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Abstract: The problem of estimating the stress-strengthR= P(Y < X) whenX andY are two independent ordinary samples was
considered by many authors. In this paper, the problem of estimation of R= P(Y < X) whenX andY are two independent k-upper
record values from the Kumaraswamy distribution is considered. Maximum likelihood (ML) and Bayes techniques are used for this
purpose. The maximum likelihood estimator is used to construct both an exact confidence interval and percentile bootstrap confidence
interval of the stress-strength. Bayes estimators have been developed under both symmetric (squared error) and asymmetric (LINEX)
loss functions. Monte Carlo simulations are performed to compare the performances of the different methods.
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1 Introduction

In the statistical literatureR= P(Y < X) is known as the stress-strength parameter. This problem arises in the classical
stress-strength reliability where one is interested in assessing the proportion of the times the random strengthX of a
component exceeds the random stressY to which the component is subjected. Also This problem arises in state where
X andY represent lifetimes of two devices and one wants to estimatethe probability that one fails before the other. For
example, if we have a failure voltage levels of two types of electrical cable insulation when specimens were subjected
to an increasing voltage stress in a laboratory test, “we areinterested” in finding the type of insulation that has longer
life. Specifically, letX represent the life time of a type 1 insulation, and letY represent the same for type 2 insulation.
Then the lower confidence limit forP(Y < X) with a value greater than 0.5 indicate the superiority of type 1 insulation in
terms of longevity. Constantine and Karson [1] consider the case whenX andY are independent gamma random variables.
Ahmed et al. [2] and Surles and Padgett [3] considered the estimation ofR whereX andY are Burr-X random variable.
Ghosh and Sun [4] considered the recent developments of Bayesian inferencefor stress-strength models. Kundu and Gupta
[5] developed the inference procedures onR under classical and Bayesian frame work, whenX andY are independent
generalized exponential distribution. Raqab et al. [6] considered the estimation ( Bayes and modified ML) ofR whenX
andY are distributed as two independent three-parameter generalized exponential random variables with different shape
parameters but having the same location and scale parameters. A recent account on inference aboutR whenX andY
are exponentially distributed is given by Jiang and Wong [7]. Greco and Ventura [8] considered robust inference for the
stress–strength reliability. Rezaei et al. [9] discussed the problem of estimation ofR whenX andY are two independent
generalized Pareto distributions with different parameters. Also, the problem of estimation ofR involving two independent
modified Weibull distributions is considered by Soliman et al. [10]. Baklizi [11] has considered a similar problem for the
exponential distribution based on record values, using non-Bayesian approach. Nadar et al. [12] discussed the problem of
estimation ofR whenX andY are two independent Kumaraswamy’s distribution based on record values. As can be seen
from the cited literature, the developments in this field covered a variety of data types including complete data, censored
data as well as data with explanatory variables. However, there are many situations in which only observations more
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extreme than the current extreme value are recorded. If the observation is greater than all the preceding observations it
is called an ”upper” record. On the other hand, if the observation is smaller than all the preceding observations then it
is called a ” lower” record. Industrial stress testing is a natural example where only items that are weaker than all the
observed failed items are destroyed, see for example Ahmadiand Arghami [13]. A growing interest in the inferences of
records has arisen in the last two decades, but not much has been done in the Bayesian framework. Detailed discussions of
record data and its applications can be found in Arnold et al.[14], Ahsanullah [15] and Soliman et al. [16]. An k−upper
record values process is defined in terms of thekth largestX yet seen. For a formal definition, we consider the definition
in Arnold et al. [14], for the continuous case.
Let T1,k = k, and forn≥ 2

Tn , k = min{ j : j > Tn−1,k,Xj > XTn−1,k−k+1:Tn−1,k
},

whereXi:m denotes theith order statistic in a sample of sizem. The sequence ofk−upper record values are then defined
by Rn (k) = XTn,k−k+1:Tn,k for n ≥ 1. Note that fork = 1, an upper record value is recovered. See, Ahmadi et al. [17]. In
this paper, it is shown howk−upper record data can be used to provide point estimation andconfidence intervals for the
stress-strength reliability modelR= P(Y < X) from the Kumaraswamy distribution with different parameters. We obtain
the MLE ofRand its exact distribution. The exact distribution is used to construct an exact confidence interval. Nadar and
Kızılaslan [18] have considered a similar problem for Kumaraswamy’s distribution based on record values. The interest
in developing inference procedures forRarises because of its applications to a variety of fields.
A random variable X said to have a Kumaraswamy distribution,denoted by X∼ Kw(a, b).
The distribution function (cdf) is

F(x;a,b) = 1− (1− xa)b , 0< x< 1, (1)

and hence the probability density function (pdf) given by

f (x;a,b) = abxa−1(1− xa)b−1 , 0< x< 1, (2)

wherea>0andb>0 are the shape parameters. It is known that X is Kumaraswamy then -ln X is the two parameters
generalized exponential distribution. Kumaraswamy [19] developed a more general (pdf) with hydrological applications,
which is known as Kumaraswamy distribution. This distribution has been studied by many authors, see Sundar and
Subbiah [20], Fletcher and Ponnamblam [21], Seifi et al. [22], Ponnambalam et al. [23], Ganji et al. [24] and Nadarajah
[25]. The main aim of this paper is to focus on the estimation ofR = P(Y < X), where X and Y follow the
Kumaraswamy distribution based onk−upper record data. In section 2, we obtain the maximum likelihood estimation
(MLE) of R and its exact distribution. The exact distribution is used to construct an exact confidence interval. The
parametric bootstrap percentile confidence interval of R ispresented in section 3. Bayesian confidence intervals with
exact confidenc interval of R are presented in section 4. Also, in Bayesian setting, the symmetric and asymmetric point
estimations ofR are obtained and discussed in section 5. In section 6, two numerical examples using simulatedk-upper
record data are illustrated and the results of different methods are discussed. The different methods have been compared
using simulation study and their results have been reportedin section 7. The conclusions is presented in the final section.

2 Maximum likelihood estimation

To formulate the present problem, letX ∼ Kw(a,b1) andY ∼ Kw(a,b2) are two independently distributed . (here ”∼
”means follows or has the distribution). Therefore , be the stress strength reliability model define as:

R= p(Y < X) =
∫ ∞
−∞

∫ x
−∞ f (x,y)dydx

=
∫ ∞
−∞ G(x)dF (x)

=
∫ 1

0

[

1− (1− xa)b2
]

ab1xa−1(1− xa)b1−1dx,
(3)

wheref (x,y) the joint probability density function, then

R=
b2

b1+b2
. (4)

Our interest is in estimatingR under assumption that the available data for bothX andY are k-upper record values. Let
r = (r1, ......, rn) be the first n of k-upper record values fromKw(a,b1) ands= (s1, ........,sm) Let be the first m of k-upper
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record values fromKw(a,b2), where a is known. The likelihood functions (forb1 andb2) based on the observed samples
r and s are given in Arnold et al. [14], respectively, by

L1 (b1|r) = kn (1−F (rn))
k

n

∏
i=1

f (r i)

1−F (r i)
= knanbn

1(1− ra
n)

kb1
n

∏
i=1

ra−1
i

(1− ra
i )
, (5)

and

L2 (b2|s) = km(1−G(sm))
k

m

∏
j=1

g(sj)

1−G(sj)
= kmambm

2 (1− sa
m)

kb2
m

∏
j=1

sa−1
j

(

1− sa
j

) . (6)

Thus the joint log-likelihood function (for 1 and 2) based onthe observed samples r and s can be written as

l (b1,b2|r,s) = log(L1×L2) = nlog(k)+mlog(k)+nlog(a)+mlog(a)+nlog(b1)+mlog(b2)
+kb1 log(1− ra

n)+ kb2 log(1− sa
m)+ (a−1)∑n

i=1 log(r i)−∑n
i=1 log(1− ra

i )

+(a−1)∑m
j=1 log(sj )−∑m

j=1 log
(

1− sa
j

) (7)

The MLE’s ofb1 andb2 sayb̂1 andb̂2 respectively, can be obtained as the solutions of

∂ l (b1,b2|r,s)
∂b1

=
n
b1

+ k log(1− ra
n) = 0, (8)

and
∂ l (b1,b2|r,s)

∂b2
=

m
b2

+ k log(1− sa
m) = 0. (9)

From equations (8) and (9), we obtain

b̂1 =
−n

k log(1− ra
n)
, (10)

and
b̂2 =

−m
k log(1− sa

m)
. (11)

Since ML estimators are invariant, so the ML estimators ofRbecomes:

R̂ML =
b̂2

b̂1+ b̂2
=

log(1− ra
n)

log(1− ra
n)+ log(1− sa

m)
. (12)

To study the distribution of̂RML we need the distribution of̂b1 andb̂2. The (pdf) ofrn is given by (see, Arnold et al. [14])

fn,k (rn) =
kn

(n−1)!
(− log(1−F (rn)))

n−1(1−F (rn))
k−1 f (rn)

=
(−1)n−1abnknra−1

n

(n−1)!
[log(1− ra

n)]
n−1 (1− ra

n)
kb−1 . (13)

Consequently, the (pdf) ofz1 = b̂1 =
−n

k log(1−ra
n)

, is given by

fz1 (Z1) =
(−1)2n−1bn

1nn

Γ (n)zn+1
1

exp

(

−nb1

z1

)

, z1 > 0, (14)

similarly, the (pdf) ofz2 = b̂2 =
−m

k log(1−sa
m)
, is given by

fz2 (z2) =
(−1)2m−1bm

2 mm

Γ (m)zm+1
2

exp

(

−mb2

z2

)

, z2 > 0. (15)
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Now, we can writeR̂ML =
z2

z1+z2
= 1

1+z2/z1
. Therefore, using (14) and (15) we haveb1z2

b2z1
∼ F2n,2m. Moreover,Z1andZ2. are

independently distributed. Thusz2
z1
∼ b2F2n.2m

b1
, whereF2n,2m is a scaled F distribution with 2n and 2m degrees of freedom.

It follows that the distribution of̂RML is that

R̂ML ∼

(

1+
b2F2n.2m

b1

)−1

. (16)

Which can be obtained using simple transformation techniques. The(1−α)100% confidence interval ofRcan be obtained
as

{

(

1+
z1Fα/2,2n,2m

z2

)−1

,

(

1+
z1F(1−α/2),2n,2m

z2

)−1
}

, (17)

whereF1−(α/2),2n,2m andF(α/2),2n,2m are the lower and upper(α/2)th percentile points of aF distribution.

3 Bootstrap Confidence Intervals

It is well known that the record value are inpractice and the sample size are often very small. However, confidence
intervals based on the asymptotic results do not perform very well for small sample size. So, in this section we obtain the
confidence interval of based on the parameteric percentile boot strap method suggested by Efron [27] . When the available
data are the two sets of k-upper record vlues, the algorithm for estimating the confidence interval of using-the parameteric
percentile bootstrap method is illustrated below.

The following step are followed to obtain the k -upper recordbootstrap samples fromKw(a,b1) andKw(a,b2).

Step 1Based on the original k-upper record values(r1, ......, rn) and(s1, ......,sm), compute the MLEŝb1, b̂2 andR̂ML using
10, 11 and 12 respectively.

Step 2Usêb1, b̂2 to generate a bootstrap sample of k-upper records(r∗1, ......, r
∗
n) and(s∗1, ......,s

∗
m) from the Kumaraswamy

distribution and computêR∗ using(12).
Step 3Repeat step 2, N times representing N bootstrap MLE’s of Rbased on N different bootstrap samples.

Step 4ArrangêR∗ in an ascending order to obtain the bootstrap sample
[

ϕ [1],ϕ [2], ........,ϕ [N]
]

where
(

ϕ = R̂∗
)

.

Step 5LetG(z) = p
(

R̂∗ ≤ z
)

be the cumulative distribution of̂R∗. DefineR̂boot = G−1 (z) for a givenz . The approximate
bootstrap(1−α)100% confidence intervals ofR is given by

(

R̂boot
(α

2

)

, R̂boot
(

1− α
2

))

4 Bayes Estimations for R

4.0.1 Exact confidenc interval

In this section we discuss the Bayesian estimator of theR. It is assumed here that the parametersb1 andb2 are independent
and follow the gamma prior distributions. Therefore, the prior density function ofb1 andb2 becomes

π1 (b1) =
β α1

1

Γ (α1)
bα1−1

1 exp(−β1b1) , b1 > 0, (18)

and

π2 (b2) =
β α2

2

Γ (α2)
bα2−1

2 exp(−β2b2) , b2 > 0, (19)

where,α1,α2,β1 andβ2 are chosen to reflect prior knowledge aboutb1 and b2. From Eqs. (5- 6) and (18- 19), we can
show that the posterior (pdf) ofb1 is given by

π∗
1 (b1|r) =

bn+α1−1
1 [β1− k ln(1− ra

n)]
n+α1 exp(−b1 (β1− k ln(1− ra

n)))

Γ (n+α1)
, (20)

and the posterior (pdf) ofb2 is given by

π∗
2 (b2|s) =

bm+α2−1
2 [β2− k ln(1− sa

m)]
m+α2 exp(−b2(β2− k ln(1− sa

m)))

Γ (m+α2)
. (21)
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Using the posteriors density ofb1andb2 given in (20) and (21), the joint posterior ofb1andb2 is given by

π∗
3 (b1,b2|r,s) =

b
n+α1−1
1 b

m+α2−1
2 (1−ra

n)
kb1(1−sa

m)
kb2 [β1−k ln(1−ra

n)]
n+α1

Γ (n+α1)Γ (m+α2)

× [β2− k ln(1− sa
m)]

m+α2 exp(−β1b1−β2b2) b1,b2 > 0.
(22)

by using the following simple transformation technique

w= b1+b2 , R=
b2

b1+b2
=

b2

w
,

we can obtain the joint posterior distribution ofRandw as

π∗
3 (R,w) =

w(n+m+α1+α2)−1R(m+α2)−1(1−R)(n+α1)−1(1−ra
n)

kw1 [β1−k ln(1−ra
n)]

n+α1

Γ (n+α1)Γ (m+α2)

×
[

1−sa
m

1−ra
n

]kw1R1
[β2− k ln(1− sa

m)]
m+α2 exp(−((β2−β1)R+β1)w) ,w> 0.

(23)

Using equation (23) with integrating out ofw , the posterior distribution ofR is given by

π∗
3 (R|r,s) = QR(m+α2)−1(1−R)(n+α1)−1(1+Rd)−D , (24)

where

Q =
Γ (n+m+α1+α2)

Γ (n+α1)Γ (m+α2)

[

β2− k ln(1− sa
m)

β1− k ln(1− ra
n)

]m+α2

,

D = n+m+α1+α2,

d =
(β2−β1)− k ln(1− sa

m)+ k ln(1− ra
n)

β1− k ln(1− ra
n)

.

It follows that
2b1(β1− k ln(1− ra

n))∼ χ2
n+b1

and 2b2 (β2− k ln(1− sa
m))∼ χ2

m+b2
.

By the independence of two random quantities, we have

2b1(β1− k ln(1− ra
n))�(2(n+α1))

2b2(β2− k ln(1− sa
m))�(2(m+α2))

∼ F2(n+α1),2(m+α2),

hence,
b1

b2
∼

(β1− k ln(1− ra
n))(n+α1)

(β2− k ln(1− sa
m))(m+α2)

F2(n+α1),2(m+α2).

Using simple transformation techniques withA=
(β1−k ln(1−ra

n))(n+α1)
(β2−k ln(1−sa

m))(m+α2)
,we can obtain the(1−α)100% confidence interval

for Ras follows
{

(

1+AFα�2,2(n+α1),2(m+α2)

)−1
,
(

1+AF1−α�2,2(n+α1),2(m+α2)

)−1
}

. (25)

5 Bayes Point Estimations of R

Sometimes the use of symmetric loss function, namely squared error loss function (SEL), was found to be inappropriate,
as for example, an overestimation of the reliability function is usually much more serious than an underestimation. In
this case, an asymmetric loss function might be more appropriate. A number of asymmetric loss functions are proposed
for use, among these, one of the most popular asymmetric lossfunctions is linear-exponential loss function (LINEX)
which was introduced by Varian [28]. The LINEX loss function rises approximately exponentially on one side of zero
and approximately linearly on the other side. Recently, many authors considered asymmetric loss functions in reliability
and life testing, such as Basu and Ebrahimi [29], Soliman et al. [30] and Ren et al. [31]. Under the assumption that the
minimal loss occurs at̂R = R, the LINEX loss function forRcan be expressed as

L(∆)∝ exp(c∆)− c∆ −1; c 6= 0. (26)
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Where∆ = (R̂−R), R̂ is an estimator ofR. The sign and magnitude of the shape parameterc represents the direction and
degree of asymmetry respectively (Ifc> 0), the overestimation is more serious than underestimation, and vice-versa. For
c closed to zero, the LINEX loss is approximately squared error loss and therefore almost symmetric. For more details
aboutL(∆) see Zellner [32] and Calabria and Pulcini [?]. The posterior expectation under the LINEX loss function (26)
is

ER(L(∆)) = exp(cR̂)ER[exp(−cR)]− c(R̂−ER(R))−1, (27)

whereER(.) denotes the posterior expectation with respect to the posterior density ofR. The Bayes estimator ofR, denoted
by R̂BL under the LINEX loss function is the valuêR which minimizes (27), that is

R̂BL =
−1
c

log{ER[exp(−cR)]}, (28)

provided that the expectationER[exp(−cR)] exists and is finite.
In the following subsections, we obtain the Bayes point estimation ofR relative to both a squared error loss function
(SEL) and LINEX loss function.

Bayes estimation under a squared error loss function
Under squared error loss functionL(R̂,R) = (R̂−R)2, the Bayes estimate ofR, denoted byR̂BS is the posterior mean

R̂BS =
∫ 1

0 QR(m+α2) (1−R)(n+α1)−1 (1+Rd)−D

= Q
n+α1−1

∑
i=1

(−1)i
(

n+α1−1
i

)

∫ 1
0 REi

1 (1+dR1)
−D dR1

= Q
n+α1−1

∑
i=1

(−1)i
(

n+α1−1
i

)

(1+Ei) 2F1 [D,Ei +1,Ei +2,−d] ,

(29)

whereEi = m+α2+ i, and2F1[a,b;c;z] is the hypergeometric function.
Bayes estimation under LINEX loss function
Relative toLINEX loss function, the Bayes estimate ofR denoted byR̂BL is given by

R̂BL =
−1
c log

[

∫ 1
0 exp(−cR)QR(m+α2)−1 (1−R)(n+α1)−1 (1+dR)−D dR

]

= −1
c log

[

Q∑∞
j=0

n+α1−1
∑

i=1

(−1)i+ j
(

n+α1−1
i

)

j ! ×
∫ 1
0 RBi, j−1(1+dR)−D dR

]

= −1
c log

[

Q∑∞
j=0

n+α1−1
∑

i=1

(−1)i+ j
(

n+α1−1
i

)

j ! 2F1 [D,Bi, j ,Bi, j +1,−d]

]

,

(30)

whereBi, j = α2+ i + j +m.

6 Data Analysis

In this section, we present two examples to illustrate the previous results and to compare the performance of the different
estimation procedures.

Example1: In this example, we present a complete analysis using a simulated k-upper record data. The different
estimators ofRobtained in the above sections are computed as follows:

(1) For given values of the prior parametersα1 and β1 we generateb1 from the prior distribution (18), and it is
considered as the “actual” population value, and similarlyfor the prior parametersα2 andβ2 we generateb2 from the
prior distribution (19). We obtainedb1 = 3 andb2 = 2.
(2) We generate two sets ofk−upper record values from Kumarswamy distribution using:n= m= 5,k = 5,b1 = 3 and
b2 = 2 thereforeR= 0.4.

From the following steps we can obtain the firstn of k−upper record values.
(i) We generate data from Kumarswamy distribution of sizek.
(ii) We arrange this data in ascending order, we have,x1:1 > x1:2 >...> x1:k, we will take the value as the numberk say
x1:k
(iii) We generate another value from Kumarswamy distribution and insert to this data and descending sort we have
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x1:1 > x1:2 >...> x1:k+1, and we will take the value as the numberk.
(iv) Repeat step (iii),n times, we can get the firstn of k−upper record values asx1,x2, ...,xn.
(3) The data has been truncated after four decimal places. The 5−upper record values fromY as:
0.0658,0.1104,0.2055,0.2701,0.3517 and the 5−upper record values fromX as 0.0172,0.0320,0.1829,
0.1836,0.2610.
(4) Using equations (10) and (11), the MLE ofb1 and b2 are : b̂1 = 3.30598 andb̂2 = 2.30766. Therefore, the ML
estimates ofR is R̂ML = 0.411081. The 95% exact confidence interval forR using (16) is(0.1581,0.7218).
(5) Bootstrap method: Based on the original data in step 3 and using the algorithm described in section (3), we compute
the mean ofN = 1000 bootstrap samples ofR̂∗ as a bootstrap point estimate, the result becomesR̂∗

boot = 0.3915. The
95% bootstrap confidence interval (BCIs) ofR is (0.1710,0.5874).
(6) Bayes method: For the case of informative priors, we useα1 = 1,α2 = 2,β1 = 1 andβ2 = 2. The Bayes estimates of
R relative to SEL and LINEX loss functions are computed using (29) and (30). The results are:R̂BS= 0.421766, the
Bayes estimates under LINEX loss function are respectivelyR̂BL = 0.3816, R̂BL = 0.4364 andR̂BL = 0.3944 for
c= 5,−2, and 0.0001.
(7) The 95% confidence interval ofR using Bayes confidence interval in (25) is computed as(0.3881,0.8612). The
posterior probability density function ofR is plotted in Fig.1.

Fig. 1: Posterior probability density function of R for record datain Example 1
Example 2: Using the same steps in example 1, the sets of 2−upper record values of sizesn andm are generated

from Kumarswamy distribution usingb1 = 1.5 andb2 = 2. Therefore,R= 0.7273 is assumed as the true value ofR. For
different values ofn andm, we obtain the 95% confidence interval ofR using the maximum likelihood method (ML),
Bayes method (BS) and percentile bootstrap method (Boot ) based on 1000 bootstrap samples. The results are recorded in
Table 1.

Table (1) 0.95% confidence intervals ofR, with lower L and upper U Limits.
m n (.)Ml (.)Bs (.)Boot

L U length L U length L U length
5 5 0.2299 0.8049 0.5749 0.1574 0.6463 0.4889 0.2537 0.6905 0.4368
5 7 0.4001 0.8817 0.4816 0.0698 0.3819 0.3121 0.5080 0.8191 0.3111
5 10 0.2320 0.7412 0.5092 0.0622 0.3208 0.2585 0.3278 0.6377 0.3130
7 5 0.3348 0.8490 0.5142 0.2126 0.6992 0.4865 0.3443 0.7718 0.4275
7 7 0.4846 0.8930 0.4084 0.0959 0.4320 0.3361 0.5183 0.8377 0.3194
7 10 0.4201 0.8428 0.4227 0.0699 0.3156 0.2457 0.5016 0.7769 0.2753
10 5 0.2451 0.7548 0.5097 0.4397 0.8575 0.4179 0.2303 0.6530 0.4227
10 7 0.4807 0.8726 0.3920 0.1862 0.5914 0.4053 0.4879 0.8205 0.3327
10 10 0.4759 0.8465 0.3706 0.1105 0.3993 0.2889 0.5049 0.7912 0.2863

From Table 1, it is clear, as expected, that increasing the number of records on either variable results in shorter
intervals.
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7 Simulation study and comparisons

In this section, we present some results based on Monte Carlosimulations to compare the performance of the different
estimators of the stress-strength reliabilityR. In this simulation, 1000 pairs of samples ofk−upper record data(k= 3,5)
were generated from kumarswamy distribution using case 1:b1 = 3,b2 = 2 and a = 1 with R = 0.4 and various
combinations of sample sizesn andm , case 2:b1 = 1.5,b2 = 1.7 anda= 2.1 with R= 0.5313 and various combinations
of sample sizesn andm . We obtain theMLE of R, (.)Ml using (12), the symmetric Bayes estimate ofR, (.)Bs using (29),
and the asymmetric Bayes estimate ofR, (.)Bl using (30). The average estimation and the mean square error(MSE) of R
for different methods are computed over 1000 replications.The results are reported in Table 2 and 4 for 3−upper record
data and in Tables 3 and 5 for 5−upper record data. For all methods, It is clear as expected, whenn andm increase, the
MSE’s decrease.

Table(2).The Means and (MSE) ofRwith R= 0.4, k= 3.
m n (.)Ml (.)Bs (.)Bl Boot

c2=−2 c3= 0.0001 c1= 2
5 5 0.4248 0.4275 0.4442 0.4275 0.4113 0.4068

(0.0253) (0.0083) (0.00972) (0.00834) (0.00744)(0.0224)
7 7 0.4037 0.41027 0.4231 0.4103 0.3979 0.3911

(0.0150) (0.0059) (0.00647) (0.00587) (0.00556)(0.0139)
10 10 0.4164 0.4171 0.4268 0.4172 0.4078 0.4069

(0.0126) (0.0058) (0.00639) (0.00582) (0.0055)(0.0118)
13 13 0.4124 0.4143 0.422 0.4143 0.4068 0.4051

(0.0078) (0.0047) (0.00504) (0.00469) (0.00444)(0.0074)

Table(3).The Means and (MSE) ofRwith R1 = 0.4, k= 5.
m n (.)Ml (.)Bs (.)Bl Boot

c=−2 c= 0.0001 c= 2
5 5 0.4221 0.4258 0.4427 0.4258 0.4095 0.4042

(0.0198) (0.0065) (0.00783) (0.00649) (0.00569)0.0175
7 7 0.4014 0.4099 0.4228 0.4099 0.3974 0.3880

(0.0126) (0.0054) (0.00602) (0.00542) (0.00512)0.0117
10 10 0.4053 0.4090 0.4185 0.409 0.3997 0.3964

(0.0116) (0.00532) (0.0060) (0.00532) (0.00517)0.01107
13 13 0.4009 0.4052 0.4128 0.4052 0.3978 0.3934

(0.0088) (0.0053) (0.00552) (0.00529) (0.00515)0.0085

Table(4).The Means and (MSE) ofRwith R= 0.5313, k= 3.
m n (.)Ml (.)Bs (.)Bl Boot

c1=−2 c2= 0.0001 c3= 2
5 5 0.5414 0.5103 0.5273 0.5103 0.4934 0.5173

(0.02015) (0.00848) (0.00795) (0.00848) (0.00947)(0.01894)
7 7 0.5148 0.4973 0.5105 0.4973 0.4843 0.4982

(0.01742) (0.00843) (0.00789) (0.00843) (0.0935)(0.01728)
10 10 0.5217 0.5055 0.5154 0.5055 0.4956 0.5093

(0.01233) (0.00799) (0.00756) (0.007988) (0.00857)(0.01229)
13 13 0.5385 0.5226 0.5306 0.5226 0.5147 0.5287

(0.00805) (0.00546) (0.00535) (0.005465) (0.00568)(0.00776)
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Table(5).The Means and (MSE) ofR with R1 = 0.5313, k= 5.
m n (.)Ml (.)Bs (.)Bl Boot

c1=−2 c2= 0.0001 c3= 2
5 5 0.5264 0.501 0.518 0.501 0.4841 0.5033

(0.02049) (0.00919) (0.00839) (0.00919) (0.01045)(0.01976)
7 7 0.527 0.5047 0.5179 0.5047 0.4916 0.5101

(0.01674) (0.00883) (0.00828) (0.00883) (0.00967)(0.01635)
10 10 0.537 0.5183 0.5281 0.5183 0.5085 0.5246

(0.01312) (0.00809) (0.00788) (0.00809) (0.00844)(0.01255)
13 13 0.5327 0.5175 0.5255 0.5175 0.5095 0.523

(0.00813) (0.005621) (0.00544) (0.00562) (0.00591)(0.00802)

8 Conclusions

In this paper, we have addressed the problem of estimation ofR = P(Y < X) using k-upper record values from
Kumarswamy distribution. It is shown how record data can be used to provide point estimation and confidence interval
for R. We consider the maximum likelihood method, Bayesian method relative to symmetric and asymmetric loss
functions and parametric bootstrap percentile method. Thedistribution of the MLE ofR were used to construct exact
confidence interval ofR. In Bayesian approach, the posterior distribution ofR is obtained in closed form and used to
construct:

(i) exact Bayesian confidence interval forR.
(ii) symmetric and asymmetric Bayes point estimates ofR.

Comparisons are made between the ML and the Bayes estimatorsbased on simulation study. From results we can note
that:

1.Generally, it appears that the MSE’s of the Bayes estimates ofRare smaller than MSE’s of the ML estimates.
2.For all methods whenn andm increase, the MSE’s are reduce.
3.Tables (2, 3, 4 and 5) show that the Bayes estimators relative to asymmetric loss functions (LINEX) are sensitive to the

value of the shape parameterc of the LINEX loss function. Whenc is close to zero, the MSEs of the Bayes estimators
under LINEX loss function are very close to their corresponding MSEs under the squared error loss function.
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