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Abstract: This paper deals with a further generalization of the camtirs thermostatted kinetic theory for active particleecHjrally
the interest focuses on the linking between the macrosaigiiz and the statistical evolution of the system. The cdiorebetween
measurements and sources is established by defining asenpesblem based on the distribution vector function sofutf the
thermostatted kinetic framework. The inverse problem thgsao the class of ill-posed Volterra equations of the finstl kconsidering
that the number of sources can be greater of the number ofumeegasnts. The uniqueness of the solution is obtained bylicouihe
thermostatted kinetic theory with the information theand anore precisely with the maximum entropy principle of Jaykpplications,
which are discussed into the last section of the paper, refeiological systems, vehicular traffic, crowds dynamar] finance.
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1 Introduction subsystems, characterized by particles that are able to
express the same function (active particles). The

The modeling of complex systems][has increased the microscopic state of the particles consists of a scalar
g of comp Y L variable, called activity, which models the strategy of the
need of defining inverse problems for determining the

causes of the system evolution. Accordingly the interestoart'des' The activity can be a discrete or a continuous

in inverse problems has undergone a tremendous growt pal variable. The time evolgtlon O.f a_functional
within the last two decades with special attention to the ubgystem dep.ends on the_ Interactions - among the
nonlinear problems. Different classes of inverse probleméaart'd.es' The interactions yield modification in the

. > , magnitude of the active variable (conservative events) and
have been investigated, e.g. tomograpl®}, [inverse

X X ; proliferation, destruction, mutation events
scattering 3]'. inverse heat conductlon problem] [ (nonconservative interactions). The overall descriptibn
geophysical inverse problem$][ In this context the

inverse theory can be considered a well establishecg functional subsystem is based on the definition of a

approach, 7]. However the mathematical formulation of istribution  function (statistical description). The
app T . existence of a nonequilibrium stationary is ensured by the
inverse problems can lead to models that typically are

ill-posed (the solution does not exist, the solution is notintroduction of a dissipative term, called thermostat
P o ’ i because its analogy with the gaussian thermostat
unique, the solution is unstable to perturbations).

. I : proposed in nonequilibrium statistical mechanit6, [L1,
The present paper deals with the possibility to link the y 5 * piterent complex systems have been modeled
macroscopic data with the mesoscopic (kinetic)

d o ¢ | hich i deled withi within this framework, see9,13,14]. In particular the
escription of a complex system which is modeled Within ¢, i ,0us framework has been also investigated for the
the framework of the thermostatted kinetic theory for derivation of macroscopic equatioris]

active particles. The thermostatted kinetic theory has beeAS already mentioned, the main aim' of this paper is to
recently proposed ing[9] as a general paradigm for the ¥

derivat ; i del f iibri | link a source problem with the macroscopic data.
erivation of specific model for nonequilibrium complex gy ifically an inverse problem is proposed where the

systems. According to the theory, the overall system iSygine| depends on the distribution function vector
divided into different subsystems, called functional
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solution of the continuous thermostatted kinetic The time evolution of the system occurs because of
framework. The inverse problem belongs to the class ofinteractions among the particles with different magnitude
Volterra integral equations of the first kinti§ which can  of the activity variable. In this context the interactionera
be an ill-posed problem if the number of sources isbetween the particle of theth functional subsystem with
greater than the number of measurements. In order tactivity u. and the particle of thej-th functional
ensure the uniqueness of the solution the methods of theubsystem  with  activity u* is denoted by
information theory are employed and specifically the nij(u.,u*) : D3 — R.. The probability density of the
Jayne principle7]. The principle of Jayne is a new type particles of the i-th functional subsystem with
of subjective statistic inference based on the Shannomicroscopic statel, that interacting with the particles of
entropy [L8 19 which is a measure of the uncertainty the j-th functional subsystem with microscopic stafe
associated to a discrete variable. According to the Jaynéall into the microscopic stateu is denoted by
principle, the probability distribution that maximizesth o4} = .ofj(u,,u",u) : D3 — R,. In particular, the
Shannon entropy is the best candidate to represent therobability density function is such that:

current state of knowledge. The principle of maximum -

Shannon entropy makes entropy a concept independent / (U, U, u)du=1, Vu,u* €Dy (1)
from thermodynamics and statistical mechanics where the Dy

Clausius entropyd0] and the Boltzmann/Gibbs entropy The system is assumed out of equilibrium, namely under
[21] fulfill an important role, respectively. The interested the ~ action ~ of an  external force field
reader is addressed to the recent review pa@288,24,  F(u) = (F1(u),F2(u),...,Fa(u)) : Dy — RY acting on each
25 and therein references for further details. It is worth functional subsystem.

stressing that the concept of entropy has been employe@ihe macroscopic variables are defined as momenta of the
in different research fields, see, among others, papeérs [ distribution functions. Specifically, under suitable
27,28|. integrability assumptions of), the p-th order moment of
The contents of the paper are outlined as follows. Afterthei-th functional subsystem is defined as follows:

this introduction, Section 2 deals with a review of the

thermostatted kinetic theory for active particles in the Ep[fi](t):/D uP i (t,u) du. )
case of a continuous active particles. In particular the cas ) ‘ , ,

of conservative and nonconservative interactions is takedd  Particular — the  local density, the linear
into account. Section 3 is concerned with the linking activity-momentum, and the activity-energy are obtained
between a set of measurements and a set of sources B9 P = 0, p = 1, and p = 2, respectively. Let
defining an inverse problem which belongs to the class of = f(t) = (fa(t), f(t),..., fa(t)) € R" be the distribution
Volterra integral equations of the first kind. Section 4 is function vector, global moments are defined according to
devoted to the resolution of the inverse problem in thethe following relation:

under-determined case, namely when the number of n ~

measurements is less than the number of sources, by Epl[f](t) = ZEp[fi](t):Ep[f](t)a 3)
employing the maximum Shannon entropy principle. =

Finally Section 5 focuses on applications and futurewhere

h directi fl S
research directions. f(t,u)= zi fi(t,u).
i=

N Bearing all above in mind, the continuous thermostatted
2 The thermostatted kinetic framework kinetic theory for active particles framework reads:

This section is devoted to the fundamentals of the & fi(t,u) + Tg[f](t,u) = J[f](t,u) + Mi[f](t,u),  (4)
continuous thermostatted kinetic theory for active
particles which constitutes the framework that will be
coupled with the information theory.

Let S be an adaptive complex composed of a large
number of interacting particles. The system divided into
n € N subsystemsS each of them composed of J[f](t,u) = Gi[f](t,u) — Liff](t,u),

interacting particles which are able to express the samg ere the gain particle operat6y[f] = Gi[f](t,u) and the

strategy/function (active particles). The system is|ogq particle operatdy; [f] = L;[f](t, u), respectively, reads:
assumed homogeneous with respect to the space and

where:

e The operatorJ[f] = J[f](t,u) models the events that
modify only the magnitude of the activity variable
(conservative operator). In particular

n
velocity variables, then the microscopic state of theg[f] = Z/ i (Us, U") 4 (U, U7, )
particles consists of a continuous scalar variable =178
ue€ Dy C Ry (called activity) that models the strategy of s« fi(t,u,) i (t,u*) du, du* (5)
the particles. The time evolution of theth functional R ’
subsystem, fore {1,2,...,n}, is depicted by employing a Liff] = fi(t,u) Z / i (U, u™) £ (t, u)du. ©6)
distribution functionf; = fi(t,u) : [0,+) x Dy — R.. &1/0u
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e The nonconservative operatds|[f] = M;[f](t,u) models  allows to choose among several strategies for obtaining a

the active particles that are able to change the subsystentesired effect.

(jumping subsystem process) and it reads: The present paper focuses on the well-posedness of the
following linear problem:

n n )
Miff] = 5 Z/D o Mk Bhic n(t, L) i(t, u7) du dur JIF,8)(t,u) = K] (t, u) s(u),

H=1Kk=1Du>xDu
| (™ wh

where@|, is the jumping rate into theth subsystem, due where

to interactions between particles with activity of the s(u) = (s1(u), (), ..., S (u)) : Dy — R™

h-th subsystem and particles with activiiy of the k-th

subsystem. is the unknowm-dimensional sources vectore N*, and

e The operatorTg [f] = Tr [f|(t,u) is the dumping term nn
that makes the dynamic dissipative thus avoiding the  KIfJ(t,u) = [Kij[f](t,u)] : [0, 4-e0) x Dy — R™
unbounded increase of theth order moment. The term . . . .

is the data kernel matrix (Green’s function), which
T, called the thermostat operatdif11,12], allows the depends on the distribution functions vector solution of

system to reach a nonequilibrium stationary state in th . :
long-time limit, and it reads: She continuous thermostat'ted framewodk (Accordingly
the inverse problem reads:

ry t
Tr[f] = du ((H(U) —U./Du F,(u)uf(t,u)du) fi (tau)> : u(t) :/0 K [f] (t, u) s(u) du, (10)
(8)
It is worth to mention that the thermostatted kinetic which is a Volterra equation of the first kind. In particular

framework @) can be considered as a general paradigms not restrictive to assume that:
for the derivation of a mathematical model for a complex n
system out of equilibrium. In particular the framewo# ( / s (u)du= / Su)du=1, (11)
is called a continuous thermostatted kinetic theory i; Dy Dy
framework for distinguishing it from the case where the
activity variable can attain discrete values. where

S(u) = iis(u).

3 On theinverse problem Bearing all above in mind the inverse problem reads:

This section is devoted to the coupling of the continuous n

thermostatted kinetic theory frameworld)( with an ; Dus(u)du:l

inverse problem. Specifically the paper focuses on the = tn

reconstruction of a time-dependent source through the | wj(t) =/ ZlKji[f](t,U)S(U)dU, je{l2,....m}

knowledge of a priori data vector (measurements). The 0=

linking between the source and the measurements is L . . (12)
The main interest of this paper is the source

conjectured by introducing an operator called kernel of ; . ;
) y g P reconstruction of the inverse problerh2f in the case

the inverse problem. Accordingly le¥ be the space of .
the source, .7 the measurements space (observed data)”? < " (under-determined problem). In the latter case the

and.7 . .# — & the data kernel operator. Lgte .#, hotn—kljjlmﬂugnebss 'Ist ncd)t gnsured. -Lhe tgnlql;enti§s candbe
the source problem considered in the present pape?sa. Ishe h y 'E ro u;:mg an objec |v/e function ﬁ.n
consists in constructing a solutisre . of the following ~ r€9uiring that the solution maximize/minimize - this
problem: function.

t
uv = [ 1.5t udu )

where u(t) = (Hy(t), Ha(t), ... Hm(t)) © [0, +0) — R™

is the m-dimensional data vectornm € N*, and f is  According to the information theory, the objective
solution of the framework4). function that is chosen in the present paper is the
The inverse problem9j is well-posed in the Hadamard following continuous Shannon entropy:

sense if for anyu € .# exists and is unique the solution
se . of (9), and if the solution depends continuously on
the measurements (the inverse mappipg— s is
continuous). The inverse problem is said ill-posed if one
of the Hadamard conditions is violated. In particular the The principle of maximum entropy of Jayne is a method
non-uniqueness is sometimes of advantage because tihat can be used to estimate input probabilities more

4 The coupling with the information theory

Hg =3 [ swinswan @3
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generally. The result is a probability distribution that is where ZA ,t), called partition function, reads:
consistent with the known constraints expressed in terms
of averages, or expected values, of one or more quantities,
but is otherwise as unbiased as possible. Bearing all
above in mind, the method consists in finding among the
solutions of the inverse problen®)( that, s, which
maximizes the functio13).

Z(/\,t):/ exp[— i/\jK“(t,u)} du.  (20)
. 2

u

According to the above solution, the maximum value of
the entropy function reads:

Let p e .4, s= (s1,%;..-,%) € &, §u) = yL15(u)
and.7, the following subset:

_i/Dus(u)du:l

wO = | 3 Kiftuswa
je{12,...m

H =1 seS .

(14)

According to the maximum principle of Jayne, the vector

solution s'(u) = (sf(u),$(u),...,d!(u)) of the
mathematical frameworl®j thus reads:
st = argmax|s]. (15)
sc Iy

m
> A
=1

5 Applications and research per spectives

The present paper has been devoted to the definition of an
inverse problem for the continuous thermostatted kinetic
theory for active particles framework. Specifically the

inverse problem consists in a source problem namely the
construction of a signal that triggers the measurements.
The inverse problem is analyzed in the under-determined
problem case, namely when the number of unknown

sources is less than the number of measurements.

Bearing all above in mind, the existence and uniqueneséccordingly the uniqueness of the solution is not ensured

of the solutions of the inverse problem9j depends on
the optimization problemi®). Accordingly the lagrangian
function.Z 7| = L[ #)(s, Ao, A1,...,Am) reads:

AV AR —é/s(u)lns(u)du

“(ho-1) (_i/s(u)du— 1)

+j§l)\j (IJ} —iini(t,u)s(u)du> , (16)

where (Ao — 1) and Aj, for j € {1,2,...,m}, are the
related Lagrangian multipliers. Differentiating
lagrangian function?’[.#"] with respect to the variablg
and setting the result equals to zero yields:

S'ﬂ(t,u):expl—)\o—g)\jKji(t,u)] ,ie{12,...,n},
=1

17)
and according to the constraints one has:
m
exp|— Z AjKji(t,u)
g (t,u) = = . (19

m
exp|— Y AjK;ji(t,u)| du
L [ 3 MK
wherei € {1,2,...,n},andA = (A1,A2,...,An) is solution

of the following problem:

—VlnZ(At) = u, (19)

the

and the criterium for establishing the uniqueness of the
solution is based on the information theory and more
precisely on the continuous Shannon entropy and the
maximum entropy principle of Jayne. In particular the
solution is based on a probabilistic approach considering
that the unknown source is assumed to be a continuous
random variable vector. It is worth stressing that différen
algorithms can be employed for computing numerically
the solution proposed in this paper, see, among others,
[29,30,31]. Moreover, as already mentioned, the
continuous inverse probleni?) is based on a \olterra
integral equation of the first kind3p]. The reader
interested to some algorithms of resolution is referred to
the book [L6], papers B3,34] and the references cited
therein.

It is worth stressing that the meaning of the measurements
and of the sources depends on the complex system under
consideration. Indeed considering that the thermostatted
kinetic theory has been employed for the modeling of
complex biological systemsl, 14,35], vehicular traffic
[3€6], crowds dynamics 9], financial markets 37], the
interpretation of the source is that of a signal that trigger
the empirical data. Further applications of the
thermostatted kinetic theory coupled with the information
theory can be in the field of computerized tomography
[38], meteorology 89,40,41], imaging {42], finance 43,
44,45).

Future research directions can be also established from
the theoretical point of view. Firstly the theory that has
been presented in this paper can be considered as a
regularization method for linear ill-posed problems.
However in the nonlinear case the inverse problem can be
cast into the abstract framework of nonlinear operator
equations46]. A research perspective is the possibility to
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employ a different entropy; indeed the Shannon entropy{14] C. Bianca, L. Brezin, Modeling the antigen recognition
presents some limitations related to the case where the by B-cell and T-cell receptors through thermostatted kinet
events are not independents. In this context a different theory methods, International Journal of Biomathematits 1
concept of entropy can be involved. In particular if @an 1750072 (2017).

priori distribution function of the sources is available then [15] C. Bianca, C. Dogbe, Kinetic models coupled with Gaasssi

the relative entropy concept can be appliéd,{8,49,
50]. Specifically if the prior distribution is denoted by

{gi(u)}, then the information (also known as the discrete

Kullback-Leibler divergence) reads:

KL[s,q] = ii/s(u)ln <%> du.

This investigation constitutes the basis of future works.

(22)
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