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Abstract: In this study we consider a higher-order linear nonhomogenous pantograph type delay differential equation with variable
coefficients and variables delays, and propose a new collocation method based on hybrid Taylor and Lucas polynomials. The presented
method transforms the delay differential equation with theinitial and boundary conditions to a system of linear algebraic equations with
the unknown Lucas coefficients; by finding Lucas coefficientseasily, Lucas polynomial solutions are obtained. Also an error estimation
technique based on residual function is developed for our method and applied to exiting problems.
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1 Introduction

Delay differential equations are frequently used to model
a wide class of problems in many scientific fields such as
engineering, chemical reactions, mathematical physics,
biology, ecology and economics. Most of these equations
have no analytic solution and numerical methods may be
required to obtain approximate solutions. So, methods of
solution for delay differential equations have attracted the
attention of many researchers. In recent years, specially,
there has been a great deal of work on one and
higher-order nonhomogenous pantograph-type delay
differential equations with variable coefficients and
variable delays [1,2,3,4,5,6,7,8]

x(m)(t) =
m−1

∑
i=0

j

∑
j=1

Pi j(t)x
(i)(t − τ j(t))+ f (t) (1)

wherePi j(t), f (t) and usually alsoτ j(t) ≥ 0 are assumed
continuous on 0≤ a ≤ t ≤ b. These type equations,
generally, have been used to describe fluid and elastic
mechanical phenomena, and dynamical systems. We refer
the reader to [2,3] and the references cited therein.

In addition, time delays occur naturally, in differential
equations arising in many fields of applied mathematic.

(see [5] and references therein). In population Dynamics,
they may model the gestation or maturation time of a
species, or the time taken for food resources to
regenerate. In signal processing, delay of microseconds
between the out put and reception of a signal may be
important, and the time taken to receive and respond to
feedback is significant in many industrial processes. On
the other hand, differential equations with variable delays
(1) have been intensively studied over the past 20 years.
The foundations of such equations (in the case of first
order) were developed in literature: oscillation properties
[4], periodic solutions [3], global attractivity [5,6], the
existence of positive solutions [7], asymptotically
stability [8], asymptotic behaviour of solutions [2],
stability criteria [4].

In this study, by means of matrix method based on
collocation points which have been used by Sezer and
coworkers [9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26] and Koç et al. [27] for
differential-difference and delay differential equations
with constant delay, we develop a new method, called
Taylor-Lucas collocation, to find the approximate solution
of the differential equation with variable delay (1) under
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the initial and boundary conditions defined as

m−1

∑
i=0

(
ar ix

(i)(a)+ br ix
(i)(b)

)
= λ r, r = 0,1, ...,m−1 (2)

wherear i, br i andλ r are appropriate constants. Our aim is
to find an approximate solution expressed in the truncated
series form

x(t)∼= xN(t) =
N

∑
n=0

an Ln(t), 0≤ a ≤ t ≤ b < ∞ (3)

wherean, n = 0,1, ...,N are unknown coefficients to be
determined andLn(t), n = 0, ...,N, N ≥ m are the Lucas
polynomials, originally studied in 1970 by Bichnell, which
are defined recursively as follows [28,29,30]

Ln+1(t) = t Ln(t)+Ln−1(t), n≥ 1 with L0(t) = 2 and
L1(t) = t.
Their explicit form forn ≥ 1 is

Ln(t) =
[ n

2 ]

∑
k=0

n
n− k

(
n− k

k

)
tn−2k (4)

where[t] is the largest integer smaller than or equal to t

and

(
n
m

)
is the binomal coefficient; on the other hand, in

order to find solutions of Eq.(1) under the conditions (2),
we can use the collocation points defined by

ts = a+
b− a

N
s, s = 0,1, ...,N (5)

The paper is organized as follows. In Section 2, we
derive the matrix forms of each term fin the equation (1)
along with the can condition (2) and construct the
fundamental matrix equation. Using these relations and
the collocation points (4), we construct the Taylor-Lucas
method for solution in Section 3. We develop the residual
error analysis for our method in Section 4. To support our
finding, we present the results of numerical experiments
using Maple 12 in Section 5. We end with a brief
conclusion in Section 6.

2 Fundamental Matrix Operations and
Method

Firstly, we can convert the desired approximate solution
(3) to the matrix form

x(t)∼= xN(t) = L(t)A (6)

where
L (t) = [L0(t) L1(t) ... LN(t)]

A = [a0 a1 ... aN ]
T

Now we clearly write the matrix formL(t) , by using the
Lucas polynomialsLn(x) given by (4), as

L (t) = T(t)MT (7)

where
T(t) =

[
1 t t2... tN]

and if N is odd

M =




2 0 0 · · · 0

0 1
1

(
1
0

)
0 · · · 0

2
1

(
1
1

)
0 2

2

(
2
0

)
· · · 0

0 3
2

(
2
1

)
o · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
n−1

(n−1)/2

(
(n−1)/2
(n−1)/2

)
0 n−1

(n+1)/2

(
(n+1)/2
(n−3)/2

)
· · · 0

0 n
(n+1)/2

(
(n+1)/2
(n−1)/2

)
0 · · · n

n

(
n
0

)




İf N is even

M =




2 0 0 · · · 0

0 1
1

(
1
0

)
0 · · · 0

2
1

(
1
1

)
0 2

2

(
2
0

)
· · · 0

0 3
2

(
2
1

)
0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 n−1
n/2

(
n/2
(n−2)/2

)
0 · · · 0

n
n/2

(
n/2
n/2

)
0 n

(n+2)/2

(
(n+2)/2
(n−2)/2

)
· · · n

n

(
n
0

)




By using the relations (6) and (7), we obtain the matrix
form

xN(t) = T(t) MT A (8)

Also, it is clearly seen that the relation between the matrix
T(t) and itskth-order derivative T(k)(t) is

T(k)(t) = T(t)Bk (9)

where

B =




0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 0 0




By using the matrices (8) and (9), we have the matrix
relation

x(k)N (t) = T(t) BkMT A, k = 0,1,2, ... (10)

By putting t → t − τ j(t) in the relation (10), we gain the
recurrence relation

x(k)N (t − τ j(t)) = T(t)ST (τ j(t)) BkM T A (11)
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S
(

τ j (t)
)
=




(
0
0

)(
−τ j (t)

)0
0 0 · · · 0

(
1
0

)(
−τ j (t)

)1
(

1
1

)(
−τ j (t)

)0
0 · · · 0

(
2
0

)(
−τ j (t)

)2
(

2
1

)(
−τ j (t)

)1
(

2
1

)(
−τ j (t)

)0
· · · 0

.

.

.

.

.

.

.

.

.

.
.
. N(

N
0

)(
−τ j (t)

)N
(

N
1

)(
−τ j (t)

)N−1
(

N
2

)(
−τ j (t)

)N−2
· · ·

(
0
0

)(
−τ j (t)

)0




Note that the matrixT(t − τ j(t)) can be written as

T(t − τ j(t)) = T(t)ST (τ j(t)).

By substituting the relations (10) and (11) into Eq.(1) we
obtain the matrix equation

T(t)BmMT A =
m−1

∑
i=0

J

∑
j=0

Pi j(t)T(t)ST (τ j(t))BiMT A+ f (t)

and then, by placing the collocation points (5), the system
of the matrix equations
{

T(ts) Bm −
m−1

∑
i=0

J

∑
j=0

Pi j(t)T(ts)ST (τ j(ts))Bi

}
MT A− f (ts), s = 0,1,2, ...,N.

The compact form of this system can be written as
(

T Bm −
m−1

∑
i=0

J

∑
j=1

Pi jTSj Bi

)
MT A = F (12)

where

T =




T (t0)
T (t1)

.

.

.
T(tN)


=




1 t0 t2
0 · · · tN

0
1 t1 t2

1 · · · tN
1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
1 tN t2

N · · · tN
N



,Pi j =




Pi j(t0) 0 · · · 0
0 Pi j(t1) · · · 0
.
.
.

.

.

.
...

.

.

.
0 0 · · · Pi j(tN)


 ,

T =




T (t0) 0 · · · 0
0 T (t1) · · · 0
.
.
.

.

.

.
...

.

.

.
0 0 · · · T(tN)


 ,F =




f (t0)
f (t1)

.

.

.
f (tN)


 ,Sj =




ST (τ j(t0))
ST (τ j(t1))

.

.

.
ST (τ j(tN))


 .

In Eq. (12), the full dimensions of the matricesT, B, Pi j,
T, Sj, M , A and F, respectively, are(N + 1)× (N + 1),
(N +1)× (N+1), (N +1)× (N+1), (N +1)× (N+1)2,
(N + 1)2 × (N + 1), (N + 1)× (N + 1), (N + 1)× 1 and
(N +1)×1
The fundamental matrix equation (12) can be expressed in
the form

WA = F or [W;F] (13)

where

W =

(
T Bm −

m−1

∑
i=0

J

∑
j=1

Pi jTSj Bi

)
MT =

[
wpq
]
, p,q= 0,1, ...,N

By using the relation (10), we obtain the corresponding
matrix forms for the conditions (2) as

Ur A = [λ r] or [Ur;λ r] (14)

such that

Ur =
m−1

∑
i=0

(ar iT(a)+br iT(b)) BiMT =
[

ur0 ur1 ur2 · · · urN

]
,r = 0,1, ...,m−1

Consequently, in order to obtain the solution of Eq. (1)
under the conditions (2), we replace them row matrices
(14) by the last rows of the augmented matrix (13). Then
we obtain the row augmented matrix

W̃A = F̃ or
[
W̃; F̃

]
(15)

If rank W̃ = rank
[
W̃; F̃

]
= N + 1, then we can write

A = (W̃)−1F̃. Thus the matrixA (thereby the Lucas
coefficientsa0,a1, ...,aN) is uniquely determined. Also
the Eq. (1) has a unique solution under the conditions (2).

3 Error Analysis Technique Based on
Residual Function: Accuracy of Solutions

We can easily check the accuracy of the obtained solutions
as follows. Since the truncated Lucas series in (3) is an
approximate solution of Eq. (1), when the functionxN(t)
and its derivatives are substituted in Eq. (1), the resulting
equation must be approximately satisfied; that is, fort =
ti ∈ [0,b] , i = 0,1, ...,N

RN(ti) = x(m)(t)−
m−1

∑
i=0

J

∑
j=1

Pi j(t)x
(i)(t − τ j(t))− f (t)∼= 0

or

RN(ti)≤ 10−ki , (ki is any positive integer).

If max 10−ki ≤ 10−k (k is any positive integer) is
prescribed, then the truncation limit N is increased until
the differenceRN(ti) at each of the points becomes
smaller than the prescribed 10−k.
On the other hand, by means of the residual function
defined byRN(t) and the mean value of the function
|RN(t)| on the interval[0,b], the accuracy of the solution
can be controlled and the error can be estimated [21,22,
31,32,33]. If RN(t) → 0 when N is sufficiently large
enough, then the error decreases. Also, by using the
Mean-Value Theorem, we can estimate the upper bound
of the mean errorR as follows:

∣∣∣∣
∫ b

0
RN(t) dt

∣∣∣∣≤
∫ b

0
|RN(t)| dt

and

∫ b

0
RN(t) dt = bRN(c)⇒

∣∣∣∣
∫ b

0
RN(t) dt

∣∣∣∣= b |RN(c)|⇒ b |RN(c)| ≤
∫ b

0
|RN(t)| dt

⇒ |RN(c)| ≤

∫ b
0 RN(t) dt

b
= RN (0≤ c ≤ b)
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4 Illustrative Examples

In this section, the efficiency of the method is
demonstrated with the numerical results of some
examples. In tables and figures, we give the values of the
exact solutionx(t), the Lucas polynomial solution at the
selected points of the given interval, the absolute error
function |x(t)− xN(t)| and the estimated upper bound of
mean errorRN at the selected points of the given interval.
All examples have been solved by a computer code
written in Maple.

Example 1. Let us first consider the first-order
pantograph type delay differential equations withet

variable delays

x′(t) =−2x(t)+2x(t− et)+2et +1, 0≤ t ≤ 2

with the initial conditionx(0) = 0.
We approximate the solutionx(t) by the polynomial

x(t)∼= xN(t) =
2

∑
n=0

an Ln(t), 0≤ t ≤ 2

where f (t) = 2et +1 ,

{
P01(t) =−2, τ1(t) = 0
P02(t) = 2, τ2(t) = et

and the collocation points (5) for a = 0,b = 2 andN = 2
are computed as{x0 = 0, x1 = 1, x2 = 2}.
Following the procedure in Section 2, the fundamental
matrix equation of the given equation becomes
(

T B −
2

∑
j=1

P0 j T Sj B0

)
M T A = F, (B0 : unitmatrix)

where

T =




1 0 0
1 1 1
1 2 4


 ,B =




0 1 0
0 0 2
0 0 0


 ,P01 =




−2 0 0
0 −2 0
0 0 −2


 ,P02 =




2 0 0
0 2 0
0 0 2




T =




1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 2 4


 ,S(τ1(t)) =




1 0 0
−τ1(t) 1 0

τ2
1(t) −2τ1(t) 1




S1 =




ST (τ1(0))
ST (τ1(1))
ST (τ1(2))


=




1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1




,S2 =




ST (τ2(0))
ST (τ2(1))
ST (τ2(2))


=




1 −1 1
0 1 −2
0 0 1
1 −e e2

0 1 −2e
0 0 1
0 −e2 e4

0 1 −2e2

0 0 1




,

M =




2 0 0
0 1 0
2 0 1


 ,F =




3
2e+1
2e2+1




The augmented matrix for this fundamental matrix
equation is

W =




0 3 0 ; 3
0 2e+1 2−2e2+4e ; 2e+1
2 0 2 ; 0




Solving this system,A is obtained asA =
[

0 1 0
] T

From Eq. (8), x(t) is obtained as

x(t) = T(t)M T A =
[

1 t t2
]



2 0 2
0 1 0
0 0 1






0
1
0


 .

Thus, the solution of the problem becomes

x(t) = t

which is the exact solution. Hence, it is seen that the
present method is accurate, efficient, and applicable.

Example 2. Lastly, let us consider the first-order
pantograph type delay differential equations with
ln(t +1) variable delays

{
x′(t)+ tx(t − ln(t +1))+ x(t) =

(
t2+1

)
e−t

x(0) = 1, 0≤ t ≤ 2
,

The exact solution of the problem isx(t) = e−t .

Fig. 1: Numerical and Exact solutions of Example 2 forN =
2,4,6.

Following the procedure in Section 2, the polynomial
solutions are obtained, forN = 2,4,6

x2(t) = 0.999999998−0.4085896211t,

x4(t) = 1.000000001 − 0.9999999992t +
0.5611021418t2−0.2927828997t3

+0.09704064924t4,
x6(t) = 1.000000067−1.000000072t−0.010170322t2+
1.321585041t3

−1.612385853t4+0.8143793089t5−0.1517978235t6.
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Table 1: Numerical results of the exact and the approximate solutionfor N = 6 and the Absolute errors of Example 3.
t Exact Solutionx(t) =

t2

The solution forN = 6 Absolute errors forN = 6

0 0 -1.683e-10 1.683e-10

0.2 0.04 0.03999999763 2.371e-09

0.4 0.16 0.15999999763 4.870e-09

0.6 0.36 0.3599999921 8.017e-09

0.8 0.64 0.6399999877 1.229e-08

1 1 0.9999999817 1.830e-08

1.2 1.44 1.439999973 2.692e-08

1.4 1.96 1.9599999961 3.932e-08

1.6 2.56 2.559999943 5.721e-08

1.8 3.24 3.239999918 8.301e-08

2 4 3.999999879 1.201e-07

Table 2: Numerical results of the exact and the approximate solutions for N = 4,6,10 of Example 4.
t Exact Solution Present method

for N=4
Present method
for N=6

Present method
for N=10

0 1 1 1 1
0.1 1.004837418 1.004837265 1.004837078 1.004837399
0.2 1.018730753 1.018729586 1.018726864 1.018730968
0.3 1.040818221 1.040818528 1.04086171 1.040822594
0.4 1.070320046 1.070340038 1.070305485 1.070346195
0.5 1.106530660 1.106624444 1.106551072 1.106628727
0.6 1.148811636 1.149096445 1.148967088 1.149093170
0.7 1.196585304 1.197275127 1.197077688 1.197262516
0.8 1.249328964 1.250773951 1.250509141 1.250763774
0.9 1.306569660 1.309300755 1.30899128 1.309331161
1 1.367879441 1.372657757 1.372362866 1.372807874

From Figure1, it is obvious that the results get better as N
increases.

Example 3. Let us now consider the second-order
pantograph type delay differential equations with sint
variable delays
{

x′′(t) = x′(t)+2tx(t)− x′(t − sint)+2−2.t3−2sint
x(0) = 0, x′(0) = 0, 0≤ t ≤ 2

,

where




P01(t) = 2t, τ1(t) = 0
P02(t) = 0, τ2(t) = 0
P11(t) = 1, τ1(t) = 0
P12(t) =−1, τ2(t) = sint
f (t) = 2−2t3−2sint

The exact solution of the problem isx(t) = t2. Following
the procedure in Section 2, the fundamental matrix
equation becomes
(

T B2−P01T S1−P11T S1B−P02T S2−P12T S2B
)

MT A =F.

The polynomial solution of the problem is obtained as

x6(t) =−1.68327544×10−10−1.070485731×10−8t +0.9999999992t2

−2.84759534×10−9t3−5.000094533×10−9t4+2.199145176×10−9t5

−9.831861521×10−10t6

Also, by using the Mean–Value Theorem, the upper bound
of the mean errorR6 is obtained as

R6 =

∫ 2
0 |R6(t)|

2
=

7×10−8

2
= 3.5×10−8

The approximate solutions obtained by using the
collocation pointsts = a+ b−a

N s, s = 0,1, ...,N, in [0,2]
for N = 6 are compared with exact solution in Figure2.
Absolute errors in[0,2] for N = 6 are given in Table1.

Example 4. Lastly, let us consider the third-order
pantograph type delay differential equations witht2

variable delays
{

x′′′(t)− x′′(t − t2)+ x(t) = t − et2−t

x(0) = 1, x′(0) = 0, x′′(0) = 1, 0≤ t ≤ 2
,

The exact solution of the problem isx(t) = t + e−t .
Following the procedure in Section 2, the polynomial
solution is obtained as forN = 4,6,10

x4(t) = 1−1×10−10t +0.5000000001t2−0.1666666667t3 +0.03932442423t4

x6(t) = 1−1.17×10−10t+0.4999999999t2 −0.1666666667t3 +0.03727144272t4

+0.001758089570t5+3.749993833×10−12t6

x10(t) = 1−3.69×10−11t+0.5t2−0.167t3 +0.412t4−0.007t5

+0.006t6−0.001t7−0.0008t8+0.0003t9

−0.00001t10.
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Fig. 2: Numerical and Exact solution of Example 3 forN = 6.

Fig. 3: Numerical and Exact solution of Example 4 forN = 4,6.

Figure3 and Table2 show the convergence of the Lucas
polynomial solution to the exact solution. It is observed
that there is a very good agreement even for a low
truncation limit such asN = 4 andN = 6 on the other
hand, taking results in a very accurate solution in the
interval[0,2].

5 Conclusions

The proposed practical matrix method is used to solve
high-order pantograph type delay differential equations

with variables delays. Comparison of the results obtained
by present method with those obtained by exact solutions
reveals that the present method is very effective and
convenient. The numerical results show that the accuracy
improves with increasing N. Also the proposed technique
can be used to test reliability of the solutions of the other
problems. Hybrid Taylor-Lucas collocation method
provides two main advances: it is very simple to construct
the main matrix equations and it is very easy for computer
programming.
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[9] S.Yalçınbaş, M. Sezer, Applied Mathematics and

Computation,112, 291–308 (2000).
[10] M. Gülsu, M. Sezer, Journal of Computational and Applied

Mathematics186, 349–364, (2006).
[11] M. Sezer, M. Gülsu, Complex Variables, Theory and

Application: An International Journal50, 5367–382 (2005).
[12] M. Gülsu, M. Sezer, International Journal of Computer

Mathematics82, 629–642, (2005).
[13] N. Kurt, M. Sezer, Journal of the Franklin Institute345,

839–850 (2008).
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