp(—cR) QRMa2)-1(1 — R)™)~1(1 1 dR)"PdR
n+ay—1 (— 1)+ (!“*"1*1) P B
_ -1 © R U 1 Bl, -1 D
= —<log QY70 izl i x J[gRPITH(1+dR™"dR (30)
N W M1l (1) (ir‘+0’1*1>
=2log Q¥ 3o 2F1[D,Bij,Bij+1,—d] |,

whereB; j = ax+i+j+m.

6 Data Analysis

In this section, we present two examples to illustrate tle®ipus results and to compare the performance of the differe
estimation procedures.

Examplel: In this example, we present a complete analysig) us simulated k-upper record data. The different
estimators oR obtained in the above sections are computed as follows:

(1) For given values of the prior parameters and 31 we generatéd; from the prior distribution (18), and it is
considered as the “actual” population value, and similélythe prior parametera, and 3, we generatd, from the
prior distribution (19). We obtaineloh = 3 andb, = 2.

(2) We generate two sets kf-upper record values from Kumarswamy distribution usimg: m= 5,k =5,b; = 3 and
b, = 2 thereforeR = 0.4.
From the following steps we can obtain the firsin of k—upper record values.
(i) We generate data from Kumarswamy distribution of $ize
(i) We arrange this data in ascending order, we hayg,> x;.» >...> X1, we will take the value as the numblesay
X1k
(iii) We generate another value from Kumarswamy distribbutand insert to this data and descending sort we have

(@© 2018 NSP
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X1:1 > X1:2 >..> X141, and we will take the value as the numlber

(iv) Repeat step (ii)n times, we can get the firstof k—upper record values as, Xy, ..., Xn.

(3) The data has been truncated after four decimal place® %Hhupper record values fromY  as:
0.06580.11040.20550.2701,0.3517 and the 5upper record values froxd as 001720.03200.1829

0.18360.2610. R R

(4) Using equations (10) and (11), the MLE bof andb; are :b; = 3.30598 andb, = 2.30766 Therefore, the ML
estimates oRis Ry = 0.411081 The 95% exact confidence interval Rusing (16) is(0.15810.7218).

(5) Bootstrap methadBased on the original data in step 3 and using the algoritrsordeed in section (3), we compute

the mean oN = 1000 bootstrap samples B as a bootstrap point estimate, the result becoRjgg = 0.3915. The
95% bootstrap confidence interval (BCls)Ris (0.1710 0.5874).
(6) Bayes methadror the case of informative priors, we uge= 1,a, = 2,31 = 1 andf3; = 2. The Bayes estimates of

R relative to SEL and LINEX loss functions are computed usi2g) @nd (30). The results aré53§: 0.421766 the
Bayes estimates under LINEX loss function are respectiigy = 0.3816 Rg. = 0.4364 andRg_ = 0.3944 for
c=5,—-2,and 00001

(7) The 95% confidence interval & using Bayes confidence interval in (25) is computed @88810.8612). The
posterior probability density function & is plotted in Fig.1.

1.0

R=B{Y¥<X)

Fig. 1: Posterior probability density function of R for record dat&Example 1
Example 2: Using the same steps in example 1, the sets efuer record values of sizesandm are generated
from Kumarswamy distribution using; = 1.5 andb, = 2. ThereforeR=0.7273 is assumed as the true valuérofFor
different values oh andm, we obtain the 95% confidence interval®using the maximum likelihood metho(),
Bayes methodRS) and percentile bootstrap methdgbt) based on 1000 bootstrap samples. The results are recorded i
Table 1.

Table (1) 0.95% confidence intervals &, with lower L and upper U Limits.

mn (i (-)Bs ()Boot
L U length L U length L U length

5| 5 |0.2299 0.8049 0.5749 0.1574 0.6463 0.4889 0.2537 0.6905368.4
5| 7 | 04001 0.8817 0.4816 0.0698 0.3819 0.3121 0.5080 0.8191110.8
5 | 10| 0.2320 0.7412 0.5092 0.0622 0.3208 0.2585 0.3278 0.6377130.8
7 | 503348 0.8490 0.5142 0.2126 0.6992 0.4865 0.3443 0.77182795.4
7| 7 |0.4846 0.8930 0.4084 0.0959 0.4320 0.3361 0.5183 0.8377190.3
7 | 10| 0.4201 0.8428 0.4227 0.0699 0.3156 0.2457 0.5016 0.7769758.p
10| 5 | 0.2451 0.7548 0.5097 0.4397 0.8575 0.4179 0.2303 0.6530220.4
10| 7 | 0.4807 0.8726 0.3920 0.1862 0.5914 0.4053 0.4879 0.8205320.3
10| 10 | 0.4759 0.8465 0.3706 0.1105 0.3993 0.2889 0.5049 0.7912868.p2

From Table 1, it is clear, as expected, that increasing thmbeun of records on either variable results in shorter
intervals.
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7 Simulation study and comparisons

In this section, we present some results based on Monte €lanldations to compare the performance of the different
estimators of the stress-strength reliabiRRyin this simulation, 1000 pairs of sampleskefupper record daték = 3,5)
were generated from kumarswamy distribution using cask; E= 3,b, = 2 anda = 1 with R= 0.4 and various
combinations of sample sizesandm, case 2b; = 1.5,b, = 1.7 anda = 2.1 with R= 0.5313 and various combinations
of sample sizes andm. We obtain theMLE of R, (.),, using (12), the symmetric Bayes estimatd=of. )5 using (29),
and the asymmetric Bayes estimateR0f.)g, using (30). The average estimation and the mean square(Bt8#) of R

for different methods are computed over 1000 replicatidhe results are reported in Table 2 and 4 fenupper record
data and in Tables 3 and 5 for-bipper record data. For all methods, It is clear as expecteenwandm increase, the
MSE’s decrease.

Table(2)The Means and (MSE) ® with R=0.4, k= 3.

m n i ()Bs ()Bi Boot
c2=-2 ¢3=0.0001 cl1=2
5 5 0.4248  0.4275 0.4442 0.4275 0.4113 0.4068
(0.0253) (0.0083) (0.00972) (0.00834) (0.00744)0.0224)
7 7 0.4037 0.41027 0.4231 0.4103 0.397P 0.3911
(0.0150) (0.0059) (0.00647) (0.00587) (0.005%0.0139)
10 | 10 | 0.4164 0.4171 0.4268 0.4172 0.4078 0.4069
(0.0126) (0.0058) (0.00639) (0.00582) (0.0055)0.0118)
13| 13 | 0.4124 0.4143 0.422 0.4143 0.4068 0.4051
(0.0078) (0.0047) (0.00504) (0.00469) (0.004440.0074)
Table(3)The Means and (MSE) ®R with Ry = 0.4, k=5.
m | n (mi ()Bs (Jai Boot
c=—-2 ¢=0.0001 c=2
5 5 0.4221 0.4258 0.4427 0.4258 0.4095 0.4042
(0.0198) (0.0065) (0.00783) (0.00649) (0.00569P.0175
7 7 0.4014 0.4099 0.4228 0.4099 0.3974 0.3880
(0.0126) (0.0054) (0.00602) (0.00542) (0.00512p.0117
10 | 10 | 0.4053 0.4090 0.4185 0.409 0.3997 0.3964
(0.0116) (0.00532) (0.0060) (0.00532) (0.00517M.01107
13 | 13 | 0.4009 0.4052 0.4128 0.4052 0.3978 0.3934
(0.0088) (0.0053) (0.00552) (0.00529) (0.00515p.0085
Table(4)The Means and (MSE) ®R with R=0.5313 k= 3.
m | n i (s (sl Boot
Ci=-—2 c,=0.0001 C3=2
5 5 0.5414 0.5103 0.5273 0.5103 0.4934 0.5173
(0.02015) (0.00848) (0.00795) (0.00848) (0.00947P.01894)
7 7 0.5148 0.4973 0.5105 0.4973 0.4843 0.4982
(0.01742) (0.00843) (0.00789) (0.00843) (0.0935§0.01728)
10| 10 0.5217 0.5055 0.5154 0.5055 0.4956 0.5093
(0.01233) (0.00799) (0.00756) (0.007988) (0.00857D.01229)
13| 13 0.5385 0.5226 0.5306 0.5226 0.514Y 0.5287
(0.00805) (0.00546) (0.00535) (0.005465) (0.00568p.00776)
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Table(5)The Means and (MSE) dR with Ry = 0.5313 k= 5.

m | n (mi ()Bs ()si Boot
ci=—2 c,=0.0001 C3=2

5 5 0.5264 0.501 0.518 0.501 0.4841 0.5033
(0.02049) (0.00919) (0.00839) (0.00919)  (0.0104%D.01976)

7 7 0.527 0.5047 0.5179 0.5047 0.4916 0.5101
(0.01674) (0.00883) (0.00828) (0.00883) (0.00967D.01635)

10 | 10 0.537 0.5183 0.5281 0.5183 0.5085 0.5246
(0.01312) (0.00809) (0.00788) (0.00809)  (0.008#4.01255)

13 | 13 0.5327 0.5175 0.5255 0.5175 0.509b 0.523
(0.00813) (0.005621) (0.00544) (0.00562)  (0.00591P.00802)

8 Conclusions

In this paper, we have addressed the problem of estimatioR ef P(Y < X) using k-upper record values from
Kumarswamy distribution. It is shown how record data can &eduo provide point estimation and confidence interval
for R. We consider the maximum likelihood method, Bayesian nekttedative to symmetric and asymmetric loss
functions and parametric bootstrap percentile method.disteibution of the MLE ofR were used to construct exact
confidence interval oR. In Bayesian approach, the posterior distributiorRaf obtained in closed form and used to
construct:

(i) exact Bayesian confidence interval fer
(i) symmetric and asymmetric Bayes point estimateR.of

Comparisons are made between the ML and the Bayes estintasesl on simulation study. From results we can note
that:

1.Generally, it appears that the MSE's of the Bayes estisnaftR are smaller than MSE'’s of the ML estimates.

2.For all methods when andm increase, the MSE’s are reduce.

3.Tables (2, 3, 4 and 5) show that the Bayes estimatorsvelatasymmetric loss functions (LINEX) are sensitive to the
value of the shape parametasf the LINEX loss function. When is close to zero, the MSEs of the Bayes estimators
under LINEX loss function are very close to their corresgngdSEs under the squared error loss function.
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