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Abstract: The unsteady MHD Hartmann flow of an incompressible Cassonfhad bounded by two stationery parallel horizontal
plates in a porous medium is studied with heat and mass &nrashon-Darcy model that obeys the Forchheimer extensiassumed
for the characteristics of the porous medium. A uniform andstant pressure gradient is applied in the axial directbereas a
uniform suction and injection are applied in the directiamrmal to the plates. The two plates are kept at constant dfefetit
temperatures and the viscous and porous dissipations &rignayed in the energy equation. Moreover, the conceoimatif the
nanoparticles at the lower plate level differs from thatreg tipper one, while, both are kept constants. The system pfemium,
heat and concentration equations is solved numericallygutie finite difference scheme under the appropriate iratid boundary
conditions. The effects of the Hall current, the porositytaf medium, inertial damping force, the uniform (suctianéction) velocity,
the non-Newtonian Casson parameter, Hartmann numberytEekaber, Prandtl number, Lewis number, Brownian motiorapeeter
and thermophoretic parameter on the fluid velocity, tentpeeeand nanoparticles concentration distributions aresitigated.

Keywords: Non-Darcian flow; Nanofluids; Hall current; Casson fluid; gl plates; Forchheimer equation; Finite Difference;
Numerical solution.

Nomenclature S The suction parameter
y The dimensionless non-Darcian parameter
X,y Coordinates in horizontal and vertical directions ¢ Specific heat capacity of the fluid
respectively k Thermal conductivity of the fluid
T1, T, The temperature of lower and upper plates m The non-Newtonian Casson parameter
respectively r The Hall parameter
C1,C;  The nanoparticles concentration at the lower and y The current density
upper plates respectively B The Hall factor
dp/dx The pressure gradient of the fluid
H The coefficient of viscosity Bo The uniform magnetic field in the positive
p The density of the fluid
K The Darcy permeability of porous medium y-direction
B The porosity parameter o The electric conductivity of the fluid
A The inertial coefficient Ha Hartmann number
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T The fluid temperature small rate flows where the Reynolds number is very
u The velocity component in thedirection small. For larger Reynolds numbers the Darcy law is
t The time insufficient and a variety of models have been
Vo The constant velocity component in the implemented in studying flows in porous media. The
y-direction Darcy-Forchheimer (DF) model is probably the most
a The thermal diffusivity popular modification to Darcian flow utilized in
Ec Eckert number simulating inertial effects 15,16]. It has been used
Pr Prandtl number extensively in chemical engineering analysis and also in
C The nanoprticles concentration materials processing simulations. On the other hand, we
Dy The thermophoretic diffusion coefficient may indicate the existence of non-Darcian flow (of
Dp The Brownian motion coefficient different kind) for very low velocity in low-permeability
Nb The Brownian motion parameter media, [L7,18].
Nt The thermophoretic parameter Nanofluids are attracting a great deal of interest with
Le The Lewis number their enormous potential to provide enhanced

performance properties, particularly with respect to heat
transfer. Nanofluids are a new class of fluids that can
significantly improve the thermal properties of fluids used
The flow of a viscous fluid between two horizontal &S thermal vectors. The term "nanofluid” refers to a liquid
parallel plates has important applications as in Suspension containing tiny particles having diameter less
magnetohydrodynamic (MHD) power generators, MHDth.a_n 100 nm. To gxtend the ﬂ_u'd aPp"Gat{"'ty’ the
pumps, accelerators, aerodynamics heating, electrostatMtilization of nanofluids as superior solid-liquid phase
precipitation, polymer technology, petroleum industry, change materials (PCM) for thermal energy storage has
purification of molten metals from non-metallic been proposed recently. The extension of potential utility
inclusions and fluid droplets-spray§ [The flow between of nanofluids requires thermal conductivity measurements
parallel plates of a Newtonian and non-Newtonian fluid and modeling for nanofluids with base liquids other than
with heat transfer has been examined by many researchel4ater a.nd ethylene g!ycol. However, one of the. main
in the hydrodynamic case23] considering constant applications of nanofluids as heat transfer fluids is in heat
physical properties. The extension of the problem to the€Xchangers, where the other thermal resistances and

MHD case has attracted the attention of many authgrs [ increased  viscosity  will _attenuate th‘? nanof!uid
5,6,7,9]. advantages. The use of additives is a technique applied to

Previous studies indicate that not much work has beergnhhance the heat transfer performance of base fluids. The
presented yet regarding Casson fluid. This mo@el( thermal conductivity of the ordinary heat transfer fluids is
11] in fact is a plastic fluid that exhibits shear thinning N0t @dequate to meet today’s cooling rate requirements.

characteristics and that quantifies yield stress and higf\anofluids have been shown to increase the thermal
shear viscosity. Casson fluid model is reduced to aconductivity and convective heat transfer performance of

Newtonian fluid at very high wall shear stresses, whenthe base liquids. One of the possible mechanisms for the
wall stress is much greater than yield stress. This fluid hag@nomalous increase in the thermal conductivity of
good approximations for many substances such adanofluids is the Brownian motions of the nanoparticles
biological materials, foams, molten chocolate, cosmeticsinside the base fluids. The addition of small particles
nail polish, some particulate suspensions, etc. The&@uses scattering of the incident radiation allowing highe
boundary layer behavior of viscoelastic fluid has technicall€Vels of absorption within the fluid. Choi 19
applications in engineering such as glass fiber, papepxperlmentally verified that the addition of small amount
production, manufacture of foods, the aerodynamicOf nanoparticles appreciably enhances the effective
extrusion of plastic sheets, the polymer extrusion in athermal conductivity of the base fluid. These particles are
melt spinning process and many othetg|[ made up of the metals such as (Al, Cu), oxides (AlO
Fluid flow in a porous medium is now one of the most carbides (SiC), nitrides (AN, SiN) or nonmetals
important topics due to its wide applications in both (9raphite, carbon nanotubes).
science and engineerin3 14]. In most of the previous Buongiorno R0O] proposed a mathematical model that
work, the Darcy model was adopted when studyingconsiders two significant effects namely the Brownian
porous flows. The Darcy law is sufficient in studying motion and thermophoretic diffusion of nanoparticles.

1 Introduction
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The characteristic feature of nanofluids is thermalenergy equation. This configuration is a good
conductivity enhancement, a phenomenon observed bgpproximation of some practical situations such as heat
Masuda et al., 21]. This phenomenon suggests the exchangers, flow meters, and pipes that connect system
possibility of using nanofluids in advanced nuclear components. The cooling of these devices can be
systems 22]. A comprehensive survey of convective achieved by utilizing a porous surface through which a
transport in nanofluids has been made by Buongiornaoolant, either a liquid or gas, is forced. Therefore, the
[23], who says that a satisfactory explanation for theresults obtained here are important for the design of the
abnormal increase of the thermal conductivity andwall and the cooling arrangements of these devices.
viscosity is yet to be found. He focuses on the further heat The governing momentum, energy and concentration
transfer enhancement observed in the convectiveequations are solved numerically using the finite
situations. Very recently, Kuznetsov and NieR4] have  difference approximations. The inclusion of the porosity
examined the influence of nanoparticles on the naturakffect, inertial damping force, the velocity of suctioneth
convection boundary layer flow past a vertical plate byHall parameter, the non-Newtonian Casson parameter,
using a model in which Brownian motion and Brownian motion parameter and thermophoretic
thermophoresis are accounted for. They have assumegarameter in addition to Hartmann, Eckert, Prandtl and
that both the temperature and the nanoparticle fraction areewis numbers, leads to some interesting effects, on the
constant along the wall. Further, Nield and Kuznetsovvelocity, temperature and nanoparticles concentration
[259] have studied the problem proposed by Cheng andlistributions.

Minkowycz [26] about the natural convection past a

vertical plate in a porous medium saturated by a L

nanofiuid. The model used for the nanofiuid incorporates? D€scription of the Problem

the effects of the Brownian motion and thermophoresis. The two parallel insulating horizontal plates are located a
Attia et al, [27] studied the unsteady non-Darcian flow the y =+ h planes and extend from x =eto 0 and z = -
between two stationery parallel plates in porous mediumew to « embedded in a DF porous medium where a high

with heat transfer considering the effect of suction whererReynolds number is assumed5[16]. The lower and
the fluid motion is subjected to a constant pressureupper plates are kept at the two constant temperafiyres
gradient. This problem was studied considering the casendT,, respectively, wherd, > T; and a heat source is
of a Couette flow 28]. An extension of this work was included, moreover, the concentration of the nanopasticle
presented when the fluid is acted upon by an exponentigt the lower plate is set to a constant valydiffers from
decaying pressure gradient applied in the axial directionthat at the upper on€,, as shown in Fig. (1). The fluid
[29,301. flows between the two plates in a porous medium where
In this paper, the unsteady MHD Hartmann non the non-Darcy law (Darcy-Forchheimer flow model) is
Darcian flow with heat and mass transfer through aassumed 16,34,3536] The motion is driven by a
porous medium of an incompressible Casson nanofluionstant pressure gradiety/dx in thex-direction, and a
between two infinite horizontal stationery parallel platesuniform suction from above and injection from below
is investigated and the DF model is used for theWhich are applied at= 0 with velocity v, in the positive
characteristics of the porous medium. A constant pressurg-direction. A uniform magnetic fiel@, is applied in the
gradient is applied in the axial direction and a uniform Positive y-direction and is assumed undisturbed as the
suction from above and injection from below is imposed induced magnetic field is neglected by assuming a very
in the direction normal to the plates. The two plates areSmall magnetic Reynolds number. The Hall Effect is
maintained at two different but constant temperaturestaken into consideration and consequenti@mponent
Also, the concentration of the nanoparticles at the lowerfor the velocity is expected to arise. Due to the infinite
plate differs from that at the upper one, while, both aredimensions in thex and zdirections all quantities apart
kept constants. The non-Darcy flow in the porous mediumfrom the pressure gradierdp/dx which is assumed
deals with the analysis in which the partial differential constant, are independent of thandz-coordinates, thus
equations governing the fluid motion are based on thethe velocity vector of the fluid is given by:
non-Darcy law (Darcy -Forchheimer flow model) that = - e -
accounts);or the(dragyexerted by the porous medii)h]n [ V) =unt) i Ve J AWt k
32,33] in addition to the inertial effectl[6,34,35,36] The  with the initial and boundary conditions= 0 att < O,
viscous dissipation is taken into consideration in theandu= 0 aty = +hfort > 0. The temperaturé (y,t) at
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any pointin the fluid satisfies both the initial and boundary

conditionsT =Ty att <0, T =T, aty=+h,andT =T; at
y=—hfort> 0. The nanoparticles concentratiofy,t) at

The third term in the right side of equations (4) and (5)
both represent the electromagnetic force due to the effect
of the Hall current. The last two terms in the right side

any pointin the fluid satisfies both the initial and boundary of equations (4) and (5) represent the non-Darcy porosity

conditionsC = C; att <0,C=Cp aty = +h, andC =C;
aty=—hfort > 0.

forces.
To find the temperature distribution inside the fluid we use

We also, assume the rheological equation of Casson fluicthe energy equation,

reported in [37, 38]

2 us+%)aj , TS T

Tij =
2 IJB+\/%)GJ' , < T

where, ug is the plastic dynamic viscosity of the
non-Newtonian fluid, 1 denotes the product of the
component of deformation rate with itsetf,= g &; and
g is the {, )" component of deformation rate, shows
a critical value of this product based on the
non-Newtonian model, anBy is the yield stress of the
fluid.
The fluid flow is governed by the momentum equation,
D 7 — — —

Por = 0. (MO V)= 0P+ J A Bo + FoF 1)
If the Hall term is retained, the current densﬁyis given
by

- -

—B(J A Bo)) )
whereo is the electric conductivity of the fluid, arilis

the Hall factor. Equation (2) may be solvedjrto yield:

— — —

T B~ 28 i K @3
Bo=— 112 ((u+rw) i +(w—ru) k) (3)
wherer = g BB, is the Hall parameter. Thus, in terms of

Eq. (3), the two components of Eq. (1) read:

du 1dp , 1\9%
o Hvody = gt (L m) o A
GBO u A2 ( )

—p(1+r2)(u+rw) RprU— kU

ow ow _

a—t‘f'Van , (5)

u 92w 0B, U A

p—F(1+ )& — o (W—ru) — KpFw——vvz

Wherepg andu are, respectively, the density of the fluid
and the coefficient of viscosityK is the Darcy

permeability of porous medium [31-33],
m = ugv/21/py is the non-Newtonian Casson
parameter [12] and is the inertial coefficient (i.e. the

‘;—t+vo§y_a"§+RDb a—(;‘;—
2
RD du
v ()" [ } ©)
+ R (u2+w2) w(u2+w2)

where, C represents the nanoparticles concentration,
while, c andk are, respectively, the specific heat capacity
and the thermal conductivity of the flui®R = (pc)p / (p

C)r is the dimensionless parameter that gives the ratio of
effective heat capacity of the nanoparticle material ta hea
capacity of the fluid. Thus value & will be, therefore,
different for different fluids and nanoparticle materidbs.

is the thermophoretic diffusion coefficient afy, is the
Brownian motion coefficient. The last three terms on the
right side of Eq. (6) represent the viscous and Joule
dissipations effects; the first term is the classical
expression of the viscous dissipation for a clear fld (
— ), while, the second term is the viscous dissipation in
the Darcy limit K — 0) [39], for a full discussion for
modeling this form of viscous dissipation, se®041].

The last term represent the Joule dissipation, we notice
that each of these terms has two components; this is
because the Hall Effect brings about a velogityin the
z-direction.

To study the nanoparticles concentrations during the fluid
motion, we use the concentration equation which is given
by [42,43]

o
ay?

%< Ly
ot °

ac
ay

D: 04T
= — — 7

b Tl dyz ()
The density ppr, the viscosity e, and the thermal
conductivity k, of the nanofluid are defined,

respectively, as44,45:

pe = (1kn— Ope + Lpp .tk = s
OnF = (PcpgnF

where( is the solid volume fractionyr is the dynamic
viscosity of the base fluidpr andp,, are the densities of
the base fluid and the nanoparticle, respectively, the

non-Darcian Forchheimer geometrical constant which issuffixesF, p, andnF denote base fluid, nanoparticle, and

related to the geometry of the porous mediuré]].

nanofluid conditions, respectively, angcp)nr is the heat
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capacitance of the nanofluid, which are defined as: = ha “ :
Ty, niform Suaction

(Pcp)ne = (1 — Q) (pcp)r + Z(PCp)p €6 1 l|'-|nrlinh

ke kot 2ke — 24 (ke —kp) O O

ke~ kp T 2ke + 2 (ke —Kp) dpxd.
where, ke and k, are the thermal conductivities of the O O
base fluid and nanopatrticle, respectively.

Introducing the following non-dimensional quantities Lower Plate
and parameters: |:||f0r:||l|u- ‘tion
(%,Y,2) = (x%Z) 0= PTh“ W= %" P= PP_QZ f= ‘_ﬁz Fig. 1: The geometry of the problem
) ) 3 3 “ ) p 3

= T-, A_ CC
T=1=F.C=5=¢,S=pvh/u, B=H/K, y=Ah/K,

Haz—aBzhz/u,Ec— u?/p?ch?®(T, —Ty), Pr = uc/k,
Le=k/pcDp, Ny = RDp(C; — C1)/a,

N = RDy(To— To)/aTy 3 Numermal Solution of the Governing
Equations

Equations (4), (5), (6) and (7) are written as (the "hats”
will be dropped for convenience): Equations (8), (9), (10) and (11) are solved numerically

2 using finite differences [46] under the initial and boundary
u

d Ju _ dpP 1
FtSqy = -+ 1+x

2 (8) conditions (12), (13) and (14) to determine the velocity,
2 . . . . .
—(1H_+"=‘rz_)(u+ rw) — Bu — yu? temperature and nanoparticles concentration distribstio

for different values of the governing parametgrs, S r,

2 2 m, N; andN}, with various values of the Hartmann, Prandtl,
W+ S = (1+1) %y — o (w-ru) N b

oy (1419 (9)  Eckert and Lewis numbers. The Crank-Nicolson implicit
- Bw — yw? method }47] is applied.
We define the variableg =d u/dy,M=0w/dy H
o1 SaT — 12T N (0_ 0_T) =0 T/0dyandF =9 C/d yto reduce the second order
ot Pr 9y2 Pr \ dy dy diff . . .
2 2 ifferential equations (8), (9), (10) and (11) to first order
+ 3 (%) + Ec(1+3) [(‘3—5) + (?,—“y”) ] differential equations as follows:
du 1 av Ha?
HaZEC ot +SV = (1+ ) —2—(U+rW)
2 2 (1+19)
+ BEc(U? + w?) + A (U + w?) (10) —BU—VU2
(15)
ac+sac 1 o9C N 1 N %1
ot 9y PrLe 9v2 Ny 9y a 2 2
ot oy PrLe dy PrLe N, dy a S +SM = (1+ %) 0_'\; _(1H—+ar?_)(w_ru) (16)
—Bw — yw?

The initial and boundary conditions for the velocity
components, temperature and nanoparticles concentration

are given respectively by (12), (13) and (14): T 4+ SH = PL %_H + % HE + % H?2
+Ec(1—|— Ly (v? +M2)+BEc(u2+wZ) (17)
U=w=0,t<0&u=w=0, y==+1, t>0 (12) + HEEE (2 + W)
aC 1 oF 1 N oH
t<0:T=08&t>0:T=1y=+1&t>0:T=0y=—1 o T SF T meay Then oy P
(13)

3.1 Finite Difference Representations
t<0:C=0&t>0:C=1y=41&t>0:C=0,y=-1
(14)  The computational domain is divided into meshes each of
dimensionAt and Ay in the time and space respectively

(@© 2017 NSP
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as shown in figure (2). Finite difference equations relating
the variables are obtained by writing the equations at the+ Ec (B + 1H+ar22)) [w‘”'”ﬁu‘“'j+u"jg1+ui=j) (U1, +ui)
midpoint of the computational cell and then replacing the W|+1J+1+W|+1j+Wi,j+1+Wi,j)(Wi+1,j+Wi,j)

different terms by their second order central difference 8
approximation iny direction. The diffusion terms are
replaced by the average of the central differences at two

(21)

successive time-levels.

Thomas-algorithm4§].

(1+1,j) (i1, j+1)

12, 1

Ay

I v

T (L) a—— At ——(i.j1)

|

Fig. 2: Finite differences mesh layout

The finite difference representations for the resulting

Finally, the resulting block (Gi1ji1-Gi1j+Gjna-Gj) | gEjntFsjthjathy)
tri-diagonal system is solved using the generalized 4

2At
1 (FiyvjratFiyj—Fjr1i—-Fj)

—|—'U

Le 20y
1 N (HipajratHivg j—Hijra—Hij)
Prie N, 24y

(22)

3.2 Generalized Thomas Algorithm

The linearized systems of difference equations represent
banded matrices that can be solved by different methods.
These systems have block-diagonal matrices which have
very well defined structures. One of the very powerful
methods to solve this system is the Thomas algorithm,
because we need not to store the matrix coefficients,
which reduces the computational time. The momentum,
energy and concentration equations are rewritten
respectively in the following forms

first order differential equations (15), (16), (17) and (18) &4 +agUc+agVi +aaVic+asWi +agWi +arM; +agMi = o

take the form
Ui, 41— d U1 Ui Vs jratVies jtVi et Vi
d aat Vi V+V vV, 4v 2
_dp 1 i+1j+1 Vit j—Vij+1—Vij  _ Ha
+(1+3) 20y 31+12)

[(Uit1,j+1 4 Uisdj + Ui jaa+ Ui ) + T (Wipg jo1+ Wigaj
LU TSN PR P
+Wi,j+1+Wi,j)}_B i+1,j+17T Y+ i,j+1T 4L
_y(ui+1,j+1+Ui+1,j+Ui,j+1+Ui,j)(Ui+1,j+Ui,j)
8

)

(19)

Wit 1 j 41— Wit 1, j+HWi j11—Wij _|_QMi+1,j+1+Mi+15J+Mi,j+1+Mi,J
T

7
_ (1_|_ ;) Mty jt1t Mivyj—Mijpa—Mj — Ha?
- m 22y 4(1+17)

(Wi je1+ Wiesj+ Wijaa+ Wij) — 1 (Uit je

B Witd j+1tWign j+Wi j41+Wi j

HUiprj + Uijra+ Ui)] —
—y (Wig1, j41 +Wigd,j + Wi jr1+Wij) (Wi, j+ Wi j)
8

(20)

(Tipnjrr=Tirnj+Tijea—Tij) +S(Hi+1,j+1+Hi+14j+Hi,j+1+Hi,j)
1 (HiyajyatHiva j—Hijsa—Hij)
Pr 2Ay

(HiypjratHivaj+HijratHig) (Hogj+HiG) | Ny

+ Pr
(FiyvjratFijra) (Hipnj+Hij)

Ne
+ Pr 8
(Hitgjp1tHijra) (Fegj+Fj) +

(23)

bawi + bawi + baM; + baMy + bsuy -+ bgui -+ b7V + bgVic = bg
(24)

P1Ti + P2 Tk + p3Hi + paHk+ PsCi + PsCy + P7h + pgF = Po
(25)

091G + 42Cx + a3k + s+ 0sTi +ge Tk +07H) +dgHk = go

(26)
where, a,, by pn andgn with (n = 1, 2, , 9) are the
coefficients of the difference equations (23-26) that
parallel to equations (19-22) respectivelyand k are
counters to i j+1) and (+1, j+1), respectively (for
simplicity).

Firstly, the momentum equations (19, 20) are solved
to compute the velocity components w and their
derivativesV and M respectively. We may write the
generalized Thomas-algorithm as in the following steps
[4€6). The unknowns are written as

- u = uM + GM + G (27)
1y [ VigsjratVienj ™1tV g) Vienj Vi)
FEC(L + ) [Nt e ) Vi
Mist i1 -Miss i +Miie1+Mii) (Mioq i +Mi | _ . R
+( L e I'Jg+1+ DM+ ’J)} W =wV, + WM + W (28)
(@© 2017 NSP
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Vi = ViVk + VMg + Yk (29) My = (g1hs — g3h1)/(g1h2 — g2ha) (44)

M = MV + MMy + Nig (30) My = (91hs — 9ah1)/(g1h2 — g2h1) (45)

where, the variables, T, G, Wi, Wi, W, Vi, Vk, Vi, Mk, My, A

My represent the Thomas coefficients. The equations are My = (91hs — gshy)/(g1h2 — g2h1) (46)
relatingu andw to their derivativey/ andM, respectively. Where,

From the definitions o/ andM we obtain:

Ue-U Vi Vi Weew MM G1=ail + a (U +4y/2) + ag + asW + asW (47)

Ay 2 Ay 2
or, Q2=a1li+ al +asW + as(W +A4y/2) + a7 (48)
U = (U_H‘ AY/Z)VI + (Ay/Z)Vk + LN‘I MI + l]I (31) gz = — [(Ay/Z) a + 34] (49)
and
. _ 3 9a = — [(Ay/2)as + ag] (50)
Wi = (Wi + Ay/2) Mi + (Ay/2) My + W Vi + W (32)
or, Os=a — arl — @&l —asW — agW  (51)
Uk = UV + Ok M+ g (33)
and hy = biwi + bpwi + bsup + bg (U +4y/2) + b7 (52)
Wi = WiV + Wik M + W (34)

After many operations in the equations (23), (24) and N2 =Db1W + b2 (W +Ay/2) + bs + bs(iy + beli (53)
(27-34), we may compute the required coefficients from

the following relations: hs = — [(Ay/2)bs + byg] (54)
U = (Ay/2)+ (U +Ay/2) Vi + G M (35) hy = —[(4y/2)bz + by (55)
_ ~ ~ hs=bg — b1 W — bo W — bs(; — bg 0 56
o= (0@ + Ay/2V + G N (36) 5= by — by W 2 Wi 5 Oy 6l (56)
Secondly, the energy and concentration equations (21,
R _ A 22) are solved to compute the temperatlreand the
O = (U +Ay/2) Vie+ My + G (37)  concentration C and their derivativesH and F

respectively. We may write the generalized

Wi = (Ay/2)+ (W +Ay/2) Vi + W My (38) Thomas-algorithm as in the following step46]. The
unknowns are written as

Wi = (W + Ay/2)Vh+ W My (39) To=TH+TR+T (57)
W = (W + Ay/2) Vit Wy My + Wy (40) C =GH +CR + G (58)
Vic= (gshz — g2hs) /(91h2 — g2hs) (41) H = HgHy + AR + Fg (59)
Vi = (9ah2 — g2hs) /(91h2 — Gohy) (42) R = FcHc+ AR+ R (60)
Where, the variabled, T, Ti, G, €, &, Hy, Fk, Hi, R
Vi = (gsh2 — 92hs) / (91h2 — g2hy) (43) R, Frepresentthe Thomas coefficients. The equations are
(@© 2017 NSP
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relatingT andC to their derivativedd andF, respectively.

From the definitions oH andF we obtain:

Tk—T  H+H« G-CG R+K
Ay 0 20 Ay 2
Or,
Te=(Ti+ Ay/2) Hi + (Ay/2)He + TR+ T (61)
and
Ce= (G + Ay/2 R+ (Ay/2)Fc + GH+ G (62)
Or, B
Tk = TuHk+ T R+ Tk (63)
and B ) i
Ge = Gy + G et G (64)

After many operations in the equations (25, 26) and fo— i G =
= + +Ay/2
(57-64), we may compute the required coefficients from 2= GG+ QG y/2)

the following relations:

T = (Ay/2)+(Ti+4y/2)H+ TR (65)
T = (Ti+ Ay/2)He+ Ti K (66)

T = (Ti+ Ay/2)He+ T R+ i (67)
Cc = (Ay/2)+ (G +Ay/2)He + C R (68)
C = G+ Ay/2)F+ G K (69)

G = (G + Ay/2)F+ G R+ G (70)
Hi = (Iaf2 —12f3) /(11 f2 — I2f1) (71)
Hi = (Iafa—l214) /(11 f2 — 12 1) (72)
Hy = (Isfa—I2fs) /(11 f2 — 12f1) (73)
Fo= (I1fa—I3f1)/(I1f2 —12f1) (74)
Fo= (I f4a—14f1) /(11 fo —12f1) (75)
Fo= (l1fs —lsf1) /(11 f2 — 12 1) (76)

Where,

Iy = puTi + P2(Ti +4Y/2) + Ps+ PsCi + PG (77)
l2=pu T+ p2Ti + psCi +ps(Ci +4y/2) + 7 (78)
ls=—[(Ay/2) p2 + pa] (79)
la=—[(Ay/2) ps + ps] (80)
ls=po — prTi — p2Ti — psC — PG (81)

f1=qC+ @ C + 95T + G6(Ti +4y/2) + q7 (82)

+ 03+ 5T + geTi (83)

fs=—[(Ay/2)de + Qg] (84)
fa=—[(Ay/2)q2 + Q4 (85)
fs=0o — uG — G — o5Ti — g6 T (86)

Computations of the coefficients are started frpm
-1 with known velocity, temperature and concentration
(u(-1,t) =0,w(-1t) =0, T(-1,t) = 0 andC(-1,t) = 0) from
the boundary conditions equations (12-14). Si¥c#, H
andF are independent am w, T andC, respectively, then
a, G, G, W, W, w, T, T, ,6,6,C6, take
zero values using equations (29), (30), (59) and (60).
Thus, all coefficients (up to upper plate) are computed
directly from the above equations (35-56) and (65-86).
Computations of unknownsg w, T, C, V, M, H andF are
started at the upper plate with known componeuats 0,
w=0,T =1 andC = 1) using equations (27-86). The
above procedure is repeated to modify the unknowymg
T,C,V, M, H andF.

All calculations have been carried out fdiP/dx = -5,
while the results obtained in a covering range for the
porosity parameter, 0 < B < 2.0 [27] and the
non-Darcian parameter,® < y < 2.0 as [27, 48]. The
parameterdN, andN; can take any value in the interval
(0, ), that the larger the values bk, andN;, the greater
will be the strength of the corresponding effects, while,
the deviation in the profiles only occur for the values of
N: andNp in the range (0, 2),42). It is found that the
unsteady results reduce to those reporte®ih49] for a
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clear fluid in the case of Newtonian fluid and Darcian increasing3 decreases the temperature and its steady
model. These comparisons lend confidence in thestate time as shown in Fig.(5-1ll). Furthermore, the

accuracy and correctness of the solutions.

4 Results and Discussion

nanoparticle concentration decreases with increasing the
porosity parameter at early flow times before it starts to
increase with increasing3(> 0) till reaching its steady
state as presented in Fig.(5-1V). It should be mentioned
that the highest concentration is obtained in the case of a

This work describes a system of PDEs governing the
motion of a non-Newtonian nanofluid obeys the Casson
model with heat and mass transfer. The fluid flow is
through a nondarcian porous medium (Darcy-
Forchheimer kind) between two infinite parallel
permeable plates. The problem is solved numerically with
the help of the finite difference method. The formulas of
the velocity components, temperature and concentration
are obtained as functions of the physical parameters of the
problem. The effects of these parameters on these
solutions are illustrated numerically and graphically
through a set of figures to reinforce the parametric study
of the fluid flow.

Figure (3) shows the time progression of the velocity
components, temperature and nanoparticles concentratior
profiles till the steady state wittB(= 1,y =1, m=0.5,r
=1,Ha=1,Pr=1,Ec=0.2,N; =0.5,N, =0.5 andLe=
10). It is observed that the velocity componeatandw,
the temperaturd@ and the nanoparticles concentratiGn
increase monotonously with time and theandw reach
the steady state faster thdnand C, which is expected,
sinceu andw act as the source of temperature. It is clear
from fig. (3-1, Il) that the velocity charts are asymmetric
about they = 0) plane because of the suction.

Figure (4) depicts the influence of the suction
parameter $ > 0) on the velocity, temperature, and
nanoparticle volume fraction profiles. Increasing the
suction parameter decreases the velocity components as
in Fig. (4-1, ). The heated fluid is pushed towards the
wall where the buoyancy forces can act to retard the fluid
due to the high influence of the Brownian motion, while,
this effect acts to decrease the wall shear stress. Figure
(4-111) exhibits the decrease in the temperatdrewith
increasingS. On the other hand, the nanoparticle volume
fraction C decreases with increasi®gat early flow times
before it starts to increase with increasi@gll reaching
its steady state as shown in Fig. (4-1V).

Fig. (5) exhibits the marked effect of the porosity
parametef3 on the time development @f w, T andC. It

is obvious from fig. (5-1, 1) that increasing decreases

the resistive porosity force om and w, moreover,
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Fig. 4: Effect of the suction paramet8on the time development Fig. 5: Effect of the porosity parametef on the time

of (1) the velocityu, (1) the velocityw, (lll) the temperaturd’, development of (l) the velocity u, (Il) the velocity w, (lIthe
and (IV) the nanoparticles concentration C at the centehef t temperature T, and (IV) the nanoparticles concentration tBea
channel(y = 0). center of the channel (y = 0).

The non-Darcian parametey affects the time
development ofi, w, T andC. Increasingy decreases the in Fig. (6) means that the fluid flows with total absence of
velocitiesu, w and their steady state times as presented irthe inertial drag and the Darcian case is obtained to
Fig. (6-1, 1I) which reflects the expected resistance provide higher temperature values and an easier quick
because of the inertial damping forces. path for the fluid flow.

On the other hand, Fig.(6-11) emphasizes that
increasingy decrease3 and its steady state time, as the In Fig. (6-1V), as the non-Darcy parameter increases,
increase iny decreases, w which, in turn, decreases the the nanoparticle concentration profile increases, which
viscous dissipation which decreasesThe value ¢ = 0) confirms that increasing reduces the intensity of the
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o nanoparticle volume fraction profile is obtained. It should
03 . . .
be noted that a large increase in the non-Newtonian
a5 \\‘ Casson fluid parametem indefinitely reduces the
—oLs problem to the Newtonian fluid case.
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Fig. 6: Effect of the non-darcian parametgr on the time

development of (I) the velocity u, (II) the velocity w, (lithe ol
temperature T, and (IV) the nanoparticles concentratioh tBea B2
center of the channel (y = 0). Hp =05 [
Le =10 |.
5‘5 40

flow but enhances the nanoparticle volume fractionF'g' /- Effect of the non-Newtonian Casson parameesn the

. . devel t of (1) th locity; (1) th locit 111) th
profile. Hence, the non-Darcy parameter has an |mportanttIme evelopment of (1) the ve OC'W’(_) e veloc yW’_( the

. . ) temperaturd’, and (IV) the nanoparticles concentratiorat the
role in controlling the flow field. _

) ~ center of the channel (y = 0).

Fig. (7) shows the effect of the non-Newtonian
Casson fluid parameten on the velocity, temperature,
and the nanoparticle volume fraction profiles. It is
observed that increasing the value wf increases the Figure (8-1) shows that increases with increasing the
velocity and temperature values, while a reduction in theHall parameter as the effective conductivity (g/ (1 +
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It is observed also that the time at whichieaches its
steady state value increases with increasing

In Fig. (8-ll), the velocity componentv increases
with increasing the Hall parametear € 0 up to 1) which
corresponds to an increase in the driving force term
(rHa?u/ (1+r?)) in Eq. (9) which pumps the flow in the
z-direction. However, increasing the Hall parametes (

1) decreases the effective conductivity that results in
reducing the driving force and then, decreasesThe
temperature T increases with increasing the Hall
parameter due to the increase in the Joule and viscous
dissipations as shown in fig (8-1ll). Moreover, an
interesting overshooting is obtained in the concentration
profiles that the nanoparticle volume fraction increases at
early flow times before it starts to decrease with
increasing the Hall parameter till reaching its steady
state as presented in Fig.(8-1V).

Fig (9) shows that the velocity componantaind the
temperaturd decrease while, the velocity componewnt
increases with increasing the Hartman numbéa.
Furthermore, Fig.(8-1V) shows that the nanoparticles
concentration profiles decrease at early flow times before
it starts to increase with increasing the Hartman number
Ha till reaching its steady state.

We notice from Fig. (10) that Prandtl number has
the same influence on temperature profile as well as on
nanoparticle fraction at early flow times, as the increase in
Pr has decreasing the behavior for bathand C which
may be attributed to the definition of Prandtl number as a
ratio of kinematic viscosity to thermal diffusivity.
Consequently, for higher values of Prandtl number it
reduces the thermal diffusivity. The same behavior can be
observed for nanoparticle volume concentration against
Prandtl number when we compare temperature profiles
with nanoparticles concentration except at the later times
of flow where an elevation in the temperature profiles is
recognized with increasinBr. It is worth pointing here
that the liquid metals are characterized by small values of
(Pr << 1), which have high thermal conductivity but low
viscosity, while large values ofPf >>1) correspond to
high-viscosity oils. Specifically, Prandtl numb&r =
0.72, 1.0 and 7.0 correspond to air, electrolyte solution
such as salt water and water, respectivédg|[ In our
computations we have chos@n = 1 to retrieve all the
graphical results.
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Fig. 9: Effect of the Hartmann numbeHa on the time
development of (I) the velocity, (1) the velocity w, () the
temperaturd’, and (IV) the nanoparticles concentratiOrat the
center of the channel (y = 0).

The dimensionless temperature profile is plotted for
various values of Eckert number in Fig (11-). It is
obvious that the increase of Eckert number causes an
increase of the nanofluid temperature and physically this
can be totally verified, because when the friction on the
plate increases due to fluid viscosity, more heat is
generated and as a result the nanofluid temperature
increases. Furthermore, the presence of viscous

times before it starts to decrease with increaswadill
reaching its steady state as shown in Fig.(12-11). From the
physical point of view, an increase in the thermophoretic
effect generates a larger mass flux due to temperature
gradient which in turn raises the concentration. This
mechanism therefore, assists the diffusion of the
nanoparticles and elevates the concentration profile with
the beginning of the fluid motion while, distinctive peaks
occur at earlier flow times for higher values of the
thermophoretic parametsk.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1668 NS 2 N. T. M. El-dabe et al. : Unsteady MHD non-darcian flow of

o L1 I
=1 -
5 z 12 ] 3=1
E=1 My =9.1,8.51 E=1
54 =1 ] 1.0 F=1. [
Ec=032,05.1 Ha =1 m=g5 [
44 r=1 08 =
= 5] m =05 = g ] :‘111
Pr=1 Pr=1
2] Nt=05 | 044 Ec=02
Nb =05 NE=05
14 La=10 H 0z Le=18
I:I T T T T T T T I:II:I T T T T T T T
a0 05 10 15 20 25 30 35 40 a0 05 10 15 20 25 30 35 40
(ID In
i 02
i $=1 3=1
B=1 01 E=1
7=1 || =1,
Ha =1 0o m=035 | |
r=1 Ha =1
m=05 014 r=1
o p . Pr=1 = . Pr=1
A5 Ec=0z.05.1 L Nt =05 24 Ec=0.2
1.0+ : b= 0.5 a3 b = 0.5
-1.2] - Le =10 el Le=1a |_
-14 T T T T T T T 0.4

Fig. 11: Effect of the Eckert numbeEc on the time development  Fig. 12: Effect of the thermophoresis paramebgron the time
of (I) the temperaturd and (1) the nanoparticles concentration development of (I) the temperatufeand (Il) the nanoparticles
C at the center of the channel (y = 0). concentratiorC at the center of the channel (y = 0).

increases with increasing the Lewis number as in Fig.

. . e (14-1). Furthermore, there is a fall in the nanoparticle
Brownian motion exemplified in the parametédy on the . o . .
concentration with increasing the Lewis number at early

temperature distribution and the volume fraction of . o .
. . _flow times, and then an elevation in the concentration
nanoparticles. The temperature of the fluid decreases with

the increase iMNp. On the other hand, the nanoparticle profiles is obtained reaching the steady state.
volume fraction decreases at early flow times with

increasing\p and then it starts to increase till reaching its 5 Conclusions

steady state. It is interesting to note that the Brownian

motion of nanoparticles at molecular and Nano scaleThe unsteady non-Darcian MHD Hartmann flow through
levels, is a key to the Nano scale mechanism governing norous medium between two stationery parallel plates
their thermal behaviors. In nanofluid systems, due to theyf g incompressible Casson nanofluid was studied with
size of the nanoparticles, the Brownian motion takesheat and mass transfer in the presence of uniform suction
place, which can affect the heat transfer properties. As thgq injection considering different modes of viscous
particle size scale approaches to the nanometer scale, traﬁssipation_ The velocity, temperature and nanoparticles
particle Brownian motion and its effect on the concentration are found to increase monotonously with
surrounding liquids play an important role in the heatjme and that the velocity reaches the steady state faster
transfer. However, the nanoparticles concentration isnan the temperature and nanoparticles concentrafios
negligibly affected for the values of, beyond 2.0. effects of the physical parameters governing the fluid
As Lewis numberLe defines the ratio of thermal motion are investigated. It is found that increasing the
diffusivity to mass (nanoparticle species) diffusivitlyjs porosity, inertial damping and suction or injection
used to characterize fluid flows where there isvelocity have a marked effect on decreasing the velocity
simultaneous heat and mass transfer. The temperatumdistribution in an inverse proportionality manner, while,

Fig. (13) is prepared to present the effect of the
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- = increases the velocity profiles. The increase in the Hall
0 B=1 K parameter increases the velocity componentand
05 s decreases the velocity componentwhile, increasing the
N_=0.108.51 Ha =1 i
CLE ® =1 Hartmann number decreases but, increasesw.
04 e Furthermore, increasing, y, Ha, SandN, decreases the
22 Le=10 temperature; on the other hand, increasmér, r, Ec, Le
on and N; increases the temperature. Studying the
G @5 10 15 20 25 38 35 40 nanoparticles concentration behavior results in an olsviou
- decrease in the nanoparticles concentration with
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Fig. 13: Effect of the Brownian motion parametidy, on the time
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Fig. 14: Effect of the Lewis numbelce on the time development
of (1) the temperaturd and (Il) the nanoparticles concentration
C at the center of the channel (y = 0).

increasingm, Pr, r, Ec and N;, while the nanoparticles
volume fraction increses with incresirfg, y, Ha, S, Le
and Np. Various cases were monitored passing through
the fluid flow in a non-porous medium, the Darcian flow
model and the non-Darcian flow in a porous medium
which showed the greatest flow resistance resulting in
lower velocity and temperature values but higher
concentrations of the nanoparticles.

6 Applications

The future nanofluids research areas include, but are not
limited to: emerging synthesis techniques, geothermal
power extraction, automotive industry, modification of
optical, magnetic, and electronic properties of materials
mass transport, boiling phenomena, waste heat collection,
absorption and conversion of radiation, optics, cancer
treatment, controlling of fluid motion, consumer goods,
electronics, Solar energy harvesting, nuclear power
generation, and surfaces and catalysts. The other
important area which has seen increasing interest is
hyperthermia treatments that requires dispersed
nanoparticles to selectively attach to diseased regions.
This wide breadth of recent and promised future research
has primarily been due to the rapid advances and
increasing control in  nano-material fabrication
techniques.
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