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Abstract: In this study we consider a higher-order linear nonhomogsnmantograph type delay differential equation with vddaab
coefficients and variables delays, and propose a new ctibocaethod based on hybrid Taylor and Lucas polynomiale giesented
method transforms the delay differential equation withittigal and boundary conditions to a system of linear algebequations with
the unknown Lucas coefficients; by finding Lucas coefficiertsily, Lucas polynomial solutions are obtained. Also aorerstimation
technique based on residual function is developed for othadeand applied to exiting problems.
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1 Introduction (see p] and references therein). In population Dynamics,
they may model the gestation or maturation time of a
Delay differential equations are frequently used to modelspecies, or the time taken for food resources to
a wide class of problems in many scientific fields such aSegenerate. In Signa| processing' de|ay of microseconds
engineering, chemical reactions, mathematical physicspetween the out put and reception of a signal may be
biology, ecology and economics. Most of these equationsmportant, and the time taken to receive and respond to
have no analytic solution and numerical methods may beeedback is significant in many industrial processes. On
required to obtain approximate solutions. So, methods othe other hand, differential equations with variable dglay
solution for delay differential equations have attractegl t (1) have been intensively studied over the past 20 years.
attention of many researchers. In recent years, speciallyThe foundations of such equations (in the case of first
there has been a great deal of work on one ancbrder) were developed in literature: oscillation propesti
higher-order nonhomogenous pantograph-type delay4], periodic solutions 3], global attractivity B,6], the
differential equations with variable coefficients and existence of positive solutions 7] asymptotically
variable delaysf, 2,3,4,5,6,7,8] stability [8], asymptotic behaviour of solutions2]|

me1 | stability criteria [].

M= 3 3RO GO0 @
i=0 j=

In this study, by means of matrix method based on
whereR(t), f(t) and usually alsaj(t) > 0 are assumed collocation points which have been used by Sezer and
continuous on X a <t < b. These type equations, coworkers 9,10,11,12,13,14,15,16,17,18,19,20,21,22,
generally, have been used to describe fluid and elasti3,24,2526] and Ko¢ et al. 27 for
mechanical phenomena, and dynamical systems. We refatifferential-difference and delay differential equaton
the reader toZ, 3] and the references cited therein. with constant delay, we develop a new method, called

In addition, time delays occur naturally, in differential Taylor-Lucas collocation, to find the approximate solution
equations arising in many fields of applied mathematic.of the differential equation with variable delay)(under
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the initial and boundary conditions defined as Now we clearly write the matrix fornh.(t) , by using the
Lucas polynomial&n(x) given by @), as
m-1 . )
Z} (anX('>(a)+briX<')(b)) =Ar,r=01..m-1(2) Lt)=T(OMT @)
1=

. .. where
wherea, i, byj andA, are appropriate constants. Our aim is

to find an approximate solution expressed in the truncated

series form and if N is odd
N r 2 0 0 0
X(t) = xn(t) = ZoanLn(t),OSastsb@o ®3) 0 %(g) 0
(1) 0 (5) ;
1{1 2\ 0

wherean, n=0,1,...,N are unknown coefficients to be 0 §<
determined andL,(t), n=0,...,N, N > m are the Lucas M= 2
polynomials, originally studied in 1970 by Bichnell, which '

are defined recursively as follow2§,29,30] oa ((n,l)p) (') e <<'n+ 1)/2) ) (')
Lna(t) =tLn(t)+Ln 1(t), n>21withLo(t)=2and D2 (n-1)/2 i1 M2\ (n-3)/2 ]
Ll(t?:t. o . I 0 (n+r:]l)/2<(nfl)/2> 0 E(0)
Their explicit form forn > 1 is
o If Nis even
2 n (n-—k k -2 0 0 0
Lt =5 (M) @
kZO n—k K 0 % (é) 0 0
wherelt] is the largest integer smaller than or equal to t i (i) 0 5 (S) w0
2
and( " ) is the binomal coefficient; on the other hand, in = 0 : (1) 0 w0
order to find solutions of EdLlf under the conditions2j, . : ; S
we can use the collocation points defined by o ot <r<1f/‘2*2>/2> 0 0
(N2 n (n+2)/2\ o fn
ts:a+—baa‘5, s=0,1,..,N (5) -”/2(”/2> ° <”*2)/2<<”*2)/2> ”(0>-

) , , By using the relations6) and (7), we obtain the matrix
The paper is organized as follows. In Section 2, wetgrm

derive the matrix forms of each term fin the equati@j ( _ T

along with the can condition2] and construct the () =T(HMA ®
fundamental matrix equation. Using these relations andAlso, it is clearly seen that the relation between the matrix
the collocation points4), we construct the Taylor-Lucas T(t) and itskth-order derivative T (t) is

method for solution in Section 3. We develop the residual

error analysis for our method in Section 4. To support our TR =T(t)B* 9)
finding, we present the results of numerical experiments

using Maple 12 in Section 5. We end with a brief where

conclusion in Section 6. 010---0
002---0

B=l::1:m

2 Fundamental Matrix Operations and 000---N
Method 00000

By using the matrices8] and @), we have the matrix
Firstly, we can convert the desired approximate solutionrelation
(3) to the matrix form

X(t) 2 xn(t) =L (t)A (6) Wity =T)BMTA,  k=0,1,2..  (10)

where By puttingt — t — 7j(t) in the relation {0), we gain the
L(t) = [Lo(t) Ly(t) ... Ln(t)] recurrence relation

A=lag a1 ... an]' Wt—1t) =TS (1;(t)) BSMTA  (11)
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(-1 (t))o o 0 o
HICT
(8) a0 () Cao™™ () o2 - (8) o’

Note that the matriX (t — 7j(t)) can be written as

T(t—1i() =TS (1;(t)).

By substituting the relationsl() and (L1) into Eq.() we
obtain the matrix equation

T(t) BmwlTAzmio1 ioPua)T(t)sT(n (1))BMTA+ (1)
i=0 |=

and then, by placing the collocation poing,(the system
of the matrix equations

{T(ts) Bm—lﬁiiPij(t)T(ts)ST(ri (ts))B' } MTA - f(t), s=0,1,2,...,N.
=0 j=

The compact form of this system can be written as

m-1J )
(T BM— Z} > PiTS; B') MTA=F (12
i=0 =1

where

T(to 1o t2 - t) Pito) O 0

T(t1) 1ttt Rij(ty) 0

T=| . |= R . .
T(tn) Tttt 0 o0 Rj(ty)

T(to) 0 f(to) ST (1;(to))

_ 0 T(t) 0 f(t) ST (1j(ta)

T= . JF= .,Sj = .
0 0 Tl f(iv) S (1(tw))

In Eq. (12), the full dimensions of the matricés B, P;j,
T, Sj, M, A andF, respectively, aréN + 1) x (N + 1),
(N+1)x (N+1), (N+1)x (N+1), (N+1) x (N+1)2,
(N+1)2x (N+1), (N+1)x (N+1), (N+1)x1and
(N+1)x1

The fundamental matrix equatioh?) can be expressed in
the form

WA =F or [W;F] (13)
where
m-1J
W= (T BM— Z) S PiTS; B') MT = [wpg], P,g=0,1,...;N
% &

By using the relationX0), we obtain the corresponding
matrix forms for the condition<] as

such that
Ur:E(afiT(a)+b,iT(b))BiMT: [Ug Uy Ury - U ],r=01..,m-1

Consequently, in order to obtain the solution of E). (
under the conditions2, we replace then row matrices
(14) by the last rows of the augmented matri3). Then

we obtain the row augmented matrix

WA —F or [W;ﬁ} (15)

If rankW = rank [W; ﬁ} = N4 1, then we can write

A = (W)"IF. Thus the matrixA (thereby the Lucas
coefficientsag, ay, ...,an) is uniquely determined. Also
the Eq. ) has a unique solution under the conditio®)s (

3 Error Analysis Technique Based on
Residual Function: Accuracy of Solutions

We can easily check the accuracy of the obtained solutions
as follows. Since the truncated Lucas series3ni¢ an
approximate solution of Eql), when the functiomny (t)

and its derivatives are substituted in Et), the resulting
equation must be approximately satisfied; that is,tfer

ti € [0,b],i=0,1,..,N

Ru(t) < 107K, (ki is any positive integer

If max 104 < 10K (k is any positive integer) is
prescribed, then the truncation limit N is increased until
the differenceRy(tj) at each of the points becomes
smaller than the prescribed 10

On the other hand, by means of the residual function
defined byRy(t) and the mean value of the function
|[Rn(t)] on the interval [0, b], the accuracy of the solution
can be controlled and the error can be estimafid2P,
31,32,33. If Ry(t) — 0 whenN is sufficiently large
enough, then the error decreases. Also, by using the
Mean-Value Theorem, we can estimate the upper bound
of the mean erroR as follows:

‘/ObRN(t) dt‘ g/ob|RN(t)| dt

and

b b b
/RN<t>dt:bRN<c>=»\/ R~<t>dt\:b|RN<c>\=»b|RN<c>\s/ Ru(t)] ot
JO JOo Jo

< JPR(b) dt

= Ru(©) < 0

~Ru(0<c<b)
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4 lllustrative Examples

the efficiency of the method is
results of some

In this section,
demonstrated with the numerical

examples. In tables and figures, we give the values of the

exact solutiorx(t), the Lucas polynomial solution at the

Solving this systemA is obtained ag = [0 1 0] T
From Eq. B), x(t) is obtained as

202] [0
xt)=TOMTA=[1tt?] |010| |1
001| |0

selected points of the given interval, the absolute error

function [x(t) —xn(t)| and the estimated upper bound of
mean erroiRy at the selected points of the given interval.

All examples have been solved by a computer code

written in Maple.

Example 1. Let us first consider the first-order
pantograph type delay differential equations with
variable delays

X(t) = —2x(t) +2x(t— ) +2¢ +1,0<t <2
with the initial conditionx(0) = 0.
We approximate the solutiox{t) by the polynomial

X)) Zxnt) =Y anlkn(t),0<t <2
wheref (1) = 2 +1,4 i) =22 b 20

and the collocation point$) fora=0,b=2 andN =2

are computed afx =0, x1 =1, xp =2}.

Following the procedure in Section 2, the fundamental
matrix equation of the given equation becomes

2
<T B—3 PoTS; B°> MTA =F, (B : unitmatrix)
=1

Thus, the solution of the problem becomes
X(t) =t

which is the exact solution. Hence, it is seen that the
present method is accurate, efficient, and applicable.

Example 2. Lastly, let us consider the first-order
pantograph type delay differential equations with
In(t + 1) variable delays

{

The exact solution of the problemigt) = e .

X (1) +txt—In(t+1)) +x(t) = (t2+ 1) e
x(0)=1, 0<t<2

)

where
100 010 -2 0 0 200
T=(111|B=|002]|,Py=( 0 —2 0 |.,Pp=[020 .
<1z4> (ooo) (o 02) (ooz) . \
I} ij 1I 1!5 2:
_ [10000000% ( 1 0 0) ¢
T=1000111000,S(1y(t))= [ —1alt) 1 0 B e.; R AR Y
00000012 ) —2n) 1 — Prosemnt method W=4 = » » « Prasept method N=16
100 1 -1 1
010 o1 -2
001 00 1 Fig. 1: Numerical and Exact solutions of Example 2 fdr=
[sﬂmo»} 100 [ST(r2<0) 1 -e & 246
S;=|ST(u(1)|=]010]|,5=|S(12(1)) | =|0 1 —2e o
ST (1,(2) 001 ST(12(2)) 00 1
100 0-& ¢
8 é (1) 8 (1) *216‘2 Following the procedure in Section 2, the polynomial
solutions are obtained, fod = 2,4,6
200 3
M=|010| F=| 2+1 _
L 5 J 2:211_ X2(t) = 0.999999998- 0.4085896211,
The augmented matrix for this fundamental matrix Xa(t) = 1.000000001 — 0.9999999992 +
equation is 0.5611021416 — 0.2927828997
+0.0970406492¢,
0 3 0 ;3 Xs(t) = 1.000000067- 1.000000072— 0.010170328 +
W= |02+12-26°+4e;2e+1 1.3215850413
2 0 2 ;0 —1.612385858"+ 0.8143793088 — 0.151797823¢8.
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Table 1: Numerical results of the exact and the approximate soldtioN = 6 and the Absolute errors of Example 3.

t Exact Solutionx(t) = | The solution folN = 6 Absolute errors foN = 6
t2
0 0 -1.683%-10 1.68%-10
0.2 0.04 0.03999999763 2.37%-09
0.4 0.16 0.15999999763 4.870-09
0.6 0.36 0.3599999921 8.01%-09
0.8 0.64 0.6399999877 1.22%-08
1 1 0.9999999817 1.830-08
1.2 1.44 1.439999973 2.692-08
1.4 1.96 1.9599999961 3.932-08
1.6 2.56 2.559999943 5.72%-08
1.8 3.24 3.239999918 8.30%-08
2 4 3.999999879 1.201e-07

Table 2: Numerical results of the exact and the approximate solstionN = 4,6, 10 of Example 4.

t Exact Solution | Present method Present method Present method
for N=4 for N=6 for N=10

0 1 1 1 1

0.1 1.004837418 1.004837265 1.004837078 1.004837399
0.2 1.018730753 1.018729586 1.018726864 1.018730968
0.3 1.040818221 1.040818528 1.04086171 1.040822594
0.4 1.070320046 1.070340038 1.070305485 1.070346195
0.5 1.106530660 1.106624444 1.106551072 1.106628727
0.6 1.148811636 1.149096445 1.148967088 1.149093170
0.7 1.196585304 1.197275127 1.197077688 1.197262516
0.8 1.249328964 1.250773951 1.250509141 1.250763774
0.9 1.306569660 1.309300755 1.30899128 1.309331161
1 1.367879441 1.372657757 1.372362866 1.372807874

From Figurel, it is obvious that the results get better as N Also, by using the Mean—Value Theorem, the upper bound

increases.

of the mean erroRg is obtained as

Example 3. Let us now consider the second-order
pantograph type delay differential equations withtsin

Re

~_ J§IRs(t)] _ 7x10°®

2

2

=35%x108

variable delays

The approximate solutions obtained by using the
collocation pointds = a+ %2s, s=0,1,..,N, in [0,2]

for N = 6 are compared with exact solution in Figute

X(0)=0, X(0)=0, 0<t<2 ,

{ X'(t) = X (t) + 2tx(t) — X (t — sint) +2 — 2.t3— 2sint

where Absolute errors irf0, 2] for N = 6 are given in Tablé4.
Por(t) =2t, 1y(t)=0 Example 4. Lastly, let us consider the third-order
Po2(t) =0, 1(t)=0 pantograph type delay differential equations with
Pia(t) =1, ma(t)=0 variable delays
Pio(t) = -1, T1(t) =sint
f1<f§ PSR X"(t) —x'(t —12) 4+ x(t) =t — "t
x(0)=1 X(0)=0, X' (0)=1, 0<t<2’

The exact solution of the problemxgt) = t2. Following
the procedure in Section 2, the fundamental matrix
equation becomes

The exact solution of the problem igt) =t +e.
Following the procedure in Section 2, the polynomial
solution is obtained as fod = 4,6,10

<T B2—Pp1T S1— P11T S1B — PpaT Sp— PioT SZB> MTA=F.  x(t)=1-1x10 '°t | 0.500000000% — 0.166666666% + 0.03932442426
Xe(t) = 1—1.17 x 10-2% 4 0.499999999¢ — 0.166666666% -+ 0.0372714427¢
+0.001758089570 + 3.749993833« 10 126

Xao(t) = 1—3.69x 10 11t + 0.5t2 — 0.167° +0.4124 — 0.007%5
+0.006° — 0.001t7 — 0.0008&° + 0.0003°
—0.00001°,

The polynomial solution of the problem is obtained as

Xe(t) = —1.68327544« 10 10 — 1.070485731 10 8t +0.9999999992>
—2.84759534« 10-9t3 — 5.000094533« 10 %t* 4 2.199145176¢ 10 °t5
—0.831861521« 10106
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T
1
f

1.5 2

= = ' Bxact solution x =

Present method N =16 |

Fig. 2: Numerical and Exact solution of Example 3 fér= 6.

12+

164

144

124

r 1+

1] 0z 04 06 0DE

* » =« Present method N =6

Exact solution x =t + ¢! = Prosent method W=4

Fig. 3: Numerical and Exact solution of Example 4 fdr= 4, 6.

Figure 3 and Table2 show the convergence of the Lucas

with variables delays. Comparison of the results obtained
by present method with those obtained by exact solutions
reveals that the present method is very effective and
convenient. The numerical results show that the accuracy
improves with increasing N. Also the proposed technique
can be used to test reliability of the solutions of the other
problems. Hybrid Taylor-Lucas collocation method
provides two main advances: it is very simple to construct
the main matrix equations and it is very easy for computer
programming.
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