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Abstract: The aim of this paper is to use the concept of the generalized H-derivative to define fuzzy Caputo’s H-derivative of order
β ∈ (1,2]. Our definition is an extension of fuzzy Caputo’s H-derivative of orderβ ∈ (0,1] and higher order H-derivative of integer
order. After that, we study fuzzy fractional initial value problems of orderβ ∈ (1,2] and give an algorithm to solve them based on
the characterization theorem. Finally, we apply the reproducing kernel Hilbert space method to obtain approximate solutions of second
order fuzzy fractional initial value problems and give somenumerical examples.
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1 Introduction

Fractional calculus has recently attracted the attention of
many researchers for its considerable importance in
science [6,34]. But in many cases of modeling real world
phenomena, information about the behavior of a
dynamical system is uncertain. So fuzzy set theory was
established by Zadeh in 1965 [7,8]. In 1978, Dubois and
Prade introduced the notion of fuzzy real numbers and
established some of their basic properties [9]. The term
”fuzzy differential equations” was coined in the same
year by Kandel and Byatt [10]. Many definitions were
suggested for a fuzzy derivative and then for studying
fuzzy differential equations [11,12,13,14,15]. The most
popular approach is using Hukuhara derivative [12,16].

Recently, the concept of fuzzy fractional differential
equations (FFDEs) was introduced to consider a new type
of dynamical systems [17]. In [18], the authors considered
a generalization of the H-differentiability for the fractional
case. In the last few years, several research works have
been devoted to study and solve FFDEs of orderβ ∈ (0,1],
see [19,20,21,22,23,24,25,26,27].

In [3], a generalized concept of higher order
H-derivative for fuzzy functions was introduced for
integer order. Here, using the concept of generalized

H-derivative, we define fuzzy Caputo’s H-derivative of
orderβ ∈ (1,2] and solve second order fuzzy fractional
initial value problems (FFIVPs) based on the
characterization theorems [4,5,6]. We apply a modified
reproducing kernel Hilbert space method (RKHSM) to
obtain numerical solutions. To see some applications of
the RKHSM for solving differential equations of different
types, the reader is asked to refer to [28,29,30,31,32,35,
36,37].

This paper is organized as follows: In section2, we
introduce some basics of fuzzy calculus and fractional
calculus. In section3, we define second order Caputo’s
H-derivative and prove some related results. An algorithm
to solve second order FFDEs is given in section4. Section
5 is devoted to apply a modified RKHSM to solve
FFIVPs. This paper ends in section6 with a conclusion.

2 Some Basics of Fuzzy Calculus and
Fractional Calculus

In this section, we introduce some necessary definitions of
fuzzy and fractional calculus.

Definition 2.1.[7] A fuzzy set A in a universal set X is
characterized by a membership function u(x) which
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associates with each point in X a real number in the
interval [0,1].

Its r-cut representation is given by
[u]r = {x ∈ X : u(x) ≥ r} for r ∈ (0,1] and
[u]0 = {x∈ X : u(x)> 0}. [u]0 is called the support ofA .
A is normal if there isx∈ X with u(x) = 1. The core ofA
is core(A) = {x∈ X : u(x) = 1}. A convex set A is a fuzzy
convex set iffu(γx+ (1− γ)y) ≥ min(u(x),u(y)) for all
x,y∈ X andγ ∈ [0,1]. If we takeX to be the set of all real
numbersℜ , then a special class of fuzzy sets results
which is called the set of fuzzy numbersℜF . The
following theorem gives the conditions that must be
satisfied by two real valued functionsu1,u2 defined on
[0,1] so that[u1(r),u2(r)] is the parameterization form of
a fuzzy numberu for eachr ∈ [0,1].

Theorem 2.1.[39] Suppose that u1,u2 : [0,1]→ ℜ satisfy
the following conditions:

1.u1 is a bounded monotonic nondecreasing left
continuous function∀r ∈ (0,1] and right continuous
for r=0.

2.u2 is a bounded monotonic nonincreasing left
continuous function∀r ∈ (0,1] and right continuous
for r=0.

3.u1(1) ≤ u2(1) (which implies that u1(r) ≤ u2(r)∀r ∈
[0,1]).

Then u: ℜ → [0,1] which is defined by u(x) = sup
{r : u1(r) ≤ x ≤ u2(r)} is a fuzzy number with
parameterization[u]r = [u1(r),u2(r)]. Moreover, if u is a
fuzzy number with [u]r = [u1(r),u2(r)] (or simply,
[u1r ,u2r ] ), then the functions u1,u2 : [0,1]→ ℜ satisfy the
conditions (1-3).

Addition and scalar multiplication inℜF can be defined
as those on intervals ofℜ. So for anyλ ∈ ℜ−{0}, and
u,v ∈ ℜF with [u]r = [u1r ,u2r ] and [v]r = [v1r ,v2r ] , we
have [u+ v]r = [u]r + [v]r = [u1r + v1r ,u2r + v2r ], and
[λu]r = λ [u]r = [min{λu1r ,λu2r},max{λu1r ,λu2r}].
While for subtraction, we use the H-difference, see [16].
The H-difference ofu,v ∈ ℜF , denoted byu⊖ v = w , is
the fuzzy number that satisfiesu = v + w. Its r-cut
representation is[u⊖ v]r = [u1r − v1r ,u2r − v2r ].

Definition 2.2.[40]The Housdorff metric D onℜF is
defined by D: ℜF × ℜF → ℜ+ ∪ {0} such that
D(u,v) = Supr∈[0,1]max{|u1r − v1r |, |u2r − v2r |} for any
fuzzy numbers u= (u1,u2) and v= (v1,v2).

A fuzzy function on an interval T is a mapping
F : T → ℜF . If for fixed t0 ∈ T andε > 0, ∃δ > 0 such
that |t − t0| < δ ⇒ D(F(t),F(t0)) < ε, then we say that F
is continuous att0. If F is continuous∀t ∈ T, thenF is
continuous onT [41]. A natural way for extending a crisp
mapping f : ℜ → ℜ to a mappingF : ℜF → ℜF is
Zadeh’s extension principle [8]. Nguyen theorem gives a
sufficient condition for when Zadeh’s extension of a real
valued functionf : ℜ×ℜ → ℜ, sayF : ℜF ×ℜF → ℜF ,
is a well-defined fuzzy function.

Theorem 2.2.[42] If f : ℜ×ℜ → ℜ, is continuous, then
F : ℜF ×ℜF → ℜF is a well-defined function with r-cuts
[F(u,v)]r = f ([u]r , [v]r) = { f (x,y) : x∈ [u]r ,y∈ [v]r}∀r ∈
[0,1] and u,v∈ ℜF .

For the differentiation of a fuzzy function, we use the
concept of strongly generalized derivative [1]. It was
given in 2005 as a generalization of the H-derivative
introduced by Hukuhara in 1967 for set valued mappings
and extended by Puri and Ralescu in 1983 for fuzzy
valued mappings [12].

Definition 2.3.[1]Let F : (a,b) → ℜF and t0 ∈ (a,b). We
say that F is strongly generalized differentiable at t0 if
there exists a fuzzy number F′(t0) such that
(1) There exist F(t0 + h)⊖ F(t0) and F(t0)⊖ F(t0 − h)
and

limh→0+
F(t0+h)⊖F(t0)

h
= limh→0+

F(t0)⊖F(t0−h)
h

= F ′(t0) or
(2) There exist F(t0)⊖F(t0+h) and F(t0−h)⊖F(t0)
and

limh→0+
F(t0)⊖F(t0+h)

−h
= limh→0+

F(t0−h)⊖F(t0)
−h

= F ′(t0).
The limits here are taken in the metric space(ℜF ,D).

We say thatF is (n)-differentiable forn = 1,2 if F is
strongly generalized differentiable in the nth form and
denote the (n)-derivative ofF at t0 by F ′(t0) = D1

nF(t0).
However, if D1

1F(t0) exists, thenD1
2F(t0) doesn’t exist

[5].
Remark: In [1], the authors suggested four cases for the
generalized H-derivative and proved that two of them are
reduced to a crisp element. So, they are missing here.

Theorem 2.3.[43]Let F : [a,b] → ℜF be a strongly
generalized differentiable function at t0 ∈ [a,b]. Then:
a) If F is (1)-differentiable at t0, then F1r and F2r are
differentiable at t0 and [F ′(t0)]r =
[F ′

1r(t0),F
′
2r(t0)],∀r ∈ [0,1]

b) If F is (2)-differentiable at t0, then F1r and F2r are
differentiable at t0 and [F ′(t0)]r =
[F ′

2r(t0),F
′
1r(t0)],∀r ∈ [0,1]

Based on definition2.3, we have two possibilities to
obtain the first order fuzzy derivative of a fuzzy function
F. Consequently, there are four possibilities for the
second fuzzy derivative which is defined as follows.

Definition 2.4.[3]Let F : (a,b) → ℜF . We say that F is
(n,m)-differentiable at t0 ∈ (a,b) if F (t) is
(n)-differentiable on a neighborhood of t0 as a fuzzy
function, and F′(t) is (m)-differentiable at t0. The second
derivatives of F at t are denoted by
F ′′(t) = D2

n,mF(t),n,m∈ {1,2}.

Theorem 2.4.[3]Let D1
1F,D1

2F : (a,b) → ℜF be fuzzy
functions with[F(t)]r = [F1r(t),F2r(t)], r ∈ [0,1].
a) If D1

1F is (1)-differentiable, then F′1r and F′2r are
differentiable functions and[D2

1,1F(t)]r = [F
′′
1r(t),F

′′
2r(t)].
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b) If D1
1F is (2)-differentiable, then F′1r and F′2r are

differentiable functions and[D2
1,2F(t)]r = [F

′′
2r(t),F

′′
1r(t)].

c) If D1
2F is (1)-differentiable, then F′1r and F′2r are

differentiable functions and[D2
2,1F(t)]r = [F

′′
2r(t),F

′′
1r(t)].

d) If D1
2F is (2)-differentiable, then F′1r and F′2r are

differentiable functions and[D2
2,2F(t)]r = [F

′′
1r(t),F

′′
2r(t)].

For integration of a fuzzy valued function, we will
consider the following definition.

Definition 2.5.[38]Let F : [a,b] → ℜF . The integral of F
on [a,b], denoted by

∫ b
a F(t)dt , is defined levelwise by

[
∫ b

a F(t)dt]r =
∫ b

a [F(t)]r dt,∀r ∈ [0,1].

Now, we define some notations which are used for fuzzy
fractional calculus throughout this paper:
CF [a,b] = The space of continuous fuzzy valued
functions on[a,b].
ACF [a,b] = The set of all absolutely continuous fuzzy
valued functions.
LF

p [a,b] = {F : [a,b]→ ℜF ;F is measurable and
∫ b

a D(F(x),0)pdx< ∞},1≤ p< ∞.

The generalized H-differentiability was used to expand
the definitions of fractional derivatives in the crisp sense
for the fuzzy space as follows. For details of fractional
derivatives in crisp case, see [44].

Definition 2.6.[45]Let 0 < α ≤ 1,F : [a,b] → ℜF and
F ∈CF [a,b]∩LF [a,b].
The fuzzy Riemann-Liouville fractional integral of order
α is defined by(Jα

a+F)(x) = 1
Γ (α)

∫ x
a

F(t)
(x−t)1−α dt, x > a. It

can be written in parametric form as[(Jα
a+F)(x)]r =

[ 1
Γ (α)

∫ x
a

F1r(t)
(x− t)1−α dt, 1

Γ (α)

∫ x
a

F2r(t)
(x− t)1−α dt].

Definition 2.7.[2] Let 0 < α ≤ 1,F : [a,b] → ℜF and
F ∈ CF [a,b] ∩ LF [a,b]. Then F is said to be Caputo’s
H-differentiable at x if (CDα

a+F)(x) =

1
Γ (1−α)

∫ x
a

F
′
(t)

(x− t)α dt exists. We say that F is

C[(1)−α]− differentiable if F is (1)-differentiable, and F
is C[(2)−α]− differentiable if F is (2)-differentiable.

Now, the extension of the characterization theorems which
are introduced for fuzzy differential equations in [4,5] is
given.

Theorem 2.5.[6] Consider the FFDE

(CDα
t+0

x)(t) = F(t,x(t)), x(t0) = x0 ∈ ℜF (1)

where F: [t0, t0+a]×ℜF → ℜF such that:
(a)[F(t,x(t))]r = [F1r(t,x1r(t),x2r(t)),F2r(t,x1r(t),x2r(t))]
(b) For any ε > 0 there is a δ > 0 such that
|F1r(t,x,z) − F1r(t1,x1,z1)| < ε and
|F2r(t,x,z)−F2r(t1,x1,z1)|< ε for all r ∈ [0,1], whenever

(t,x,z),(t1,x1,z1) ∈ [t0, t0 + a] × ℜ2,

‖ (t,x,z)− (t1,x1,z1) ‖ℜ3< δ and F1r and F2r are
uniformly bounded on any bounded set.
(c) There is an L > 0 such that
|F1r(t2,x2,z2) − F1r(t1,x1,z1)| ≤
L × max{|x2 − x1|, |z2 − z1|} for all r ∈ [0,1] and
|F2r(t2,x2,z2) − F2r(t1,x1,z1)| ≤
L×max{|x2− x1|, |z2− z1|} for all r ∈ [0,1].
Then the FFDE (1) is equivalent to the system of ordinary
fractional differential equations (OFDEs):

(CDα
t0+

x1r)(t) = F1r(t,x1r(t),x2r(t))

(CDα
t0+

x2r)(t) = F2r(t,x1r(t),x2r(t))

x1r(t0) = x01r , x2r(t0) = x02r

(2)

if x(t) is C[(1)− α] -differentiable. If x(t) isC[(2)− α]
-differentiable, then (1) is equivalent to the following
system of OFDEs:

(CDα
t0+

x1r)(t) = F2r(t,x1r(t),x2r(t))

(CDα
t0+

x2r)(t) = F1r(t,x1r(t),x2r(t))

x1r(t0) = x01r , x2r(t0) = x02r

(3)

Using this theorem, a FFDE can be converted to a system
of ODEs of fractional order. Then a numerical method can
be applied to solve the resulting system.

3 Second Order Caputo’s H-derivative

In this section, we define fuzzy Caputo fractional
derivative of order β ∈ (1,2] for a fuzzy function
F : [a,b] → ℜF . Moreover, we give some properties of
the mentioned fractional H-derivative.

Definition 3.1.Let β ∈ (1,2] and F: [a,b] → ℜF be such
that F,F ′ ∈ CF [a,b] ∩ LF [a,b]. Then the second order
Caputo’s H-derivative of F at x∈ (a,b) is defined as

(CDβ
a+F)(x) =

1
Γ (2−β )

∫ x

a

F
′′
(t)

(x− t)β−1
dt,x> a. (4)

We say that F isC[(m,n)− β ]− differentiable for m,n ∈
{1,2} if (4) exists and F is(m,n)−differentiable.

Theorem 3.1.Let β ∈ (1,2] and F,F
′ ∈ ACF [a,b] be such

that [F(x)]r = [F1r(t),F2r(t)], r ∈ [0,1]. Then the second
order Caputo’s H-derivative exists almost everywhere on
(a,b) and
(i) If F is (1,1)-differentiable, then[(CDa+F)(x)]r

= [ 1
Γ (2−β )

∫ x
a

F
′′
1r (t)

(x−t)(β−1) dt, 1
Γ (2−β )

∫ x
a

F
′′
2r (t)

(x−t)(β−1) dt]

= [(CDβ
a+F1r)(x),(CDβ

a+F2r)(x)].
(ii) If F is (1,2)-differentiable, then[(CDa+F)(x)]r

= [ 1
Γ (2−β )

∫ x
a

F
′′
2r (t)

(x−t)(β−1) dt, 1
Γ (2−β )

∫ x
a

F
′′
1r (t)

(x−t)(β−1) dt]
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= [(CDβ
a+F2r)(x),(CDβ

a+F1r)(x)].
(iii) If F is (2,1)-differentiable, then[(CDa+F)(x)]r

= [ 1
Γ (2−β )

∫ x
a

F
′′
2r (t)

(x−t)(β−1) dt, 1
Γ (2−β )

∫ x
a

F
′′
1r (t)

(x−t)(β−1) dt]

= [(CDβ
a+F2r)(x),(CDβ

a+F1r)(x)].
(iv) If F is (2,2)-differentiable, then[(CDa+F)(x)]r

= [ 1
Γ (2−β )

∫ x
a

F
′′
1r (t)

(x−t)(β−1) dt, 1
Γ (2−β )

∫ x
a

F
′′
2r (t)

(x−t)(β−1) dt]

= [(CDβ
a+F1r)(x),(CDβ

a+F2r)(x)].

Proof.Using Theorem2.4, the proof results directly.

Theorem 3.2.Letβ ∈ (1,2] and F,F
′ ∈ ACF [a,b].

(1) If F is (1,1)-differentiable, then
(Jβ

a+
CDβ

a+F)(x) = F(x)⊖F(a)⊖F
′
(a)(x−a).

(2) If F is (1,2)-differentiable, then
(Jβ

a+
CDβ

a+F)(x) =−F(a)+ (−F
′
(a))(x−a)⊖ (−F(x)).

(3) If F is (2,1)-differentiable, then
(Jβ

a+
CDβ

a+F)(x) =−F(a)⊖F ′(a)(x−a)⊖ (−F(x)).
(4) If F is (2,2)-differentiable, then
(Jβ

a+
CDβ

a+F)(x) = F(x)⊖F(a)+ (−F ′(a))(x−a).

Proof.Let [F(x)]r = [F1r(t),F2r(t)] for r ∈ [0,1]. Then we
have for the real valued functionsF1r and F2r ,

(Jβ
a+

CDβ
a+F1r)(x) = F1r(x) − F1r(a)− F

′
1r(a)(x− a) and

(Jβ
a+

CDβ
a+F2r)(x) = F2r(x)−F2r(a)−F

′
2r(a)(x−a).

Assume that F is (1,1)-differentiable or (2,2)-
differentiable, then by Theorem (3.1), we can write
[(CDβ

a+F)(x)]r = [(CDβ
a+F1r)(x),(CDβ

a+F2r)(x)]. Hence

[(Jβ
a+

CDβ
a+F)(x)]r = [(Jβ

a+
CDβ

a+F1r)(x),(J
β
a+

CDβ
a+F2r)(x)]

= [F1r(x) − F1r(a) − F
′
1r(a)(x − a),

F2r(x)−F2r(a)−F
′
2r(a)(x−a)].

So (Jβ
a+

CDβ
a+F)(x) = F(x)⊖F(a)⊖F

′
(a)(x−a) if F is

(1,1)-differentiable, and
(Jβ

a+
CDβ

a+F)(x) = F(x)⊖F(a)+ (−F
′
(a))(x−a) if F is

(2,2)-differentiable.
Now, if F is (1,2)-differentiable or (2,1)-differentiable,
then from Theorem (3.1) we have
[(CDβ

a+F)(x)]r = [(CDβ
a+F2r)(x),(CDβ

a+F1r)(x)]. So

[(Jβ
a+

CDβ
a+F)(x)]r = [(Jβ

a+
CDβ

a+F2r)(x),(J
β
a+

CDβ
a+F1r)(x)]

= [F2r(x) − F2r(a) − F
′
2r(a)(x − a),F1r(x) − F1r(a) −

F
′
1r(a)(x − a)]. Hence,

(Jβ
a+

CDβ
a+F)(x) = −F(a) + (−F

′
(a))(x− a)⊖ (−F(x))

if F is (1,2)-differentiable,
and (Jβ

a+
CDβ

a+F)(x) = −F(a)⊖ F
′
(a)(x− a)⊖ (−F(x))

if F is (2,1)-differentiable.

4 Second Order Fuzzy Fractional
Differential Equations

In this section, we study FFDEs of the form

(CDβ
a+x)(t) = h(t)x

′
(t)+F(t,x(t)),1< β ≤ 2, t ≥ a

x(a) = α, x
′
(a) = α

′ (5)

where h(t) is a continuous real valued function with
nonnegative values on[a,b],F : [a,b]× ℜF → ℜF is a
linear or nonlinear continuous fuzzy function, and
α,α ′ ∈ ℜF . An (m,n)-solution of (5) is an
C[(m,n)−β ]−differentiable functionx: [a,b] → ℜF that
satisfies (5). To solve this problem, we convert it to a
system of second order fractional differential equations
based on the selection of the derivative type. This system
will be called (m,n)-system.
Let [F(t,x(t))]r =
[F1r(t,x1r(t),x2r(t)),F2r(t,x1r(t),x2r(t))], [x(t)]r =
[x1r(t),x2r(t)], [x(a)]r = [x1r(a),x2r(a)] = [α1r ,α2r ] and
[x

′
(a)]r = [x

′
1r(a),x

′
2r(a)] = [α ′

1r ,α
′
2r ] be the r-cut

representations ofF(t,x(t)) and x(t). Then (5) can be
translated to one of the following systems:
(1,1)-system:


























(CDβ
a+x1r)(t) = h(t)x

′
1r(t)+F1r(t,x1r(t),x2r(t)),

(CDβ
a+x2r)(t) = h(t)x

′
2r(t)+F2r(t,x1r(t),x2r(t)),

x1r(a) = α1r , x
′
1r(a) = α

′
1r ,

x2r(a) = α2r , x
′
2r(a) = α

′
2r

(6)

(1,2)-system:


























(CDβ
a+x2r)(t) = h(t)x

′
1r(t)+F1r(t,x1r(t),x2r(t)),

(CDβ
a+x1r)(t) = h(t)x

′
2r(t)+F2r(t,x1r(t),x2r(t)),

x1r(a) = α1r , x
′
1r(a) = α

′
1r ,

x2r(a) = α2r , x
′
2r(a) = α

′
2r

(7)

(2,1)-system:


























(CDβ
a+x2r)(t) = h(t)x

′
2r(t)+F1r(t,x1r(t),x2r(t)),

(CDβ
a+x1r)(t) = h(t)x

′
1r(t)+F2r(t,x1r(t),x2r(t)),

x1r(a) = α1r , x
′
1r(a) = α

′
2r ,

x2r(a) = α2r , x
′
2r(a) = α

′
1r

(8)

(2,2)-system:


























(CDβ
a+x1r)(t) = h(t)x

′
2r(t)+F1r(t,x1r(t),x2r(t)),

(CDβ
a+x2r)(t) = h(t)x

′
1r(t)+F2r(t,x1r(t),x2r(t)),

x1r(a) = α1r , x
′
1r(a) = α

′
2r ,

x2r(a) = α2r , x
′
2r(a) = α

′
1r

(9)
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Theorem 4.1.Let [x(t)]r = [x1r(t),x2r(t)] be an
(m,n)-solution of (5). Then x1r(t) and x2r(t) solve the
corresponding (m,n)-system for n,m∈ {1,2}. Moreover,
if x1r(t) and x2r(t) solve the (m,n)-system for each
r ∈ [0,1], [x1r(t),x2r(t)] has valid level sets, and x(t) is
C[(m,n) − β ]−differentiable, then x(t) is an
(m,n)-solution of (5).

Proof.The same as the proofs of theorems (4.2) and (4.3)
in [3]

Algorithm 4.1 To find solutions of (5), we follow the
steps:
Step1: Assume thatx(t) is C[(m,n)− β ]− differentiable
and convert (5) to the corresponding (m,n)-system.
Step2:Solve the system.
Step3: Ensure that the resulting solution satisfies
Theorems (2.3)and (3.1)

5 The reproducing kernel Hilbert space
method for Solving FFIVPs

To obtain (m,n)-solution of (5), we apply the RKHS
method to solve the corresponding (m,n)-system. We give
a summary of the procedure to obtain the analytic and
approximate (1,1)-solutions which is equivalent to the
solution of (6). In fact, the same technique can be
employed to construct other types of solutions. For the
details of this method, see [30,46,47].

Algorithm 5.1
(1)Use the transformy1r(t) = x1r(t)− α1r − (t − a)α ′

1r ,

y2r(t) = x2r(t) − α2r − (t − a)α ′
2r to homogenize the

initial conditions and rewrite (6) in the form:

(CDβ
a+y1r)(t) = h1r(t,y1r(t),y2r(t),y

′
1r(t),y

′
2r(t)),

(CDβ
a+y2r)(t) = h2r(t,y1r(t),y2r(t),y

′
1r(t),y

′
2r(t)),

y1r(a) = y
′
1r(a) = y2r(a) = y

′
2r(a) = 0

(10)

(2)Apply the operatorJβ
a+ to the both sides of the two

differential equations in (10) to get
y jr (t) = H jr (t,y1r(t),y2r(t),y

′
1r(t),y

′
2r(t))

= 1
Γ (β )

∫ t
a

h jr (s,y1r (s),y2r (s),y
′
1r (s),y

′
2r (s))

(t−s)1−β dt, t > a, j = 1,2.

(3) Construct reproducing kernel functions of certain
spaces:
i.W1

2 [a,b] = {u: [a,b] → ℜ : u ∈ AC[a,b],u
′ ∈ L2[a,b]}

with inner product for u,v ∈ W1
2 [a,b] given by

〈u,v〉W1
2

=
∫ b

a (u(t)v(t) + u
′
(t)v

′
(t))dt and norm:

‖u‖W1
2
=

√

〈u(t),u(t)〉W1
2

. Its reproducing function has

the form Rt(s) =

1
2sinh(b−a)

[cosh(t+ s−b−a)+ cosh(|t− s|−b+a)].

ii. W3
2 [a,b] = {u: u,u

′
,u

′′ ∈ AC[a,b],u
′′′ ∈ L2[a,b],

u(a) = u
′
(a) = 0} with inner product foru,v ∈ W3

2 [a,b]
given by 〈u,v〉W3

2
= u

′′
(a)v

′′
(a) +

∫ b
a u

′′′
(t)v

′′′
(t))dt and

norm: ‖u‖W3
2

=
√

〈u(t),u(t)〉W3
2
. The reproducing

function of W3
2 [a,b] is Gt(s) =

{

g(t,s) s≤ t
g(s, t) s> t

where

g(t,s) = − 1
120

(a− s)2(6a3 + 5ts2 − s3 − 10t2(3+ s)−
3a2(10+5t+ s)+2a(5t2− s2+5t(6+ s))).

iii. Nm[a,b] = Wm
2 [a,b]

⊕

Wm
2 [a,b] = {(u1(t),

u2(t))T : u1,u2 ∈ Wm
2 [a,b]},m = 1,2 The inner product

and the norm of u(t) = (u1(t),u2(t))T and
v(t) = (v1(t),v2(t))T in Nm[a,b] are given by
〈u,v〉Nm = ∑2

i=1〈ui(t),vi(t)〉Wm
2

and ‖u‖Nm =
√

∑2
i=1‖ui‖2

Wm
2

, respectively.

(4) Define the operatorI jr : W3
2 [a,b] → W1

2 [a,b] by
I jr y jr (t) = y jr (t), j = 1,2, and let Ir = diag(I1r , I2r).
Obviously, I jr , j = 1,2 are linear and bounded.
Consequently,Ir is also a bounded linear operator such
that Ir : N3[a,b] → N1[a,b]. Put Gr = (G1r ,G2r)

T and
yr = (y1r ,y2r)

T to rewrite (10) in the form
Iryr(t) = Gr(t,yr(t),y

′
r(t)),y

′
(a) = y(a) = 0.

(5) Consider the countable dense set{ti}∞
i=1 , and let

ϕi j (t) = Gti (t)ej and Ψi j (t) = I∗r ϕi j (t), j = 1,2 to

construct an orthogonal function system{Ψi j (t)}(∞,2)
(i, j)=(1,1)

of the spaceN3[a,b]. Then use the Gram-Schmidt
orthogonalization process on it to form the orthonormal

function system{Ψi j (t)}(∞,2)
(i, j)=(1,1) of N3[a,b].

(6) Using this operator, the approximate (1,1)-solution of
(10) has the form:

yn
r (t) =

n

∑
i=1

2

∑
j=1

i

∑
l=1

j

∑
k=1

βkil Gkr(tl ,yr(tl ),y
′
r(tl ))Ψi j (t), (11)

which converges to the analytic solution:

yr(t) =
∞

∑
i=1

2

∑
j=1

i

∑
l=1

j

∑
k=1

βkil Gkr(tl ,yr(tl ),y
′
r(tl ))Ψi j (t),

whereβkil are the orthogonalization coefficients. So the
approximate solutionxr(t) of (5) is xn

r (t) = yn
r (t) +αr +

(t −a)α ′
r .

Numerical Examples

In this subsection, we give examples of second order
FFIVPs and solve them using the RKHSM. Our
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computations are performed using Mathematica7.0.
Example1Consider the following FFIVP:

(CDβ
0+x)(t) = σ , 1< β ≤ 2, t ∈ [0,1]

x(0) = γ,x′(0) = α,

where σ = α = γ are the fuzzy numbers whose r-cut
representation is[r −1,1− r].
Depending on the type of differentiability, we have the
following systems:

(1,1)-system:



























(CDβ
0+x1r)(t) = r −1,

(CDβ
0+x2r)(t) = 1− r,

x1r(0) = x
′
1r(0) = r −1,

x2r(0) = x
′
2r(0) = 1− r.

(1,2)-system:



























(CDβ
0+x1r)(t) = 1− r,

(CDβ
0+x2r)(t) = r −1,

x1r(0) = x
′
1r(0) = r −1,

x2r(0) = x
′
2r(0) = 1− r.

(2,1)-system:



























(CDβ
0+x1r)(t) = 1− r,

(CDβ
0+x2r)(t) = r −1,

x1r(0) = x
′
2r(0) = r −1,

x2r(0) = x
′
1r(0) = 1− r.

(2,2)-system:



























(CDβ
0+x1r)(t) = r −1,

(CDβ
0+x2r)(t) = 1− r,

x1r(0) = x
′
2r(0) = r −1,

x2r(0) = x
′
1r(0) = 1− r.

Applying Theorem (3.2), the exact solutions are:
(1,1)-solution:
[x(t)]r = [r −1,1− r]( tβ

Γ (β+1) + t+1), t ∈ [0,1].
(1,2)-solution:
[x(t)]r = [r −1,1− r] −tβ

Γ (β ) + t+1), t ∈ [0,1].
(2,1)-solution:
[x(t)]r = [r −1,1− r] −tβ

Γ (β+1) − t+1), t ∈ (0,
√

3−1).
(2,2)-solution:
[x(t)]r = [r −1,1− r] tβ

Γ (β+1) − t+1), t ∈ [0,1].
Using the RKHS method withn= 100 andm= 5 , some
numerical results are given in Table1 and Figures 1 and 2.
Example 2Consider the following FFIVP:

(CDβ
0+x)(t)+ x(t) = σ ,1< β ≤ 2, t ∈ [0,1]

Table 1: The error of example1 at different values of t and r when
β = 1.9.

r 0.25 0.5 0.75
t (1,1)-solution

0.1 8.23357×10−5 5.48905×10−5 2.74452×10−5

0.2 1.54339×10−4 1.02893×10−4 5.14464×10−5

0.3 2.22572×10−4 1.48381×10−4 7.41906×10−5

0.4 2.88491×10−4 1.92327×10−4 9.61636×10−5

0.5 3.52749×10−4 2.35166×10−4 1.17583×10−4

0.6 4.15716×10−4 2.77144×10−4 1.38572×10−4

0.7 4.77632×10−4 3.18422×10−4 1.59211×10−4

0.8 5.38664×10−4 3.59109×10−4 1.79555×10−4

0.9 5.98932×10−4 3.99288×10−4 1.99644×10−4

1 6.58535×10−4 4.39023×10−4 2.19512×10−4

t (1,2)-solution
0.1 8.2336×10−5 5.48905×10−5 2.74452×10−5

0.2 1.54339×10−4 1.02893×10−4 5.14464×10−5

0.3 2.22572×10−4 1.48381×10−4 7.41906×10−5

0.4 2.88491×10−4 1.92327×10−4 9.61636×10−5

0.5 3.52749×10−4 2.35166×10−4 1.17583×10−4

0.6 4.15716×10−4 2.77144×10−4 1.38572×10−4

0.7 4.77632×10−4 3.18422×10−4 1.59211×10−4

0.8 5.38664×10−4 3.59109×10−4 1.79555×10−4

0.9 5.98932×10−4 3.99288×10−4 1.99644×10−4

1 6.58535×10−4 4.39023×10−4 2.19512×10−4

t (2,1)-solution
0.1 8.23357×10−5 5.48905×10−5 2.74452×10−5

0.2 1.54339×10−4 1.02893×10−4 5.14464×10−5

0.3 2.22572×10−4 1.48381×10−4 7.41906×10−5

0.4 2.88491×10−4 1.92327×10−4 9.61636×10−5

0.5 3.52749×10−4 2.35166×10−4 1.17583×10−4

0.6 4.15716×10−4 2.77144×10−4 1.38572×10−4

0.7 4.77632×10−4 3.18422×10−4 1.59211×10−4

t (2,2)-solution
0.1 8.23357×10−5 5.48905×10−5 2.744524×10−5

0.2 1.54339×10−4 1.02893×10−4 5.14464×10−5

0.3 2.22572×10−4 1.48381×10−4 7.41906×10−5

0.4 2.88491×10−4 1.92327×10−4 9.61636×10−5

0.5 3.52749×10−4 2.35166×10−4 1.17583×10−4

0.6 4.15716×10−4 2.77144×10−4 1.38572×10−4

0.7 4.77632×10−4 3.18422×10−4 1.59211×10−4

0.8 5.38664×10−4 3.59109×10−4 1.79555×10−4

0.9 5.98932×10−4 3.99288×10−4 1.99644×10−4

1 6.58535×10−4 4.39023×10−4 2.19512×10−4

subject tox(0) = λ ,x′
(0) = α, where σ is the fuzzy

number with r-cut representation[r,2 − r] and
[α]r = [λ ]r = [r − 1,1− r]. Depending on the type of
differentiability, we have the following systems:

(1,1)-system:



























(CDβ
0+x1r)(t)+x1r (t) = r,

(CDβ
0+x2r)(t)+x2r (t) = 2− r,

x1r (0) = x
′
1r (0) = r −1,

x2r(0) = x
′
2r(0) = 1− r.
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Fig. 1: Exact and approximate solutionsx(t) for different values
of β at r = 0.25 for example 1.

The exact solution of this system forβ = 2 is
[x(t)]r = [r,2− r](1+ sint) − sint − cost which is not
(1,1)-differentiable. Hence, in this case, no solution for
the FFIVP exists.

Fig. 2: Approximate solutions for different values ofr atβ = 1.9
for example 1.

(1,2)-system:



























(CDβ
0+x2r)(t)+ x1r(t) = r,

(CDβ
0+x1r)(t)+ x2r(t) = 2− r,

x1r(0) = x
′
1r(0) = r −1,

x2r(0) = x
′
2r(0) = 1− r.
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The exact solution of this system whenβ = 2 is
[x(t)]r = [r,2− r](1+ sinht)− sinht− cost which is not
(1,2)-differentiable.

(1,2)-system:



























(CDβ
0+x2r)(t)+ x1r(t) = r,

(CDβ
0+x1r)(t)+ x2r(t) = 2− r,

x1r(0) = x
′
2r(0) = r −1,

x2r(0) = x
′
1r(0) = 1− r.

The exact solution of this system whenβ = 2 is
[x(t)]r = [r,2 − r](1 − sinht) + sinht− cost which is
(2,1)-differentiable fort ∈ (0, ln(1+

√
2)).

Using the RKHS method with n=100 and m=5, some
numerical results are given in Table2 and Figure3.

Table 2: The fuzzy approximate (2,1)-solution[x1r(0.4),x2r(0.4)
of example 2 at different values ofβ and r.

r β = 2 Error (β = 2)
0 [-0.510308,0.668146] 6.44195789×10−7

0.25 [-0.363001,0.52084] 4.41377867×10−6

0.5 [-0.215694,0.373533] 9.47175312×10−6

0.75 [-0.0683874,0.2262262] 1.45297276×10−5

1 [0.078919,0.078919] 1.95877020×10−5

r β = 1.9 β = 1.8
0 [-0.493755,0.678996 ] [-0.484393,0.685333]

0.25 [-0.347161,0.532403] [-0.338178,0.539118]
0.5 [-0.200567, 0.385808] [-0.191961,0.392902]
0.75 [-0.053975,0.239215 ] [-0.045745,0.246686]

1 [0.092620,0.092620] [0.100470,0.100470]

(2,2)-system:



























(CDβ
0+x1r)(t)+ x1r(t) = r,

(CDβ
0+x2r)(t)+ x2r(t) = 2− r,

x1r(0) = x
′
2r(0) = r −1,

x2r(0) = x
′
1r(0) = 1− r.

The exact solution for β = 2 is
[x(t)]r = [r,2 − r](1 − sint) + sint − cost which is

(2,2)-differentiable fort ∈ (0,
π
2
).

Using the RKHS method with n=100 and m=5, some
numerical results are given in Table3 and Figure4.
Example 3 Consider the following FFIVP:
(CDβ

0+x)(t) = x
′
(t)+ t +1, 1< β ≤ 2, t ∈ [0,1],

x(0) = λ ,x′(0) = α, where[λ ]r = [α]r = [r − 2,1− 2r].
Depending on the type of differentiability, we have the
following systems:

Fig. 3: a)The core and the support of the fuzzy (2,1)- approximate
solutions atβ = 1.8 , b) Approximate (2,1)-solutions for different
values ofβ at r = 0.25 for example 2.

Table 3: The fuzzy approximate (2,2)-solution[x1r(0.5),x2r(0.5)
of example 2 at different values ofβ and r.

r β = 2 Error (β = 2)
0 [-0.398179,0.642991] 4.34399357×10−7

0.25 [-0.268033,0.512845] 3.12570815×10−6

0.5 [-0.137886,0.382699] 5.81701694×10−6

0.75 [-0.007740,0.252553] 8.50832573×10−6

1 [0.122406,0.122406] 1.11996345×10−5

r β = 1.9 β = 1.8
0 [-0.384033,0.666088] [-0.376094,0.678837]

0.25 [-0.252768,0.534823] [-0.244228,0.546971]
0.5 [-0.121503,0.403557] [-0.112362,0.415104]
0.75 [ 0.009762,0.272292] [ 0.019505,0.283238]

1 [ 0.141027,0.141027] [ 0.151371,0.151371]

(1,1)-system:



























(CDβ
0+x1r)(t) = x

′
1r(t)+ t+1,

(CDβ
0+x2r(t) = x

′
2r(t)+ t+1,

x1r(0) = x
′
1r(0) = r −2,

x2r(0) = x
′
2r(0) = 1−2r.

The exact solution of this system forβ = 2 is

x1r(t) = ret − t2
2 −2t−2,x2r(t) = (3−2r)et − t2

2 −2t−2
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Fig. 4: a)The core and the support of the fuzzy (2,2)- approximate
solutions atβ = 1.8 , b) Approximate (2,2)-solutions for different
values ofβ at r = 0.25 for example 2.

(1,2)-system:



























(CDβ
0+x2r)(t) = x

′
1r(t)+ t+1,

(CDβ
0+x1r)(t) = x

′
2r(t)+ t+1,

x1r(0) = x
′
1r(0) = r −2,

x2r(0) = x
′
2r(0) = 1−2r.

The exact solution of this system forβ = 2 is

x1r(t) = ret +3(1− r)cosht− t2
2 −2t−5+3r,

x2r(t) = (3 − 2r)et + 3(r − 1)cosht− t2
2 − 2t + 1 − 3r

which is not (1,2)-differentiable.

(2,1)-system:



























(CDβ
0+x2r)(t) = x

′
2r(t)+ t+1,

(CDβ
0+x1r)(t) = x

′
1r(t)+ t+1,

x1r(0) = x
′
2r(0) = r −2,

x2r(0) = x
′
1r(0) = 1−2r.

The exact solution of this system forβ = 2 is

x1r(t) = (3−2r)et − t2
2 −2t−5+3r,

x2r(t) = ret − t2
2 −2t+1−3r

which is (2,1)-differentiable fort ∈ (0, ln2) .

(2,2)-system:



























(CDβ
0+x1r)(t) = x

′
2r(t)+ t+1,

(CDβ
0+x2r)(t) = x

′
1r(t)+ t+1,

x1r(0) = x
′
2r(0) = r −2,

x2r(0) = x
′
1r(0) = 1−2r.

The exact solution of this system forβ = 2 is
[x(t)]r = 1

2e−t((3r − 3,3− 3r)− 1
2e−t(4et −3e2t + e2tr +

4ett + et t2). Using the RKHS method with n=100 and
m=5, the numerical results are given in Figure5 and
Table4.

Table 4: The fuzzy approximate solutions of example 3 at
different values ofβ and r.

r : 0.25 0.5
Approximate (1,1)-solution[x1r(0.5),x2r (0.5)

β = 2 [-2.712788,0.996826] [-2.300609,0.172467]
Error 3.123591×10−5 2.474548×10−5

β = 1.9 [-2.730153,1.051163] [-2.310007,0.210871]
β = 1.8 [-2.753118,-2.753118] [-2.322627,0.260319]

Approximate (2,1)-solution[x1r(0.6),x2r (0.6)
β = 2 [-1.074675,-0.674431] [-1.235732,-0.968902]
Error 2.773201×10−5 3.034650×10−5

β = 1.9 [-0.996812,-0.697307] [-1.180255,-0.980585]
β = 1.8 [-0.896953,-0.727305] [-1.109253,-0.996155]

Approximate (2,2)-solution[x1r(0.5),x2r (0.5)
β = 2 [-1.540386,-0.175658] [-1.519009,-0.609190]
Error 3.568930×10−6 1.050045×10−5

β = 1.9 [-1.537332,-0.143039] [-1.514875,-0.585346]
β = 1.8 [-1.529377,-0.104349] [-1.506915,-0.556897]

6 Conclusions

In this paper, we present a definition of second order
Caputo’s H-derivative and its r-cut representations under
different types of differentiability. We give the fuzzy
forms of the Riemann-Liouville fractional integral when
applied to the Caputo’s H-derivative of orderβ ∈ (1,2] of
a fuzzy function. The generalized characterization
theorem allows us to translate the FFDE into four systems
of fractional differential equations and solve them instead
of solving the FFDE. For a numerical solution, , we apply
a modified RKHSM to obtain analytic and approximate
solutions in series form in term of their parametric forms
in the spaceW3[a,b]⊕W3[a,b] .Several examples are
given to show the effectiveness of the proposed method.
To see the effects of the fractional derivative on the
solution, we solve the same FDEs for different values of
the fractional order. The results shows that the solutions
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Fig. 5: The approximate solutions for different values ofβ at
r=0.25, for example 3.

of FFDEs approach the solution of FDEs as the fractional
order approaches the integer order.
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