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Abstract: In this paper, we investigated the propagation of Rayleigh waves in a homogeneous, pre-stressed elastic layer of finite
thickness over a homogeneous, pre-stressed elastic half - space subjected to the rotation. The dispersion equation hasbeen derived for a
layer over a half-space, when both media are considered as pre-stressed and the effect of initial rotation shown in earlier investigators,
is in general not applicable to the case of pre-stressed media. The results indicate that the effect of the rotation on thePropagation of
Rayleigh waves in Fiber- reinforced isotropic solid thermo-viscoelastic media are very pronounced.
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1 Introduction

During earthquakes, the Rayleigh waves play a more
drastic role than other seismic waves in damages to
human beings and buildings on the surface of the Earth.
Therefore, it is of great importance to the seismologist to
study the effect of initial stress on the propagation of
Rayleigh waves. After the pioneering work of Rayleigh,
many investigators have solved the Rayleigh problem for
a half?space and one or more superficial layer situated
over a half space inhomogeneous and non-homogeneous
media. Schoenberg and Censor [1] were the first to study
the propagation of plane harmonic waves in a rotating
elastic medium where it is shown that the elastic medium
becomes dispersive and anisotropic due to rotation. Later
on, many researchers introduced rotation in different
theories of thermoelasticity. Agarwal [2] studied
thermo-elastic plane wave propagation in an infinite
non-rotating medium.

The normal mode analysis was used to obtain the
exact expression for the temperature distribution, the
thermal stresses and the displacement components. The
purpose of the present work is to show the thermal and
rotational effects on the surface waves. Surface waves

have been well recognized in the study of earthquake,
seismology, geophysics and geodynamics. A good
amount of literature for surface waves is available (in
Refs. [3,4,5,6] Acharya and Singupta [7], Pal and
Sengupta [8] and Sengupta and Nath [9] and his research
collaborators have studied surface waves. These waves
usually have greater amplitudes as compared with body
waves and travel more slowly than body waves. There are
many types of surface waves but we only discussed
Stoneley, Love and Rayleigh waves. Earthquake radiate
seismic energy as both body and surface waves. These are
also used for detecting cracks and other defects in
materials.

The idea of continuous self-reinforcement at every
point of an elastic solid was introduced by Belfield et al.
[10]. The superiority of fibre-reinforced composite
materials over other structural materials attracted many
authors to study different types of problems in this field.
Fibre-reinforced composite structures are used due to
their low weight and high strength. Two important
components, namely concrete and steel of a reinforced
medium are bound together as a single unit so that there
can be no relative displacement between them i.e. they act
together as a single anisotropic unit. The artificial
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structures on the surface of the earth are excited during an
earthquake, which give rise to violent vibrations in some
cases (Refs. [11] and [12]). Engineers and architects are
in search of such reinforced elastic materials for the
structures that resist the oscillatory vibration. The
propagation of waves depends upon the ground vibration
and the physical properties of the material structure.
Surface wave propagation in fiber reinforced media was
discussed by various authors ([13,14]). Abd-Alla et al.
[15] investigated the transient coupled thermoelasticity of
an annular fin The effects. of gravity field on surface
waves in fiber-reinforced thermoelastic media was also
discussed by Abd-Alla et al. [16]. The extensive literature
on the topic is now available and we can only mention a
few recent interesting investigations in (Refs. [17,18,19,
20]) Recently, Abd-Alla et al. [21] investigated the
magneto-thermoelastic problem in rotating
non-homogeneous orthotropic hollow cylinder under the
hyperbolic heat conduction model. The extensive
literature on the topic is now available and we can only
mention a few recent interesting investigations in ([22,23,
24,25,26]) The temperature-rate dependent theory of
thermoelasticity, which takes into account two relaxation
times, was developed by Green and Lindsay [27].

The aim of this paper is to investigate the propagation
of thermoelastic Rayleigh waves in a rotating
fibre-reinforced elastic anisotropic media. The Rayleigh
wave speed is derived to study the effect of rotation and
thermal on surface waves. The wave velocity equations
have been obtained for Rayleigh waves, and are in good
agreement with the corresponding classical result in the
absence of temperature and rotation as well as
homogeneity of the material medium. The results
obtained in this investigation are more general in the
sense that some earlier published results are obtained
from our result as special cases. It is also observed that
the corresponding classical results follow from this
analysis, in elastic media, by neglecting reinforced
parameters, rotational and thermal effects. Numerical
results are given and illustrated graphically.

2 Formulation of the problem and basic
equations

Let us consider the problem of a thermo elastic
half-space(x ≥ 0). The surface of the half space is
subjected to a thermal shock which is a function ofy and
t. Thus, all quantities are independent ofz and the third
component of displacement vector vanishes. When all
body forces are neglected the governing equations are:

(i) The constitutive equations for a fiber-reinforced
linearly thermoplastic isotropic medium with respect to
the reinforcement direction see [1]

σi j = Dλ eκkδi j +2DµT ei j +Dα (akamekmδi j +aia jekk)

+2(DµL −DµT )(aiakek j +a jakeki)+Dβ akamekmaia j − γ(T −T0)δi j, (1)

where σi j are the components of stress,ei j are the
components of strain; Dλ ,DµT are viscoelastic
parameters, Dα ,Dβ ,(DµL − DµT ) are reinforcement
viscoelastic parameters,γ = (3Dλ + 2Dµ)α1, α1 is
thermal expansion coefficient,δi j is the Kronecker delta,
T is the temperature above reference temperatureT0, and
a = (a1,a2,a3),a2

1 + a2
2 + a2

3 = 1. We choose the
fiber-direction asa ≡ (1,0,0).

The strains can be expressed in terms of the
displacementu j as

ei j =
1
2
(ui. j + u j.i) (2)

The elastic medium is rotating uniformly with an
angular velocity Ω = Ωn where n is a unit vector
representing the direction of the axis of rotation .

The displacement equation of motion in the rotating
frame has two additional term centripetal acceleration,
Ω × (Ω × u) is the centripetal acceleration due to time
varying motion only and 2Ω× u is the Coriolis
acceleration, andΩ = (0,0,Ω).

For plane strain deformation in thex − y plane,
displacementu = (u,v,0), ∂/∂ z = 0. Eq. (1) then yields

σ×x = A11ux +A12vy − γ(T −T0), (3)

σyy = A12ux +A22vy − γ(T −T0), (4)

σzz = A12ux +D2vy − γ(T −T0), (5)

σ×y = DµL(ux + vy),σ×z = σyz = 0, (6)

where,

A11 = λ0+2α0+4µL0−2µT0+β0+(λ1+2α1+4µL1−2µT1+β1)
∂
∂ t ,

A12= λ0+α0+(λ1+α1)
∂
∂ t , A22= λ0+2µT0+(λ1+

2µT1)
∂
∂ t ,

Dλ = λ0+λ1
∂
∂ t , Dα = α0+α1

∂
∂ t ,

Dβ = β0 + β1
∂
∂ t , DµT = µT0 + µT1

∂
∂ t , DµL = µL0 +

µL1
∂
∂ t , Dµ = µ0+ µ1

∂
∂ t ,

γ = 3λ0+2µ0+(3λ1+2µ1)
∂
∂ t ;

where λ0,µ0 are elastic constant andλ1,µ1 are the
parameters associated with 1th order viscoelasticity.

(ii) The equation of motion in the context of the Green-
Naghdi theory is

ρ [
..
u1 +[Ω × (Ω × u} j +(2Ω× .

u) j ] = σi j. j, i, j = 1,2,3
(7)

(iii) The heat conduction in the absence of heat sources
under the G-N III theory is

KTji +K∗ .
T ji= ρCE

..
T +γT0

..
ui, j, (8)
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whereρ is the mass density,CE is the specific heat at
constant strain,K∗ and K are respectively the material
constant characteristic of the theory and thermal
conductivity. When,K∗ → 0 ”equation (8),” reduces heat
conduction equation of the G-N II theory. Eq.s (7), (8)
and (1) constitute the complete system of generalized
thermoelasticity under the G-N III theory.

Using the summation convention, from Equations (3)
- (6) we note that the third equation of motion in Eq. (7)
identically satisfied and the first two equations become

ρ
[

∂ 2u

∂ t2 −Ω2u−2Ω
∂v
∂ t

]

=A11
∂ 2u

∂x2 +B2
∂ 2v

∂x∂y
+B1

∂ 2u

∂y2 −γ
∂T
∂x

,

(9)

ρ
[

∂ 2v

∂ t2 −vΩ2+2Ω
∂u
∂ t

]

=A22
∂ 2v

∂y2 +B2
∂ 2u

∂x∂y
+B1

∂ 2v

∂x2 −γ
∂T
∂y

,

(10)
where,

B1 = DµL = µL0 +µL1
∂
∂ t

,B2 = A12+DµL = λ0+α0+µL0 +(λ1+α1+µL1)
∂
∂ t

,

For convenience, the following non-dimensional variables
are used:

x′ = c1ηx,y′ = c1ηy,u′ = c1ηy,u,v′ = c1ηv, t ′ = c2
1ηt,

θ = γ(T −T0)/ρc2
1,σ

′
i j = σi j/Dµ j,Ω ′ = Ω/c2

1η , (11)

where,

η = ρCE/K ,c
2
1 = K/ρ , i, j = 1,2,3,

In terms of non-dimensional quantities defined in
equation (11), the above governing equations reduce to
dropping the prime for convenience

∂ 2u
∂ t2 −(Ω2u+2Ω

∂v
∂ t

)= h11
∂ 2u
∂x2 +h2

∂ 2v
∂x∂y

+h1
∂ 2u
∂y2 −

∂θ
∂x

,

(12)

∂ 2v
∂ t2 −(vΩ2−2Ω

∂u
∂ t

)= h22
∂ 2v
∂y2 +h2

∂ 2u
∂x∂y

+h1
∂ 2v
∂x2 −

∂θ
∂y

,

(13)

ε2θ ji + ε3
.

θ ji −
..
θ= ε1

..
e, (14)

where,

(h11,h22,h1,h2) = (A11,A22,B1,B2)/ρc2
1,

ε1 = γ2T0/ρ2CEc2
1,ε2 = K/ρ2CE c2

1,ε3 = ηK∗/ρCE ,

DµT σxx = A11ux +A12vy −ρc2
1θ , (15)

DµT σyy = A12ux +A22vy −ρc2
1θ , (16)

DµT σzz = A12ux +Dλ vy −ρc2
1θ , (17)

DµT σxy = DµL(ux + vy),σxz = σyz = 0, (18)

whereε1 is usually the thermoelastic coupling factor,ε2
is the characteristic parameter of the G-N theory of type
II and is the characteristic parameter of the G-N theory of
type III.

3 Solution of the problem

The normal mode analysis gives exact solutions without
any assumed restrictions on temperature, displacement
and stress distributions. It is applied to a wide range of
problems in different branches; see [19,20,21,22,23] It
can be applied to boundary-layer problems, which are
described by the linearized Navier - Stokes equations in
electro hydrodynamics, see [24,25]. The normal mode
analysis is, in fact, to look for the solution in the Fourier
transformed domain. Assume that all the field quantities
are sufficiently smooth on the real line such that normal
mode analysis of these functions exists.

The solution of the considered physical variable can
be decomposed in terms of normal modes as the following
form:

[u,v,θ ,σi j](x.y, t) = [u∗(x),v∗(x),θ ∗(x),σ∗
i j(x)]exp”(ωt + iby),

(19)
wherebω is a complex time constant,i =

√
−1, b is the

wave number in they− direction,u∗(x),v∗(x),θ ∗(x) and
σ∗

i j(x) are the amplitudes of the field quantities.
By using Eq.(19) , then Eqs.(12)-(18) take the from

[h∗11D2−A1]u
∗+[ibh∗2D+2ωΩ ]v∗ = Dθ ∗, (20)

[−2Ωω + ibh∗2D]u∗+[h∗1D2−A2]v
∗ = ibθ ∗, (21)

A3Du∗+ ibA3v∗ = (εD2−A4)θ ∗, (22)

D∗
µT σ∗

xx = A∗
11Du∗+ ibA∗

12v
∗−ρc2

1θ ∗, (23)

D∗
µT σ∗

yy = A∗
12Du∗+ ibA∗

22v
∗−ρc2

1θ ∗, (24)

D∗
µT σ∗

zz = A∗
12Du∗+ ibD∗

λ v∗−ρc2
1θ ∗, (25)

D∗
µT σ∗

xy = D∗
µL(ibu∗+Dv∗),σxz = σyz = 0, (26)

where,

(h∗11,h
∗
22,h

∗
1,h

∗
2) = (A∗

11,A
∗
22,B

∗
1,B

∗
2)/ρc2

1,

A∗
11 = λ0 + 2α0 + 4µL0 − 2µT0 + β0 + (λ1 + 2α1 +

4µL1−2µT1+β1)ω ,
A∗

12 = λ0+α0+(λ1+α1)ω ,D∗
µT = µT0+ µT1ω ,

A∗
22 = (λ0 + 2µT0) + (λ1 + 2µT1)ω ,B∗

1 =
µL0+ µL1ω ,D∗

µL = µL0+ µL1ω ,
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B∗
2 = α0+λ0+ µL0+(α1+λ1+ µL1)ω ,

A1 = ω2 + h∗1b2 − Ω2,A2 = ω2 + h∗22b2 − Ω2,A3 =

ω2ε1,
A4 = εb2+ω2,ε = ε2+ ε3ω ,D = d

dx ,
Eliminating θ ∗(x) andv∗(x) between equations (20)-

(22) we obtain the ordinary differential equation satisfied
with u∗(t)

[D6−AD4+BD2−C]u∗(x) = 0, (27)

where,

A =
1

h∗1h∗11ε
[h∗1A1ε + h∗1h∗11A4+A2h∗11ε + h∗1A3− b2h∗2

2 ε],

(28)

B =
1

h∗1h∗11ε
[h∗1A4A1+ h∗11A2A4+A1A2ε +A2A3

+b2A3h∗11− b2h∗2
2 A4−2h∗2A3b2−4Ω2ω2ε], (29)

C =
1

h∗1h∗11ε
[A1A2A4+A1A3b2+4Ω2ω2A4], (30)

In the similar manner, we can show that satisfy the
equation

[D6−AD4+BD2−C]v∗(x) = 0. (31)

Eq.(27) can be factored as

(D2− k̄2
1)(D

2− k2
2)(D

2− k2
3)u

∗(x) = 0. (32)

Eq.( 31) represent the initial integral equation of six
orders, has six roots, i.e.,

[k6−Ak4+Bk2−C] = 0 (33)

We have six roots three positive and three negative the
positive roots have given an unbounded solution foru∗(t)
since x ≥ 0 hence we should suppress the positive
exponentials hence the solution of equation (27) has the
form:

u∗(x) =
3

∑
n=1

Mne−knx (34)

And we can getv∗(x) from the relation betweenu∗(x)
andv∗(x) :

h∗11D2−A1+
2Ωω

ib
D−h∗2D2]u∗(x)− [

h∗1
ib

D2− A2

ib
D− ibh∗2D−2ωΩ ]v∗(x), (35)

One get:

v∗(x) =
3

∑
n=1

H1nMne−knx (36)

And similarly for equation (20)

θ ∗(x) =
3

∑
n=1

H2nMne−knx (37)

whereMn are parameters,k2
n(n = 1,2,3) are the roots of

the characteristic equation (32) and

H1n =
ibh∗11k2

n − ibA1− ibh∗2k2
n +2Ωωkn

−h∗1k2
n +A2kn − b2h∗2kn −2iωbΩ

, (38)

H2n =
A1− h∗11k

2
n + ibh∗2knH1n −2ωΩH1n

kn
, (39)

Using equations (33),(35),(36) into equations
(23)-(26) we get the following relations:

σ∗
xx =

3

∑
n=1

H3nMne−knx (40)

σ∗
yy =

3

∑
n=1

H4nMne−knx (41)

σ∗
zz =

3

∑
n=1

H5nMne−knx (42)

σ∗
xy =

3

∑
n=1

H6nMne−knx (43)

where,

H3n =
(−knA∗

11+ ibA∗
12H1n −ρC2

1H2n)

D∗
µT

, (44)

H4n =
(−knA∗

12+ ibA∗
22H1n −ρC2

1H2n)

D∗
µT

, (45)

H5n =
(−knA∗

12+ ibD∗
2H1n −ρC2

1H2n)

D∗
µT

, (46)

H6n =
(ib− knH1n)D∗

µL

D∗
µT

, (47)

4 The Boundary conditions of the problem

The parameter has to be chosen such that the boundary
conditions on the surface atx = 0 take the form:

1- A thermal boundary conditions that the surface of
the half-space is

θ (0,y, t) = f (0,y, t) = 0 (48)

2- A mechanical boundary condition that the surface
of the half-space is traction free

σxx(0,y, t) = σxy(0,y, t) = 0 (49)

Using the expressions of the variables considered into
the above boundary conditions (4.4.1) and (4.4.2), we get

3

∑
n=1

H2nMn = 0 (50)
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3

∑
n=1

H3nMn = 0 (51)

3

∑
n=1

H6nMn = 0 (52)

To determine the constantsMn,n = 1,2,3, it’s
necessary that the determinant of the constant coefficients
must be vanish, i.e.,

∣

∣

∣

∣

∣

∣

H21 H22 H23
H31 H32 H33
H61 H62 H63

∣

∣

∣

∣

∣

∣

(53)

where,

H1n =
ibh∗11k2

n−ibA1−ibh∗2k2
n+2Ωωkn

−h∗1k2
n+A2kn−b2h∗2kn−2iωbΩ ,

H2n =
A1−h∗11k2

n+ibh∗2knH1n−2ωΩH1n
kn

,n = 1,2,3,

H3n =
(−knA∗

11+ibA∗
12H1n−ρC2

1H2n)
D∗

µT
,

H6n =
(ib−knH1n)D

∗
µL

D∗
µT

,

} (54)

Equation (53) determines the Rayleigh surface waves
under the influences of the viscosity and rotation in Fiber-
reinforced isotropic solid thermo-viscoelastic media,
from determining this equation has complex roots. The
real part (Re) gives the velocity of Rayleigh waves and
the imaginary part (Im) gives the attenuation coefficient.
We discuss this case and special cases in Green-Naghdi
Theory II and III.

5 Special case

If the rotation is neglected:

6 Numerical results and discussion

To illustrate the theoretical results obtained in the
preceding section, to compare both types II and III of the
G-N theory of thermoelasticity and to study the effect of
the time on wave propagation in a conducting
fiber-reinforced and in the absence and presence of
reinforcement. We now present some numerical results
for the physical constants, as discussed in [5].

ρ = 7800Kg/m3, λ0 = 5.65× 1010Nm−2, λ1 =
2.25×104,

µ0 = 2.345 × 1010, µ1 = 0.563 × 1010,
µT0 = 2.46×1010Nm−2,

µL0 = 5.66×109Nm−2, µT1 = 2.46×1010Nm−2,
µL1 =5.66×1010Nm−2, B0 =220.90×109, B1=

220.90×1010,
α0 = −1.28 × 109Nm−2, α1 = −1.28 × 1010,

CE = 50×105J.kg−1.K−1,

K = 107w.m−1K−1, K∗ = 5 × 1010w.m−1.K−1,
T0 = 200K,

ω0 =−0.1, ξ = 0.45, Ω = 0.5×105, b = 1.2.

The numerical technique, outlined above, used study
propagation of Rayleigh waves in Fiber reinforced
isotropic solid thermo-viscoelastic media under the effect
of rotation and specific heatCE , viscoelastic parameters
and ’reinforced viscoelastic parameters .

i) G-N Theory III

From Fig.(1a) and Fig. (2a) describe the effect of
rotationΩ , we find that the velocity of Rayleigh waves,
fixed, then it decreases with increasing of the rotation,
while it increases with increasing of wave numberb.

From Fig.(1b) and Fig. (2b) that clarify the effect of
specific heatCE , we find that the velocity of Rayleigh
waves decreases with increasing of the specific heat,
while it increases with increasing of wave numberb.

Fig.(1c) and Fig. (2c) that clarify the effect of
viscoelastic parameters and reinforced viscoelastic
parameters we find that the velocity of Rayleigh waves
increasing with increasing of the viscoelastic parameters
and reinforced viscoelastic parameters, while it decreases
with increasing of wave numberb.

ii) G-N theory II , i.e K∗ → 0

From Fig.(1a) and Fig. (2a) describe the effect of
rotation Ω , we find that the velocity of Rayleigh waves
increases with increasing of the rotation value, while it
decreases with increasing of wave numberb.

From Fig.(1b) and Fig. (2b) show that the effect of
specific heatCE , we find that the velocity of Rayleigh
waves increases with increasing of the specific heat, while
it decreases with increasing of wave numberb.

Fig.(1c) and Fig. (2c) show that the effect of
viscoelastic parameters and reinforced viscoelastic
parameters we find that the velocity of Rayleigh waves
decreases with increasing of the viscoelastic parameters
and reinforced viscoelastic parameters, while it decreases
with increasing of wave numberb.

Special cases
(i) If the rotation Ω is neglected in the case of G-N
Theory III:

From Fig. (3) and Fig. (4) show that the effect of
specific heat CE and viscoelastic parameters and
reinforcement viscoelastic parameters , we find that the
velocity of Rayleigh waves increases with increasing of
the specific heat and viscoelastic parameters and
reinforcement viscoelastic parameter value in (G-N
Theory III).
(ii) If the rotation Ω is neglected in the case of G-N
Theory II, i.e:

From Fig. (3) and Fig. (4) that clarify the effect of
specific heat and viscoelastic parameters and reinforced
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Fig. 1: Effects ofΩ ,CE andµLi,µTi, i = 0,1 on the Rayleigh wave velocity with respect wave number.

Fig. 2: Effects ofΩ ,CE andµLi,µTi, i = 0,1 on the Rayleigh wave velocity with respect wave number.
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Fig. 3: Effects ofCE anµLi,µTi, i = 0,1 on the Rayleigh wave velocity with respect wave number.

Fig. 4: Effects ofCE anµLi,µTi, i = 0,1 on the Rayleigh wave velocity with respect wave number.
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viscoelastic parameters , we find that the velocity of
Rayleigh waves increases with increasing of the specific
heat and viscoelastic parameters and reinforced
viscoelastic parameter value, while it increases with
increasing of wave number in (G-N Theory II, i.e
K∗ → 0).

7 Conclusion

Due to the complicated nature of the governing equations
of the thermoelasticity fiber-reinforced theory, the work
done in this field is unfortunately limited in number. The
method used in this study provides a quite successful in
dealing with such problems. This method gives exact
solutions in the fibre-reinforced anisotropic general
viscoelastic media without any assumed restrictions on
the actual physical quantities that appear in the governing
equations of the problem considered. Important
phenomena are observed in all these computations:

–It was found that the solutions obtained in the context
of the thermoelasticity fiber-reinforced theory,
however, exhibit the behaviour of speeds of Rayleigh
wave.

–The results presented in this paper should prove useful
for researchers in material science, designers of new
materials.

–Study of the phenomenon of rotation is also used to
improve the conditions of oil extractions.

Finally, if the rotation is neglected, the relevant results
obtained are deduced to the results obtained by Pal and
Sengupta [8].
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