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Abstract: This paper investigates a nonlinear Duffing equation wittagable time lag. By using a fixed point theorem, weighted
pseudo almost periodic functions and differential inedu&échniques, we establish new criteria for existendgugness and globally
exponential stability of weighted pseudo almost periodilutons. An example with its numerical simulation is givenshow the
applicability of the proposed results. The results obtiisenew and complements that found in the literature.
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1 Introduction Then, instead of constants, considering the coefficients in
(1) as variable functions, the authors @ jestablished

As we know Duffing equation represents the motion of acond.itions to guarantee the existence of almost periodic
mechanical system in a twin-well potential field. Due to solutions of the following system:
the applications of Duffing type equations in physics,
mechanics and engineering technique fields, dynamic
behaviors of that nonlinear equations have beendX = 3 (t)x(t) +y(t) + Py (1), (4)
investigated by many authors (s&8d], 6]). The authors of ddt
[5] considered the existence of almost periodic solutionsdY _ Y _ my
for the following Duffing equation: dt G(UY(1) + (a(t) = & (Hx(t) — (X"t —1(1))
+ Dy(t).
X"+ X (t) —ax(t) + bx™(t — 1(t)) = p(t). 1)
Liu and Tung B] gave some conditions for existence
Let of pseudo almost periodic solutions of system (4). Here
we introduce a new class of functions called weighted
y=X+&Ex= @), Po(t) = p(t) +(§ —)P1(t) — @1(t).  pseudo-almost periodic functions (s&&] 4]) generalized
almost periodic and pseudo almost periodic functions.
The main idea is to put a weight(a locally integrable
®,(t) = p(t) + (£ —c) Py (t) — Pi(1). (2)  function on allR) on ergodic component appearing in
(see[l,2]) and to obtain the weight space. In this way, a

By (2), equation (1) is transformed into the following pseudo-almost periodic function appears as a perturbation

system: of an almost-periodic function by an ergodic component
of weight space.
dx Motivated by the mentioned papers, we study the
= Oy + @), (3)  existence, uniqueness and globally exponential stability
d of weighted pseudo almost periodic solutions of the
d_i' = —(c—&)y(t) +(a—E&(E—c))x(t) following Duffing equation with a variable time lagt):
— bxX"(t —1(t)) + Do(1). X'+ c(t)X (t) —a(t)x(t) +bt)X"(t —1(t)) = p(t), (5)
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wheret € R. Let 4:(t) be a continuous differentiable

function onR. Set . ) .
Us:={peU:p is bounded with t|Qg‘ip(x)>0}.

y(t) =X (t) = —aa(t)x(t) +y(b). (6)
Th i f 5) into the followi tem: Definition 2.1[1] A function f : R— X is said to be almost
en we transform (5) into the following system: periodic, if for anys > 0, there is a constahte) > 0, such
that in any interval of length(¢) there exists such that
dx the inequalit
o = —aOxO +y), @) ey
dy [ft+1) -l <e
=2 = —ap(t)y(t) + n(t)x(t) — b()XM(t — T(t)) + p(t), , o _
dt 2()y(t) + N OX(t) —b{x( t)+pt) is satisfied for allt € R The numbert is called an
_ _ - lation number of (t).
where n(t) = at) + aj(t)+ai(t)oz(t), aq(t) = e-transle . .
B Lo - e i To introduce weighted pseudo almost periodic
¢(t) — aa(t). The initial condition for (7)is given by functions, we need to define the weighted ergodic space
X(s) = @u(s), Y(S)=@(s), se[-1",0, (8) PAR(R,R",p). Weighted pseudo almost periodic

functions will then appear as perturbations of almost
whereq € C([—1",0],R). To the best of our knowledge, periodic functions by elements dPAR(RR",p). Let
up to now, there are no results available on the existencep € U... Define
uniqueness and globally exponential stability of weighted
d giovaly.exp y 9 Welg PAR(RR",p) = {f € BCRRY):
equations. Our aim is to study these facts for weighted
pseudo almost periodic solutions of (7). The proof is T'an
periodic functions, exponential dichotomy and a fixed pefinition 2.2[1] Let p € U.. A function f € BC(R,R")
point theorem. Our results are new and complementary tgs called weighted pseudo almost periodic if it can be

pseudo almost periodic solution for Duffing type
-
f(X)||p(X)dx= 0}.
. _ gy o I f(lexdx=0)
based on the properties of weighted pseudo almost
the previously known results in the literature.

2 Preliminaries

Throughout this paper, we will use the following concepts
and notationsX = (x1,X,...,Xn) € R" denotes column
vector. Define |X| = (|xi|,|%2/,...,[xa[)T  and
[IX]] = maxi<i<n|Xi|, in which the symbolT denotes
transpose of a vector. For matrices or vectdrandV,

U <V (resp.U > V) means that —V > 0 (resp.

U -V > 0). BC(R,R") denotes the set of bounded and
continuous functions froR to R, andBUC(R, R) denotes
the set of bounded and uniformly continuous functions
from Rto R.Note that(BC(R,R"),||.||.) is @ Banach space
and || denotes the  supremum  norm
[If]leo := sUpcgr] fll- In this work,for a given a bounded
continuousf defined orR, let f* andf_ be defined as

f* = sup|f(t)],

su - =infl (1)

Let U denotes the collection of weight functiops:
R — (0,) which are locally integrable oveR such that
p > 0 almost everywhere. |p € U, then we set

)
uTp) = [ plodx T>0

In the particular case, whem(x) = 1 for eachx € R, we
are exclusively interested in those weiglptsfor which
im1_e0 4(T, p) = co.

LetUe :={p €U :lim1_ u(T,p) =} and

expressed asf = g+ ¢, where g € AP(RR") and
¢ € PAR(R,R",p). The collection of such functions will
be denoted bPAP(R,R", p).

Lemma2.1[7] Let p:R— (0,0),p € U, be a continuous
function and assume that
t
Squ( +1)
ter  P(1)

<o

and T )
pr+rp
sugf—————*
T>§[ u(.p)
If ¢(.) € PAP(RR,p), theng (. —h) € PAP(R R p).
Lemma 2.1[7] If ¢, € PAPRRp),
o x Y € PAPR R, p).
Lemma 2.2[8] If f(t) € PAP(RR p),1(t) € C}(RR) and
T(t) > 0,7'(t) < 1,thenf(t —1(t)) € PAP(R R p).
Definition 2.3. Let v, (t) = (u.(t), p«(t))T be an weighted
pseudo almost periodic solution of (7) with initial value
@.(t) = (@.(t),@.(t)". If there exist positive constanfs
and M > 1 such that for any arbitrary solution
v(t) = (u(t),p(t)}rT of (7) with initial value
o) = (@u(t), (1))’ satisfies
V(1) — v (t)]1 < Me A ()
x |lot) — @.(t)||, Y, to € [T, +), t > tg
where, [v(t)}y = max{|u(t) — v.(t).p(t) — p.(t)},
[o(t) — @. ()] = max{|@(t) — @a(t)], [@(t) — @2(t)]},

and|@ — @.o = SURc|_;+ g | @ — @i, (i = 1,2), then the
solutionv,(t) is said to be globally exponential stable.

| <o foreach teR

then
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3 Existence of solutions where for allp € S,

Assumptions: Through the paper we suppose that the t ey ww

following conditions hold. Xp = / e ®2(s))ds,

(A1) m> 1, mis a integer,
au(t), az(t) € AP(R R™),b(t), n(t), p(t) € PARR R, p)
andn(t) #0, fort e R

(A2) p:R— (0,),p € Uy, is continuous and

w(T+r,p)
u(T,p)

(A3) LetA,aj,a;,a*,k,o andr be constants such that

P+, _ o
teRq p(t) J<e, ng

| <o

aj =inflas(t)], a3 =inflar(t), @' =min{aj,a3}.

0<A <5* k_suR€R|p( )|

)

a*
+ 1 pt
o =max - TPy
* a*
1 n++mb+( 2k )m—leAﬁ
= max{ }
a*
(A4)
sup{ T p(t)dt} < co.
T>0

Lemma 3.1. Suppose that assumptions (A1)-(A4) hold.

Define a nonlinear operator G for each

@ = (@, @) € PARR R?,p), (Go) :=X,(t), where

B toe féal(W)dW(pz(s)dS
Xp(0) = (_ o aaitn(n (g g9 bio ats-r(s))ds

ThenGg € PAP(R R?,p).

The proof of this lemma is obvious. Therefore, we omit

the details of the proof.
Theorem 3.1.Let assumptions (Al1)-(A4) be hold and

k

o<l —
< l1-o0

<1 r<l

Then there exists a unique weighted pseudo almos

periodic solution of system (7) in the region

ok

where o
= (0, /t g [FeWidwp g gg).

Proof. Define a mappin@? : S— S, by setting

(0)(t) = (§z)

00 t
Vo= [ & £ (0 () gr(5)—b(s)gf'(s— 1(8)) s
Itis clear that
+
@ < supmax{o, [ e et pgas)
teR t
1
< —max{0,sup|p(t)|t =k
< 5 max{0.supip(t)]}
Therefore, for any € S, we have
k
1@l < [|@— @l + |l < 176 + k=75 <1
Hence, it follows that
t .
129~ @l < supmax(| [ e Eeadng,(s)(s)ds,
teR —0

[ me*f§“2<w>dW<n<s><pl<s>

—b(s)@"(s— 1(5)))ds|}
< supmax{ e L awdvgg| g
teR
sug e*fs°'2<W>des(n*H<pH+b+|<p|\"‘)}
teR J—
1 +b+
< R—
< max{a Hiell
ok
< -
~—1-0

So, the mapping? is a self-mapping fronS to S. In
addition, forg, € S, we get

(@(p(t) — 2((0))] = (I(Q(0(1) ~ 2W(H))l,
(o) - 2(WV):)T

t oo
= (| [ e Eentmmgy(s) — gp(g)ds,| [ e Eoaan
% (1(9(@1(8) ~ Ya(9)) ~ b(s) (@' ( T(5))

—¢(s—1(9))) ds()T

= |/_we7 dw((& S) qj ds{ ‘/ e fsaz
x (N(s)(@(s) — Yu(s)) —b(s)m(ya(s—1(s))
+h(s)((@u(s—1(9)(s) — Yu(s—1(s)))™*

< (@u(s—1(s)) — Ya(s—1(9))|))",
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whereh(s) € (0,1). Then,
1(Q(e(t)) —Q(y(t)))|
t t
< ([ e Betuigssupign(s) - ol
- seR

too
/t efsorz dwm(S)( (s) — yu(9))

~ bs)mya(s—1()) + h(s)(@r(s— (5))

— (5= 1(9)™ (s 1(9) — da(s— 1))
< (F”@—an,/t e Js az(wydw

x[n(s)(@u(s) — ya(s) —b(sm((1- h( s)du(s—1(9)
+h(s)(@(s—1(s) — gn(s—1(9))™
% (@u(s—1(9) — ya(s—1(s))[))"
so that
1(Q(e(t) = Q)]
< maX{%, num;g%)m 1}Ilqo—clfllm

< max

1 n++mb+ m—1e2\r+
(& L g

=1o— ¢l

-y oa(sds | [M o fLapwdw

v(t) = @(to)e |
x (n(s)u(s) —b(s)(x™(s—1(s)) —x(s—1(9))))ds

Since 0< A < min{inf|ay(t),inf|a2(t)|}, itis clear that
V() — v ()1 = lot)] < ||l (11)
< Me 0|, vt € [—17 o).
We claim that
V() = vi(t)]s < Me A0 g

To prove this claim, we show that for any constant 1,
the following inequality holds:

Vt € (tg,+). (12)

V(t) = vi(t)1 < pMe M9 g]l, Wt € (to, +0), (13)

which implies that

u(t)| = |x(t) = x.(t)] <Mpe * g, Wt € (to,+e0)
(14

and

V()] = [y(t) —y:(t)] < Mpe? 9| g||, Wt e (to,ju(cio%.)

By the way of contradiction, assume that (13) does not

hold. We will have the following three cases.
Case 1.lnequality (15) is true, but (14) is not true.
Then there exidt € (tp,+) anda > 1 such that

It follows fromr < 1 thatQ : S— Sis a contraction
mapping. By the fixed point theoren® have a unique
fixed pointg* € S such thatQ ¢* = @*. ¢* satisfies (7).
So ¢* is a weighted pseudo almost periodic solution of
(7). Hence we can conclude to the end of the proof of
Theorem 3.1.

lu(ty)| = AMpe A7) g, (16)

lu(t)| < AMpe M9 g,

Note that, in view of (10), we have

vt € (to,t1).
4 Exponential stable of solutions

1 16 t

Theorem 4.1.Let assumptions (AL)-(Ad) be hold. Then, [U(tz)| = |@i(to)e o @95, [~ Js aatwidwy g
the weighted pseudo almost periodic solution of system (7) to
is globally exponential stable. o ta—to) I
Proof. By Theorem 3.1, (7) has a weighted pseudo almost <€ =~ "+ [ ¢l +/ €
periodic solutionv,(t) = (v (t),p*(g))T € S with the
initial  value @ = (@a(t),@2(t))'. Suppose that
v(t) = (u(t),p(t))T € Sis an arbitrary solution of (7)
with the initial value ¢(s) = (@.(s),(s))". Denote

~JAMpe 0 g]|ds

< et 0g) 1 amplg] [ e o Se e s

wt) = (ut),v(t)T, where u(t) = x(t) — x.(t), §e’A(tl’tO)H(pH+AMp||qo||/ e @ (-9gs
V(t) = y(t) — y«(t). Thenit follows from (7) that b
U'(t) = —aa(t)u(t) +v(t), e At g — _ e 2(1t)
{\/(bt)z—orz(t) 00y o =& Clel - -amplol ) an
—bt) (XMt —1(t)) —xN(t—1(1))). B g L1
Multiplying both side of equation of (9) bg /o @1(94s L1
1
and e %9 respectively, then integrating the <AMp6’A(t1’t°)H(pH(m+m)
obtained estimate ofty, t], whereto € [-17,0], we get
. < AMpe (17 ||| .
u(t) = @uto)e fo ™99 [*e Rawinygas  (10)

b Thus we get a contradiction.
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Case 2.lnequality (14) is true, but (15) is not true.

Then there exigb € (tg, +o) andA > 1 such that
V(t2)| = AMpe 279 g,

V(t)| < AMpe 9 g],
Note that, in view of (10), we have

V()] = |@o(to)e o 298 / o 2
—x(s—1(5)))ds

to

x (11(8)u(s) — b(S)(X™(s— T(S))
< e g g / (-9

Yt € (to,to).

w)dw

x|(n(s)u(s) = b(s)(x"(s— 1(s)) = X((s— 1(s)))d)s|

<ele "25d3||<o||+/ ()

x| (n(s)u(s) —b(s)m(X(s—1(s)) + ¢(s)(X(s— T(9))

—X(s—1(9))™ (s~ 1(8)) —x.(s— 7(s))|)ds

t to .
e*ﬁgaz(s)dS”q’”_’_/t g 0" (t2—9)
)

x| (n(s)u(s) —b(s)m((1—¢(s)xT(s—1(s))

+¢(8)(X(s—1(9))™ X(s— 1(9)) —x.(s— 7(8))|)ds

<o g+ [ e 9y u)

+bm|((1-¢(8)X(s—T(8)) +¢(9) (x(s— 1(9))™ *

X X(s—1(8)) = x(s—1(9)[)ds

<e g+ e 9y u)

+b+m(2Tka)m‘1|u(s— 1(s))|)ds

1

< e g] 4 n*agpme ] [

_’_b*’r ( 2k0)m lA pM (tzfto)
<l / eSg-A Tt

< g (-

><||<p||/ -9

2k

(1_
« || @]l exp(A r+}/ “t-9gs
<e g - —*r]+AlpMe_’\

1
(p t2 tO) +
I 1)——b™m
X ||q0|| EXp{)\ T+}(e_a*(t2—to) 1)

+A1pM67

m-1 —A (to—
A1 pM
m 0) pMe

Alt2—to)

to)

(t2—to)

(1 ™y pie

t2 S)ds

—t

Nt +mbt ()Mt
a*

= )
1

< A pMe A 270 g|,

where 0< ¢(s) < 1. We also get contradiction.

Case 3Both of inequalities (14) and (15) are wrong.
By Case 1 and Case 2, we can obtain a contraction.
Therefore, (13) holds. Lgt — 1. Then (12) holds. Hence,
the weighted pseudo almost periodic solutiaft) of (7)
is globally exponential stable.

Example. As a special case of (5), consider the
following second order differential equation;

X'+ (3.1+0.01sinv2t)X + (2+ 0.01 cog)x (19)
+(0.03+0.02c0s/2t)x?(t — cosv/2t)
=0.03—-0.01cos/2t +e".

It is easy to see thatc(t) = 3.1 + 0.01sinv/2t,
a(t) = —2 — 0.01cod, b(t) = 0.03 + 0.02cos/2t,
p(t) = 0.03— 0.01siny/3t +e€7t, 1(t) = cosy2t,m = 3.
If we set oy(t) = 1.6 + 0.01sint, then we have
ay(t) = 1.5, n(t) = 0.4+ 0.015sirt,p(t) = € for all
t 2 0, p(t) =1 for all t < 0 . Therefore, we have that
043 <1 r =04 k/(1-057) ~ 0.081 < 1,
supr>0{ [T e (T p(t)dt} < e, which imply that all
condmons of Theorem 4.1 are satisfied. Hence, (19) has
an weighted pseudo almost periodic solution, which is
globally exponential stable.

x(t)
—
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y(®

-4 I I I I
10 15 20

Time(s)

25

Fig. 1: Numeric solutions(x(t),y(t)) of system (7) for initial
valuesg(s) = (4,—-2)7,(2,—4)",(-3,2)T,se [-1,0]
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