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Abstract: This paper presents an analytical method to set out the integral of any polynomial functionf (x,y,z) on a tetrahedral region
T by using its four vertexes. The method uses a coordinate transformation which involves the four vertexes of the tetrahedron, whose
Jacobian is simple. The last integral is not difficult to solve given that recurrence formula is very simple, furthermorewe have developed
an algorithm which can evaluate the integral when integrating function is generated by several multiplications of polynomials without
necessity of develop the products. This method can be used infinite element method because the most functions involved inthis method
are polynomial ones. The method here presented is faster than Gauss-Legendre quadrature orn order if the amount of monomials present
on f (x,y,z) is least thann3.
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1 Introduction

The integration on a tetrahedron is very useful in the finite
element method (FEM) [2]. To solve this kind of
integrals, there are many numerical methods to
approximate triple integrals [3], [4]. However, the
analytical methods of integration of certain functions can
give better results than those obtained with the numerical
methods, since the analytical ones give more accurate
results. Although the analytical formulas can be larger, it
is worth to get the more accurate values when the finite
element method involves time, since some of these
integrals must be calculated just once. Usually, many
problems that use the FEM posess a complex geometry
which needs an unstructured grids in which case the
tetrahedron cell is perfect because it lets a fully
unstructured spatial discretization by the use of a
high-order nodal basis[5]. While it is true that analytical
formulas can be really long, the variable changes
proposed here has a really short Jacobian transformation
as you can see in equation (11) wherer jk · rki × rilβ 2 is
just a constant times one variable to second degree. So, it
can be easily used with polynomial functions which are
commons in the FEM [6] and makes this method useful
for this kind of problems.

There are several articles about numerical integration
using Gauss quadrature over some plane surfaces,
rectangle and square region [7], triangle regions [8] and
polygonal ones [9] and for integrals on a standard
tetrahedron a study found in [10] shows a method to solve
the integrals using a Gauss Legendre-Gauss Jacobi
quadrature rules. Although Gauss Legendre quadrature
when uses a Legendre polynom ofn order gives exact
result for any polynomial integrate function of degree less
than 2n [11], for higher order the results become an
approximation. However the method that are presented in
this paper gives the exact value for an arbitrary tetrahedral
region and for any polynomial integrating function and
only needs the coordinate vertexes. This paper includes
an algorithm that helps to use the method more easily.
This is necessary due to the polynomial function comes
from the products of other more simple polynomial terms,
therefore the amount of terms can be so huge, which
could make that our method be impractical to use.

2 Region generation method

First we present the method to determine the point inside
of the triangle. Let us consider a triangle with vertexes
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which are denoted byi, j andk with ri, r j andrk being
the coordinates of each one respectively. The angle
between the edgesi j andik is denoted byθi, between the
edgesk j andki is θk, and the angle between the edgesi j
and jk by θ j as is shown in the Figure1. The vector
ri j = r j − ri it is the vector leading from the pointi
toward pointj, the same way for the vectorsrik, r jk.

Fig. 1: Points inside of the triangle

Then any point on edgejk can be generated by
r j + β r jk where 0≤ β ≤ 1, if we draw a straight line
from this point to the egdeji such thatjAB triangle be
similar to trianglejik, then one point on the edgeAB can
be generated byr j + β r jk + λ β rki where 0≤ λ ≤ 1.
Therefore, the pointsrt inside of the triangular region can
be generated by the formula

rt = r j +β r jk +αrki for 0≤ β ≤ 1, 0≤ α ≤ β . (1)

Any point within the tetrahedron can be represented
by dividing the tetrahedral region in thin triangles ABC as
is shown in Figure2. Then, to generate every pointrtABC
inside of the triangleABC we can start writing the equation
(1) as

rtABC = rA +αrAB + γrBC for 0≤ α ≤ 1, 0≤ γ ≤ α (2)

where

rA = r j +β r jk, (3)

rC = r j +β r jk +β rkl = r j +β r jl , (4)

rB = r j +β r jk +β rki = r j +β r ji. (5)

Therefore

rAB = (rB − rA) = β rki, (6)

rBC = (rC − rB) = β ril . (7)

(8)

Hence, for the whole tetrahedron we have:

xx̂+ yŷ+ zẑ = rT = r j +β r jk +αβ rki + γβ ril , (9)

where 0≤ β ≤ 1, 0≤ α ≤ 1, 0≤ γ ≤ α, x̂, ŷ, ẑ are the
Cartesian unit vectors alongx, y and z axes respectively
and rT represents each point inside of the tetrahedron
volume. Now we are going to write the change of variable

x = r jx +β r jkx +αβ rkix + γβ rilx = x(β ,α,γ),
y = r jy +β r jky +αβ rkiy + γβ rily = y(β ,α,γ),
z = r jz +β r jkz +αβ rkiz + γβ rilz = z(β ,α,γ), (10)

where the subscriptsx, y andz, represent the components
of each vector along thex, y andz axes, respectively.

Fig. 2: Tetrahedron region generation.

3 Setting up the integral

The Jacobian of the transformation (10) can be written as
follow:

∂ (x,y,z)
∂ (β ,α,γ)

=
∂r
∂β

·
∂r
∂α

×
∂r
∂γ

= (r jk +αrki + γril) ·β rki ×β ril

= β 2r jk · rki × ril . (11)

By the change of variable theorem, the integral of any
continuos functionf (x,y,z) on the tetrahedron regionT
can be written as:

∫∫∫
T f (x,y,z)dxdydz = r jk · (rki × ril)

∫ 1
0

∫ 1
0

∫ α
0 H(β ,α,γ)β 2dγdαdβ ,

(12)

where H(β ,α,γ) = f (x(β ,α,γ),y(β ,α,γ),z(β ,α,γ)).
Note that if f (x,y,z) = 1 then, the volume of the
tetrahedron is

VT = r jk · (rki × ril)
∫ 1

0

∫ 1
0

∫ α
0 β 2dγdαdβ = 1

6r jk · (rki × ril),

(13)

which is the formula to find the volume for a tetrahedron
given in [12]. If we set dΩe = r jk · (rki × ril)β 2dγdαdβ
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then we can deduce a really simple formula to find
analytically the integral of a monomial function on a
tetrahedron:
∫ 1

0

∫ 1

0

∫ α

0
β pαnγmdΩe =

6V
(m+1)(m+ n+2)(p+3)

,

(14)

where 6V = r jk · (rki × ril). Thus, V is tetrahedron’s
volume measure. The method proposed here is better than
one with tetrahedral natural coordinates (ξ1,ξ2,ξ3,ξ4)
because the former has only three coordinates and the
monomial integral is:

∫
Ωe

ξ i
1,ξ

j
2 ,ξ

k
3 ,ξ

l
4dΩe = 6V

i! j!k!l!
(i+ j+ k+ l+3)!

, (15)

where i, j, k and l are non negative integers,Ωe is the
tetrahedron domain. So, the formula (14) is more simple
than (15). It is important to increase the computational
performance.

4 Algorithm

The proposed algorithm can solve the following integral:

∫ 1

0

∫ 1

0

∫ α

0

N

∏
j=1

m j

∑
i=1

a jiβ e1 ji γe2 ji αe3 ji dΩe, (16)

wherea ji represents the coefficient of termi belong to j
factor of which exponents of the corresponding variables
β , γ and α are e1 ji, e2 ji and e3 ji respectively,m j is the
amount of terms in factorj. In order to evaluate this
integral, it is considered an algorithm which uses the
following recursive funtion:

NneForInt(n)

sum=0.0;

n<N

for(i = 1;mn)
vn = ani

e1n = e1ni
e2n = e2ni

e3n = e3ni

return sum;

n+1< N

NneForInt(n+1)

n = N −1

mult=1.0;
for(k=1;N)mult*=vk ;

for(l=1;3)sl = 0;
for(k=1;N)sl +=elk;

sum+=
mult*InMon(s1,s2,s3);

return sum;

InMon(s1,s2,s3)=

6V
(s1+3)∗(s3+1)∗(s3+s2+2.0)

yes no

yes

no yes

Here N is the amount of factors. This recursive function
was necessary to keep variable the amount of factors
because for each one of this factors, we need to add a
nested loop FOR.

Then the main program just need to call this function:

To read global variables
a ji, e1 ji, e2 ji e3 ji, m j, N, V

integral=NneForInt(0)

print integral

stop, end

The algorithm for Gauss-Legendre applied to our integral
has following form:

∫ 1

0

∫ 1

0

∫ α

0
H(β ,α ,γ)β 2dγdαdβ =

n

∑
i=1

n

∑
j=1

n

∑
k=1

H(
rin +1

2
,

r jn +1
2

,
r jn +1

4
(rkn +1))

(rin +1)2

4
r jn +1

16
CknC jnCin (17)

where n is the grade of Legendre polynomial,

cin =
1∫

−1

n
∏

j=1, j 6=i

x−r jn
rin−r jn

dx and rin representsi-root of the

Legendre polynomial ofn order.

5 Results

In this part we present a comparison between
Gauss-Legendre quadrature and our method, in order to
compare with an exact value we solve integral for this
simple case,

∫ 1

0

∫ 1

0

∫ α

0
β mβ 2dγdαdβ =

1
2(m+3)

(18)

Then we are going to show several results for choosing
different values ofm, results are shown in table18. We
choosen = 5 for Gauss-Legendre quadrature, then the
result will be exact for polynomial under 9 grade.
Then the results shown in table1 that our method is

faster, it can be explain due to our method only has to
operate one term while Gauss method has to evaluate the
integral function 53 = 125 times (to see equation17).
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Table 1: Gauss-Legendre quadrature vs Our Analytical Method
(Average of computing time taken=ACT)

m Exact Value
GL quadrature New method
% Error ACT(µs) % Error ACT(µs)

5 1
16 0 85 0 3

8 1
22 0 98 0 3

13 1
32 0.3 98 0 3

19 1
32 2.8 94 0 3

Then in order to increase number of operations of our
method, we are going to calculated this integral:

∫ 1

0

∫ 1

0

∫ α

0
(β +α + γ)p(β +2α − γ)qβ 2dγdαdβ (19)

Then when the amount of monomial terms starting to

Table 2: Gauss-Legendre quadrature vs Our Analytical Method
(2) (Average of computing time taken=ACT)

p q Exact Value
GL quadrature New method

% Error ACT(µs) % Error ACT(µs)

2 2 1249
630 0 52 0 25

4 5 30202147
388080 3.38×10−5 170 0 7856

1 4 106591
25200 0 125 0 95

exceed 125 the computing time is also increased.
However, even though this number is reached our method
can be faster due to the monomial terms are evaluated in a
shorter time than integral function as is shown on table2
in case when p=1 and q=4.

6 Conclusions

This method is simple enough when it works with
polynomial functions even when is compared with a
numerical method, as it can be, Gauss quadrature rule.
This method always provides an exact result of the
integral while the Gauss-Legendre method has to increase
the order of the Legendre function in order to keep the
exactness of results. Although it is necessary to solve as
many integrals as terms the polynomial function has got,
the given algorithm can do it easily and if amount of
terms is less thann3 wheren is the order of Legendre
polynomial our method is faster. Furthermore, the way to
cover the whole volume of the tetrahedron is also very
simple. Then, this method can be useful for a general
finite element method when the integral function is an any
order polynomial type. Naturally, when the function
which is going to be integrated is not of the polynomial
type, this method is not applicable, in this case we have to
use other numerical method. However the FEM always is
going to have two kind of functions to integrate. The first
one are polynomial functions and the second ones are

functions which can be not polynomial type, this depends
on the form of excitement functions or field.
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