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Abstract: This paper investigates a nonlinear Duffing equation with a variable time lag. By using a fixed point theorem, weighted
pseudo almost periodic functions and differential inequality techniques, we establish new criteria for existence,uniqueness and globally
exponential stability of weighted pseudo almost periodic solutions. An example with its numerical simulation is givento show the
applicability of the proposed results. The results obtained is new and complements that found in the literature.
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1 Introduction

As we know Duffing equation represents the motion of a
mechanical system in a twin-well potential field. Due to
the applications of Duffing type equations in physics,
mechanics and engineering technique fields, dynamic
behaviors of that nonlinear equations have been
investigated by many authors (see[3,5,6]). The authors of
[5] considered the existence of almost periodic solutions
for the following Duffing equation:

x′′+ cx′(t)−ax(t)+bxm(t − τ(t)) = p(t). (1)

Let

y= x′+ξ x−Φ1(t), Φ2(t) = p(t)+(ξ −c)Φ1(t)−Φ ′
1(t).

Φ2(t) = p(t)+ (ξ − c)Φ1(t)−Φ ′
1(t). (2)

By (2), equation (1) is transformed into the following
system:

dx
dt

= −ξ x(t)+ y(t)+Φ1(t), (3)

dy
dt

= −(c− ξ )y(t)+ (a− ξ (ξ − c))x(t)

− bxm(t − τ(t))+Φ2(t).

Then, instead of constants, considering the coefficients in
(1) as variable functions, the authors of [6] established
conditions to guarantee the existence of almost periodic
solutions of the following system:

dx
dt

= −δ1(t)x(t)+ y(t)+Φ1(t), (4)

dy
dt

= δ2(t)y(t)+ (α(t)− δ 2
2(t)x(t)−η(t)xm(t − τ(t))

+ Φ2(t).

Liu and Tunç [3] gave some conditions for existence
of pseudo almost periodic solutions of system (4). Here
we introduce a new class of functions called weighted
pseudo-almost periodic functions (see[1,2,4]) generalized
almost periodic and pseudo almost periodic functions.
The main idea is to put a weight(a locally integrable
function on all R) on ergodic component appearing in
(see[1,2]) and to obtain the weight space. In this way, a
pseudo-almost periodic function appears as a perturbation
of an almost-periodic function by an ergodic component
of weight space.

Motivated by the mentioned papers, we study the
existence, uniqueness and globally exponential stability
of weighted pseudo almost periodic solutions of the
following Duffing equation with a variable time lagτ(t):

x′′+ c(t)x′(t)−a(t)x(t)+b(t)xm(t − τ(t)) = p(t), (5)
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where t ∈ R. Let δ1(t) be a continuous differentiable
function onR. Set

y(t) = x′(t) =−α1(t)x(t)+ y(t). (6)

Then we transform (5) into the following system:

dx
dt

= −α1(t)x(t)+ y(t), (7)

dy
dt

= −α2(t)y(t)+η(t)x(t)−b(t)xm(t − τ(t))+ p(t),

where η(t) = a(t) + α ′
1(t)+α1(t)α2(t), α2(t) =

c(t)−α1(t). The initial condition for (7) is given by

x(s) = φ1(s), y(s) = φ2(s), s∈ [−τ+,0], (8)

whereφi ∈ C([−τ+,0],R). To the best of our knowledge,
up to now, there are no results available on the existence,
uniqueness and globally exponential stability of weighted
pseudo almost periodic solution for Duffing type
equations. Our aim is to study these facts for weighted
pseudo almost periodic solutions of (7). The proof is
based on the properties of weighted pseudo almost
periodic functions, exponential dichotomy and a fixed
point theorem. Our results are new and complementary to
the previously known results in the literature.

2 Preliminaries

Throughout this paper, we will use the following concepts
and notations.X = (x1,x2, ...,xn) ∈ Rn denotes column
vector. Define |X| = (|x1|, |x2|, ..., |xn|)T and
‖X‖ = max1≤i≤n |xi |, in which the symbolT denotes
transpose of a vector. For matrices or vectorsU andV,
U ≤ V (resp. U > V) means thatU − V ≥ 0 (resp.
U −V > 0). BC(R,Rn) denotes the set of bounded and
continuous functions fromR to R, andBUC(R,R) denotes
the set of bounded and uniformly continuous functions
from R to R.Note that(BC(R,Rn),‖.‖∞) is a Banach space
and ‖.‖∞ denotes the supremum norm
‖ f‖∞ := supt∈R‖ f‖. In this work,for a given a bounded
continuousf defined onR, let f+ and f− be defined as

f+ = sup
t∈R

| f (t)|, f− = inf
t∈R

| f (t)|.

Let U denotes the collection of weight functionsρ :
R→ (0,∞) which are locally integrable overR such that
ρ > 0 almost everywhere. Ifρ ∈U , then we set

µ(T,ρ) =
∫ T

−T
ρ(x)dx, T > 0.

In the particular case, whenρ(x) = 1 for eachx ∈ R, we
are exclusively interested in those weightsρ , for which
limT→∞ µ(T,ρ) = ∞.

Let U∞ := {ρ ∈U : limT→∞ µ(T,ρ) = ∞} and

UB := {ρ ∈U : ρ is bounded with inf
t∈R

ρ(x)> 0}.

Definition 2.1.[1] A function f : R→X is said to be almost
periodic, if for anyε > 0, there is a constantl(ε)> 0, such
that in any interval of lengthl(ε) there existsτ such that
the inequality

‖ f (t + τ)− f (t)‖< ε
is satisfied for allt ∈ R. The numberτ is called an
ε-translation number off (t).

To introduce weighted pseudo almost periodic
functions, we need to define the weighted ergodic space
PAP0(R,Rn,ρ). Weighted pseudo almost periodic
functions will then appear as perturbations of almost
periodic functions by elements ofPAP0(R,Rn,ρ). Let
ρ ∈U∞. Define

PAP0(R,R
n,ρ) = { f ∈ BC(R,Rn) :

lim
T→∞

1
µ(T,ρ)

∫ T

−T
‖ f (x)‖ρ(x)dx= 0}.

Definition 2.2.[1] Let ρ ∈ U∞. A function f ∈ BC(R,Rn)
is called weighted pseudo almost periodic if it can be
expressed asf = g + ϕ , where g ∈ AP(R,Rn) and
ϕ ∈ PAP0(R,Rn,ρ). The collection of such functions will
be denoted byPAP(R,Rn,ρ).
Lemma 2.1.[7] Let ρ : R→ (0,∞),ρ ∈U∞ be a continuous
function and assume that

sup
t∈R

[
ρ(t + r)

ρ(t)
]< ∞

and

sup
T>0

[
µ(T + r,ρ)

µ(T,ρ)
]< ∞ for each t ∈ R.

If ϕ(.) ∈ PAP(R,R,ρ), thenϕ(.−h) ∈ PAP(R,R,ρ).
Lemma 2.1.[7] If ϕ ,ψ ∈ PAP(R,R,ρ), then
ϕ ×ψ ∈ PAP(R,R,ρ).
Lemma 2.2.[8] If f (t)∈PAP(R,R,ρ),τ(t)∈C1(R,R) and
τ(t)≥ 0,τ ′(t)≤ 1, thenf (t − τ(t)) ∈ PAP(R,R,ρ).
Definition 2.3.Let ν∗(t) = (υ∗(t),ρ∗(t))T be an weighted
pseudo almost periodic solution of (7) with initial value
φ∗(t) = (φ∗(t),φ∗(t))T . If there exist positive constantsλ
and M > 1 such that for any arbitrary solution
ν(t) = (υ(t),ρ(t))T of (7) with initial value
φ(t) = (φ1(t),φ2(t))T satisfies

|ν(t)−ν∗(t)|1 ≤ Me−λ (t−t0)

×‖φ(t)−φ∗(t)‖, ∀t, t0 ∈ [−τ+,+∞), t ≥ t0

where, |ν(t)|1 = max{|υ(t) − υ∗(t)|,ρ(t) − ρ∗(t)},
‖φ(t)− φ∗(t)‖ = max{|φ1(t)− φ∗1(t)|, |φ2(t)− φ∗2(t)|},
and |φ − φ∗|0 = supt∈[−τ+,0] |φi − φ∗i|, (i = 1,2), then the
solutionν∗(t) is said to be globally exponential stable.
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3 Existence of solutions

Assumptions: Through the paper we suppose that the
following conditions hold.

(A1) m> 1, m is a integer,
α1(t),α2(t) ∈ AP(R,R+),b(t),η(t), p(t) ∈ PAP(R,R+,ρ)
andη(t) 6= 0, for t ∈ R.

(A2) ρ : R→ (0,∞),ρ ∈U∞ is continuous and

sup
t∈R

[
ρ(t+ r)

ρ(t)
]< ∞, sup

T>0
[
µ(T + r,ρ)

µ(T,ρ)
]< ∞.

(A3) Let λ ,α∗
1 ,α

∗
2 ,α

∗,k,σ andr be constants such that

α∗
1 = inf

t∈R
|α1(t)|, α∗

2 = inf
t∈R

|α2(t)|, α∗ = min{α∗
1 ,α

∗
2},

0< λ < δ ∗, k=
supt∈R|p(t)|

α∗ ,

σ = max{ 1
α∗ ,

η++b+

α∗ },

r = max

{

1
α∗ ,

η++mb+( 2k
1−σ )

m−1eλ τ+

α∗

}

.

(A4)

sup
T>0

{
∫ T

−T
e−α∗(T+t)ρ(t)dt}< ∞.

Lemma 3.1. Suppose that assumptions (A1)-(A4) hold.
Define a nonlinear operator G for each
φ = (φ1,φ2) ∈ PAP(R,R2,ρ),(Gφ) := xφ (t), where

xφ (t)) =
(

∫ t
−∞ e−

∫ t
s α1(w)dwφ2(s)ds

−∫+∞
t e−

∫ t
s α2(w)dw(η(s)φ1(s)−b(s)φm

1 (s−τ(s)))ds

)

.

ThenGφ ∈ PAP(R,R2,ρ).
The proof of this lemma is obvious. Therefore, we omit

the details of the proof.

Theorem 3.1.Let assumptions (A1)-(A4) be hold and

σ < 1,
k

1−σ
< 1, r < 1.

Then there exists a unique weighted pseudo almost
periodic solution of system (7) in the region

S= {φ |‖φ −φ0‖ ≤
σk

1−σ
,φ ∈ PAP(R,R2,ρ)},

where

φ0 = (0,
∫ +∞

t
e−

∫ s
t α2(w)dwp(s)ds).

Proof. Define a mappingΩ : S→ S , by setting

(Ωφ)(t) =
(

xφ
yφ

)

,

where for allφ ∈ S,

xφ =
∫ t

−∞
e−

∫ t
s α1(w)dwφ2(s))ds,

yφ =−
∫ +∞

t
e−

∫ t
s α2(w)dw(η(s)φ1(s)−b(s)φm

1 (s−τ(s)))ds.

It is clear that

‖φ0‖∞ ≤ sup
t∈R

max

{

0,
∫ +∞

t
e−

∫ s
t α2(w)dwp(s)ds

}

≤ 1
α∗ max

{

0,sup
t∈R

|p(t)|
}

= k.

Therefore, for anyφ ∈ S, we have

‖φ‖∞ ≤ ‖φ −φ0‖∞ + ‖φ0‖∞ ≤ σk
1−σ + k= k

1−σ < 1.

Hence, it follows that

‖Ωφ −φ0‖∞ ≤ sup
t∈R

max{
∣

∣

∫ t

−∞
e−

∫ t
s α1(w)dwφ2(s)(s)ds

∣

∣,

∣

∣

∫ t

−∞
e−

∫ t
s α2(w)dw(η(s)φ1(s)

−b(s)φm
1 (s− τ(s)))ds

∣

∣

}

≤ sup
t∈R

max{
∫ t

−∞
e−

∫ t
s α1(w)dwds‖φ‖,

sup
t∈R

[

∫ t

−∞
e−

∫ t
s α2(w)dwds(η+‖φ‖+b+|φ‖m)

}

≤ max{ 1
α∗ ,

η++b+

α∗ }‖φ‖

≤ σk
1−σ

.

So, the mappingΩ is a self-mapping fromS to S. In
addition, forφ ,ψ ∈ S, we get

|(Ω(φ(t))−Ω(ψ(t)))|= (|(Ω(φ(t))−Ω(ψ(t)))1|,
|(Ω(φ(t))−Ω(ψ(t)))2|)T

=
(
∣

∣

∫ t

−∞
e−

∫ t
s α1(w)dw(φ2(s)−ψ2(s))ds

∣

∣,
∣

∣

∫ +∞

t
e−

∫ t
s α2(w)dw

× (η(s)(φ1(s)−ψ1(s))−b(s)(φm
1 (s− τ(s))

−ψm
1 (s− τ(s))))ds

∣

∣

)T

=
(
∣

∣

∫ t

−∞
e−

∫ t
s α1(w)dw(φ2(s)−ψ(s))ds

∣

∣,
∣

∣

∫ +∞

t
e−

∫ t
s α2(w)dw

× (η(s)(φ1(s)−ψ1(s))−b(s)m(ψ1(s− τ(s))
+h(s)((φ1(s− τ(s))(s)−ψ1(s− τ(s))))m−1

× (φ1(s− τ(s))−ψ1(s− τ(s)))
∣

∣

)

)T ,
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whereh(s) ∈ (0,1). Then,

|(Ω(φ(t))−Ω(ψ(t)))|

≤
(

∫ t

−∞
e−

∫ t
s α1(w)dwdssup

s∈R
|φ2(s)−ψ2(s)|,

∫ +∞

t
e−

∫ t
s α2(w)dw|η(s)(φ1(s)−ψ1(s))

−b(s)mψ1(s− τ(s))+h(s)(φ1(s− τ(s))
−ψ1(s− τ(s)))m−1(φ1(s− τ(s))−ψ1(s− τ(s))|

)

)T

≤
( 1

α∗ ‖φ −ψ‖∞,

∫ +∞

t
e−

∫ t
s α2(w)dw

×|η(s)(φ1(s)−ψ1(s))−b(s)m((1−h(s))ψ1(s− τ(s))
+h(s)(φ1(s− τ(s))−ψ1(s− τ(s))))m−1

× (φ1(s− τ(s))−ψ1(s− τ(s))|
)

)T

so that

‖(Ω(φ(t))−Ω(ψ(t))‖

≤ max

{

1
α∗ ,

η++mb+( 2k
1−σ )

m−1

α∗

}

‖φ −ψ‖∞

≤ max

{

1
α∗ ,

η++mb+( 2k
1−σ )

m−1eλ τ+

α∗

}

‖φ −ψ‖∞

= r‖φ −ψ‖∞.

It follows from r < 1 that Ω : S→ S is a contraction
mapping. By the fixed point theorem,Ω have a unique
fixed pointφ∗ ∈ S such thatΩφ∗ = φ∗. φ∗ satisfies (7).
So φ∗ is a weighted pseudo almost periodic solution of
(7). Hence we can conclude to the end of the proof of
Theorem 3.1.

4 Exponential stable of solutions

Theorem 4.1.Let assumptions (A1)-(A4) be hold. Then,
the weighted pseudo almost periodic solution of system (7)
is globally exponential stable.
Proof. By Theorem 3.1, (7) has a weighted pseudo almost
periodic solutionν∗(t) = (υ∗(t),ρ∗(t))T ∈ S with the
initial value φ∗ = (φ∗1(t),φ∗2(t))T . Suppose that
ν(t) = (υ(t),ρ(t))T ∈ S is an arbitrary solution of (7)
with the initial value φ(s) = (φ1(s),φ2(s))T . Denote
w(t) = (u(t),v(t))T , where u(t) = x(t) − x∗(t),
v(t) = y(t)− y∗(t). Then it follows from (7) that







u′(t) =−α1(t)u(t)+ v(t),
v′(t) =−α2(t)v(t)+η(t)u(t)
−b(t)(xm(t − τ(t))− xm

∗ (t − τ(t))).
(9)

Multiplying both side of equation of (9) bye−
∫ t
t0

α1(s)ds

and e−
∫ t
t0

α2(s)ds, respectively, then integrating the
obtained estimate on[t0, t], wheret0 ∈ [−τ+,0], we get

u(t) = φ1(t0)e
−∫ t

t0
α1(s)ds

+

∫ t

t0
e−

∫ t
s α1(w)dwv(s)ds, (10)

v(t) = φ2(t0)e
−∫ t

t0
α2(s)ds

+

∫ t

t0
e−

∫ t
s α2(w)dw

× (η(s)u(s)−b(s)(xm(s− τ(s))− xm
∗ (s− τ(s))))ds.

Since 0< λ < min{inf |α1(t)|, inf |α2(t)|}, it is clear that

|ν(t)−ν∗(t)|1 = |φ(t)| ≤ ‖φ‖ (11)

≤ Me−λ (t−t0)‖φ‖, ∀t ∈ [−τ+, t0].

We claim that

|ν(t)−ν∗(t)|1 ≤ Me−λ (t−t0‖φ‖, ∀t ∈ (t0,+∞). (12)

To prove this claim, we show that for any constantp> 1,
the following inequality holds:

|ν(t)−ν∗(t)|1 ≤ pMe−λ (t−t0)‖φ‖, ∀t ∈ (t0,+∞), (13)

which implies that

|u(t)|= |x(t)− x∗(t)| ≤ Mpe−λ (t−t0)‖φ‖, ∀t ∈ (t0,+∞)
(14)

and

|v(t)|= |y(t)− y∗(t)| ≤ Mpe−λ (t−t0)‖φ‖, ∀t ∈ (t0,+∞).
(15)

By the way of contradiction, assume that (13) does not
hold. We will have the following three cases.

Case 1.Inequality (15) is true, but (14) is not true.
Then there existt1 ∈ (t0,+∞) andα ≥ 1 such that

|u(t1)|= ∆Mpe−λ (t1−t0)‖φ‖, (16)

|u(t)|< ∆Mpe−λ (t−t0)‖φ‖, ∀t ∈ (t0, t1).

Note that, in view of (10), we have

|u(t1)|= |φ1(t0)e
−∫ t1

t0
α1(s)ds

+

∫ t1

t0
e−

∫ t1
s α1(w)dwv(s)ds|

≤ e−α∗(t1−t0)‖φ‖+
∫ t1

t0
e−α∗(t1−s)∆Mpe−λ (s−t0)‖φ‖ds

≤ e−λ (t1−t0)‖φ‖+∆Mp‖φ‖
∫ t1

t0
e−α∗(t1−s)e−λ (s−t0)ds

≤ e−λ (t1−t0)‖φ‖+∆Mp‖φ‖
∫ t1

t0
e−α∗(t1−s)ds

= e−λ (t1−t0)‖φ‖− 1
α∗ ∆Mp‖φ‖(1−e−α∗(t1−t0)) (17)

= ∆Mpe−λ (t1−t0)‖φ‖( 1
∆M

− 1
α∗ )

< ∆Mpe−λ (t1−t0)‖φ‖( 1
∆M

+
1

α∗ )

< ∆Mpe−λ (t1−t0)‖φ‖.
Thus we get a contradiction.
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Case 2.Inequality (14) is true, but (15) is not true.
Then there existt2 ∈ (t0,+∞) and∆ ≥ 1 such that

|v(t2)|= ∆Mpe−λ (t2−t0)‖φ‖, (18)

|v(t)|< ∆Mpe−λ (t−t0)‖φ‖, ∀t ∈ (t0, t2).

Note that, in view of (10), we have

|v(t2)|= |φ2(t0)e
−∫ t2

t0
α2(s)ds

∫ t2

t0
e−

∫ t2
s α2(w)dw

× (η(s)u(s)−b(s)(xm(s− τ(s))− xm
∗ (s− τ(s))))ds|

≤ e−
∫ t2
t0

α2(s)ds‖φ‖+
∫ t2

t0
e−α∗(t2−s)

×|(η(s)u(s)−b(s)(xm(s− τ(s))− xm
∗ (s− τ(s)))d)s|

≤ e−
∫ t2
t0

α2(s)ds‖φ‖+
∫ t2

t0
e−α∗(t2−s)

×|(η(s)u(s)−b(s)m(xm
∗ (s− τ(s))+ ς(s)(x(s− τ(s))

− x∗(s− τ(s))))m−1x(s− τ(s))− x∗(s− τ(s))|)ds

= e−
∫ t2
t0

α2(s)ds‖φ‖+
∫ t2

t0
e−α∗(t2−s)

×|(η(s)u(s)−b(s)m((1− ς(s))xm
∗ (s− τ(s))

+ ς(s)(x(s− τ(s))))m−1x(s− τ(s))− x∗(s− τ(s))|)ds

≤ e−α∗(t2−t0)‖φ‖+
∫ t2

t0
e−α∗(t2−s)(η+|u(s)|

+b+m|((1− ς(s))xm
∗ (s− τ(s))+ ς(s)(x(s− τ(s))))m−1

× x(s− τ(s))− x∗(s− τ(s))|)ds

≤ e−α∗(t2−t0)‖φ‖+
∫ t2

t0
e−α∗(t2−s)(η+|u(s)|

+b+m(
2k

1−σ
)m−1|u(s− τ(s))|)ds

≤ e−α∗(t2−s)‖φ‖+η+∆1pMe−λ (t2−t0)‖φ‖
∫ t2

t0
e−α∗(t2−s)ds

+b+m(
2k

1−σ
)m−1∆1pMe−λ (t2−t0)

×‖φ‖
∫ t2

t0
e−α∗(t2−s)e−λ (s−τ(s)−t2)ds

≤ e−α∗(t2−t0)‖φ‖+ 1
−α∗ η+∆1pMe−λ (t2−t0)

×‖φ‖
∫ t2

t0
e−α∗(t2−s)ds

+
1

−α∗ b+m(
2k

1−σ
)m−1∆1pMe−λ (t2−t0)

×‖φ‖exp{λ τ+}
∫ t2

t0
e−α∗(t2−s)ds

≤ e−α∗(t2−t0)‖φ‖− 1
α∗ η+∆1pMe−λ (t2−t0)

×‖φ‖(e−α∗(t2−t0)−1)− 1
α∗ b+m(

2k
1−σ

)m−1∆1pMe−λ (t2−t0)

×‖φ‖exp{λ τ+}(e−α∗(t2−t0)−1)

≤ ∆1pMe−λ (t2−t0)‖φ‖( 1
∆1M

+
η++mb+( 2k

1−σ )
m−1eλ τ+

α∗ )

< ∆1pMe−λ (t2−t0)‖φ‖,

where 0≤ ς(s) ≤ 1. We also get contradiction.

Case 3.Both of inequalities (14) and (15) are wrong.
By Case 1 and Case 2, we can obtain a contraction.
Therefore, (13) holds. Letp→ 1. Then (12) holds. Hence,
the weighted pseudo almost periodic solutionν∗(t) of (7)
is globally exponential stable.

Example. As a special case of (5), consider the
following second order differential equation;

x′′+(3.1+0.01sin
√

2t)x′+(2+0.01cost)x (19)

+(0.03+0.02cos
√

2t)x2(t − cos
√

2t)

= 0.03−0.01cos
√

2t +e−t .

It is easy to see thatc(t) = 3.1 + 0.01sin
√

2t,
a(t) = −2 − 0.01cost, b(t) = 0.03 + 0.02cos

√
2t,

p(t) = 0.03− 0.01sin
√

3t + e−t , τ(t) = cos
√

2t,m= 3.
If we set α1(t) = 1.6 + 0.01sint, then we have
α2(t) = 1.5, η(t) = 0.4+ 0.015sint,ρ(t) = et for all
t ≥ 0, ρ(t) = 1 for all t < 0 . Therefore, we have that
σ ≈ 0.43 < 1, r = 0.4, k/(1 − 0.57) ≈ 0.081 < 1,
supT>0{

∫ T
−T e−α∗(T+t)ρ(t)dt} < ∞, which imply that all

conditions of Theorem 4.1 are satisfied. Hence, (19) has
an weighted pseudo almost periodic solution, which is
globally exponential stable.
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Fig. 1: Numeric solutions(x(t),y(t)) of system (7) for initial
valuesφ(s)≡ (4,−2)T ,(2,−4)T ,(−3,2)T ,s∈ [−1,0]
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