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Abstract: In paper the evolution of N identical in mass and charge particles interacting wia generalized Yukawa potential is
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1 Introduction

In connection with development of quantum information
and quantum calculations, interest on research of
correlation matrices and its properties has risen [1]-[2].

For detailed research of its properties, it is necessary
to determine their explicit form at first. And for this, it is
needed to solve equation, describing behavior of quantum
system of many interaction particles both in equilibrium
and in non- equilibrium states. The fact that real physical
quantum systems of interactive particles are in move
attracts interest on determining quantum correlation
matrices, solving kinetic equations describing
investigated system. As it is known from quantum
physics, dynamics of such system is described by
equation of Liouville [3]. Unfortunately, solution of
equation of Liouville does not give information about real
physical process, which is described in Boltzman and
Vlasov equations. The most reasonable tool connection
Liouville’s equation with Boltzman and Vlasov equations
is chain of kinetic equations of
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) [4].

Quantum analogue of classical BBGKY, describing
dynamics of quantum system of particles is chain of
quantum kinetic equations of BBGKY [5], [6]. It is
complicated system of interconnected integral -

differential equations of density matrices of particles, that
depends on interaction type of interaction potential
between particles. One of universal potential, used in
solid state physics, physics of plasma, atomic physics and
chemistry is potential that can be determined from
generalized Yukawa potential [7]. Namely, this is Debye -
Huckel potential [8], screened Coulomb potential [9],
Yukawa potential [10].

The present paper solves the Cauchy problem for the
BBGKY chain for quantum kinetic equations, describing
dynamics of the quantum system of particles interacting
with each other by the generalized Yukawa potential. A
chain of quantum kinetic equations for correlation
matrices is defined on the basis of the BBGKY chain for
density matrices. Solution of the chain of equations for
correlation matrices using solutions of the Cauchy
problem for the chain of quantum kinetic equations
BBGKY for density matrices [11].

2 Formulation of the Problem

We consider the hierarchy BBGKY of quantum kinetic
equations, which describes the evolution of a system of
identical particles with massm and chargeq = 1
interacting via generalized Yukawa potential [7]
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φ(r) = ∑N
k=0 rk−1 ∫ ∞

µ0
e−µrdwk(µ), which depends on the

distance between particles
r ≡ |xi − x j| = ((x1

i − x1
j)

2 + (x2
i − x2

j)
2 + (x3

i − x3
j)

2)1/2

and whereµ0 > 0,N - integer andw0, ...,wN - real (not
necessarily positive) measures with finite total variation.
These potentials are ”superpositions” core Yukawa
potentialr−1e−µr [10]. We assume that the charge is a
real constant. In the present paper, the Cauchy problem is
formulated for a quantum system of a finite number
particles contained in the finite region (vessel) with
volumeV = |Λ | [4],[5],[6]:

i
∂ρΛ

s (t,x1, ...,xs;x′1, ...,x
′
s)

∂ t
= [HΛ

s ,ρΛ
s ](t,x1, ...,xs;x′1, ...,x

′
s)

+
N
V

(

1−
s
N

)

Trxs+1 ∑
1≤i≤s

(φi,s+1(|xi −xs+1|)−

φi,s+1(|x
′
i − xs+1|))ρΛ

s+1(t,x1, ...,xs,xs+1;x′1, ...,x
′
s,xs+1),

(1)
with the initial condition

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ρΛ

s (0,x1, ...,xs;x′1, ...,x
′
s).
(2)

In the problem given by equation (1) and (2) the vector
represented byxi gives the position ofith particle in the
3-dimensional Euclidean spaceR3, xi = (x1

i ,x
2
i ,x

3
i ),

i = 1,2, ....,s, and xα
i ,α = 1,2,3 are coordinates of a

vectorxi. The length of the vectorxi is denoted by

|xi|= ((x1
i )

2+(x2
i )

2+(x3
i )

2)
1
2 .

In (1) h̄ = 1 is the Planck constant and[, ] denotes the
Poisson bracket.

The reduced statistical operator ofs particles is
ρΛ

s (x1, ..,xs;x′1, ..,x
′
s) related to the positive symmetric

density matrixD of N particles by [5],[6]

ρΛ
s (x1, .,xs;x′1, .,x

′
s) =

V sTrxs+1,.,xN DΛ
N (x1, .,xs,xs+1, .,xN ;x′1, .,x

′
s,xs+1, .,xN),

where s ∈ N, N is the number of particles, andV the
volume of the system of particles. The trace is defined in
terms of the kernelρΛ (x,x′) by the formula

TrxρΛ =

∫

Λ
ρΛ (x,x)dx.

The Hamiltonian of system is defined as

HΛ
s (x1, ...,xs) = ∑

1≤i≤s

(

−
1

2m
△xi +uΛ (xi)

)

+

+ ∑
1≤i< j≤s

φi, j(|xi − x j|),

where△i is the Laplacian

△i =
∂ 2

∂ (x1
i )

2
+

∂ 2

∂ (x2
i )

2
+

∂ 2

∂ (x3
i )

2
,

φ(r) =
N

∑
k=0

rk−1
∫ ∞

µ0

e−µrdwk(µ)

anduΛ (x) is an external field which keeps the system in the
regionΛ (uΛ (x) = 0 if x ∈ Λ anduΛ (x) = +∞ if x /∈ Λ).
Hereφi, j(|xi − x j|) is symmetric.

3 Solution of the Cauchy Problem for the
BBGKY Hierarchy of Quantum Kinetic
Equations with generalized Yukawa potential

To obtain the solution of the Cauchy problem defined by
(1) and (2) we use a semigroup method [12], [13], [14],
[15], [19], [20], [21].

Let Ls
2(Λ) be the Hilbert space of functions

ψΛ
s (x1, ...,xs), xi ∈ R3(Λ), and BΛ

s be the Banach
space of positive-definite, self adjoint nuclear operators
ρΛ

s (x1, ...,xs;x′1, ...,x
′
s) onLs

2(Λ)

(ρΛ
s ψΛ

s )(x1, ...,xs) =

∫

Λ
ρΛ

s (x1, ...,xs;x′1, ...,x
′
s)×

×ψΛ
s (x′1, ...,x

′
s)dx′1...dx′s,

with norm

|ρΛ
s |1 = sup ∑

1≤i≤∞
|(ρΛ

s ψs
i ,ϕ

s
i )|,

where the upper bound is taken over all orthonormalied
systems of finite, twice differentiable functions with
compact support{ψs

i } and{ϕs
i } in Ls

2(Λ), s ≥ 1.
We’ll suppose that the operatorsρΛ

s andHΛ
s act in the

spaceLs
2(Λ) with zero boundary conditions.

Let BΛ be the Banach space of sequences of nuclear
operators

ρΛ = {ρΛ
0 ,ρΛ

1 (x1;x′1), ...,ρ
Λ
s (x1, ...,xs;x′1, ...,x

′
s), ...},

whereρΛ
0 are complex numbers,

∣
∣ρΛ

0

∣
∣
1 =

∣
∣ρΛ

0

∣
∣ and

ρΛ
s ⊂ BΛ

s ,

ρΛ
s (x1, ...,xs;x′1, ...,x

′
s) = 0, when s > s0,

wheres0 is finite and the norm is

|ρΛ |1 =
∞

∑
s=0

|ρΛ
s |1.

The Hamiltonian−△s +φ with generalized Yukawa
potentialφ(r) = ∑N

k=0 rk−1 ∫ ∞
µ0

e−µrdwk(µ) is self-adjoint
operator on the setD(−△) [7]. Here△s is 3s dimentional
Laplacian.

Let B̃Λ
s be a dense set of “good” elements ofBΛ

s of
typeBΛ

s ∩D(HΛ
s )

⊗
D(HΛ

s ), whereD(HΛ
s ) is the domain

of the operatorHΛ
s [7] and

⊗
denote the algebraic tensor

product.
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We introduce the operatorsωΛ (t), Ω(Λ) andUΛ (t)
on the spaceBΛ by

(ωΛ (t)ρΛ )s(x1, ..,xs;x′1, ..,x
′
s) =

= (e−iHΛ
s tρΛ eiHΛ

s t)s(x1, ..,xs;x′1, ..,x
′
s),

(Ω(Λ)ρΛ )s(x1, ..,xs;x′1, ..,x
′
s) =

=
N
V
(1−

s
N
)

∫

Λ
∑

i
ρΛ

s+1(x1, ..,xs,xs+1;x′1, ..,x
′
s,xs+1)×

g1
i (xs+1)g̃

1
i (xs+1)dxs+1, (3)

UΛ (t)ρΛ
s (x1, ..,xs;x′1, ..,x

′
s) =

(eΩ(Λ)e−iHΛ te−Ω(Λ)ρΛ eiHΛ t)s(x1, ..,xs;x′1, ..,x
′
s).

In (3) g1
i (xs+1) is a complete orthonormal system of

vectors in the one-particle spaceL2(Λ).
Let

(H̃
Λ ρΛ )s(x1, ..,xs;x′1, ..,x

′
s) = [HΛ

s ,ρΛ
s ](x1, ..,xs;x′1, ..,x

′
s)+

N
V
(1−

s
N
)Trxs+1 ∑

1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|))ρΛ

s+1(x1, ..,xs+1;x′1, ..,xs+1).

Theorem 1If potential φ(r) = ∑N
k=0 rk−1∫ ∞

µ0
e−µrdwk(µ)

is generalized Yukawa potential, the operator UΛ (t)
generates a strongly continuous semigroup of bounded
operators on BΛ , whose generators coincide with the

operator − iH̃
Λ

on B̃Λ everywhere dense in BΛ .

Proof.According to the general theory of groups of
bounded strongly continuous operators, there always
exists an infinitesimal generator of the groupUΛ (t) given

by the formula limt−→0
UΛ (t)ρΛ−ρΛ

t in the sense of
convergence in norm in the spaceBΛ for ρΛ that belong
to a certain setD(H̃ Λ ) everywhere dense inBΛ [15].
Therefore, since UΛ (t) is a strongly continuous

semigroup on BΛ with generator −iH̃
Λ

on the
right-hand side of the BBGKY hierarchy of quantum
kinetic equations oñBΛ

s which is dense inBΛ
s [11], the

abstract Cauchy problem (1)-(2) has the unique solution

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)= (UΛ (t)ρΛ )s(x1, ...,xs;x′1, ...,x

′
s)

= (eΩ(Λ)e−iHΛ te−Ω(Λ)ρΛ eiHΛ t)s(x1, ...,xs;x′1, ...,x
′
s) (4)

for eachρΛ
s (x1, ...,xs;x′1, ...,x

′
s) ⊂ B̃Λ

s . For the initial data
ρΛ

s belonging to a certain subset ofBΛ
s (to the domain of

definition of D(− iH̃ Λ )), which is everywhere dense in
BΛ

s , (4) is strong solution of Cauchy problem (1)-(2).
This proves the Theorem 1.

By a similar argument, one can show that the
infinitesimal generator of the groupU(t) coincides with
the operator that defines the BBGKY chain

i
∂ρs(t,x1, ...,xs;x′1, ...,x

′
s)

∂ t
= [Hs,ρs](t,x1, ...,xs;x′1, ...,x

′
s)+

1
v

Trxs+1 ∑
1≤i≤s

(φi,s+1(|xi − xs+1|)−φi,s+1(|x
′
i − xs+1|))×

ρs+1(t,x1, ...,xs,xs+1;x′1, ...,x
′
s,xs+1), s ≥ 1,

N
V

=
1
v

in the thermodynamic limit (N → ∞,V → ∞) on an
everywhere dense subset ofB of finite sequences

ρ = {ρ0,ρ1(x1;x′1), ...,ρs(x1, ...,xs;x′1, ...,x
′
s), ...},

ρs = 0, s > s0,

such that[Hs,ρs] belongs toBs together withρs [15].

4 Derivation of Hierarchy of Kinetic
Equations for Correlation Matrices with
generalized Yukawa Potential and its
Solution

Introducing the notation [16]
(

H
Λ ρΛ

)

s
(t,x1, ...,xs;x′1, ...,x

′
s) =

=
[

HΛ
s ,ρΛ

s

]

(t,x1, ...,xs;x′1, ...,x
′
s);

(

D
Λ
xs+1

ρΛ
)

s
(x1, · · · ,xs;x′1, · · · ,x

′
s) =

= ρΛ
s+1

(
x1, · · ·xs,xs+1;x′1, · · · ,x

′
s,xs+1

)
;

(A Λ
xs+1

ρΛ )s(t,x1, ...,xs;x′1, ...,x
′
s) =

=
N
V
(1−

s
N
) ∑
1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|))ρΛ

s (t,x1, ...,xs;x′1, ...,x
′
s);

ρΛ (t) = {ρΛ
1 (t,x1;x′1), ...,ρ

Λ
s (t,x1, ...,xs : x′1, ...,x

′
s), ...}, (5)

whereρΛ
s = 0, when s > s0, and s ≥ 1,

we can cast (1) and (2) in the form

i
∂
∂ t

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) =

(

H
Λ ρΛ

)

s
(t,x1, ...,xs;x′1, ...,x

′
s)

+
∫

Λ

(

A
Λ
xs+1

D
Λ
xs+1

ρΛ
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)dxs+1,

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ρΛ

s (0,x1, ...,xs;x′1, ...,x
′
s).
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For sequences (5) this problem can formulated as

i
∂
∂ t

ρΛ (t) = H
Λ ρΛ (t)+

∫

Λ
A

Λ
x D

Λ
x ρΛ (t)dx, (6)

ρΛ (t)|t=0 = ρΛ (0). (7)

Proposition 1For sequence of correlation matrices

ϕ = {ϕ0,ϕ1(x1;x′1), ...,ϕs(x1, ...,xs;x′1, ...,x
′
s), ...}, s≥ 1

the hierarchy of kinetic equations has the form:

i
∂
∂ t

ϕ(t)=H ϕ(t)+
1
2
W (ϕ(t),ϕ(t))+

+
∫

Λ
A xDxϕ(t)dx+

∫

Λ
(A xϕ⋆Dxϕ)(t)dx, (8)

ϕ(t)|t=0 = ϕ(0). (9)

,

In (8) relation between density matrices and correlation
matrices [16],[17], [18] is:

ρ(t)=Γ ϕ(t)= I+ϕ(t)+
ϕ(t)⋆ϕ(t)

2!
+ · · ·

(⋆ϕ(t))s

s!
+ · · · ,

(10)
where:

(ϕ ⋆ϕ)(X) = ∑
YCX

ϕ(Y )ϕ(X \Y ),

I ⋆ϕ = ϕ , (⋆ϕ)s = ϕ ⋆ϕ ⋆ · · ·⋆ϕ
︸ ︷︷ ︸

s times;

X = (x1, · · · ,xs;x′1, · · · ,x
′
s),

Y = (x1, · · · ,xs;x′1, · · · ,x
′
s′), s′ ∈ s, s = 1,2, · · · ;

W (ϕ ,ϕ) (X) = ∑
YCX

U (Y ;X \Y )ϕ(Y )ϕ (X \Y) ,

(U ϕ)(X) =

[

∑
1≤i< j≤s

φ(xi − x j),ϕ

]

(X).

The prove of the proposition is analogically to
[16],[17].

The problem (8), (9) for the system of s particles in the
volume V have form:

i
∂
∂ t

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)=H

Λ ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)+

+
1
2
W

Λ
(

ϕΛ ,ϕΛ
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)+

+
∫

Λ
A

Λ
xs+1

D
Λ
xs+1

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)dxs+1+

+

∫

Λ

(

A
Λ
xs+1

ϕΛ ⋆D
Λ
xs+1

ϕΛ
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)dxs+1,

(11)

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ϕΛ

s (0,x1, ...,xs;x′1, ...,x
′
s).

(12)
We introduce the quantum operator which is analogy to
classical case [13]:

U ′Λ (t)ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s) =

= Γ exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )Γ −1Γ×

×ϕs(0,x1, ...,xs;x′1, ...,x
′
s))exp(−iHΛ t)].

Theorem 2If potential φ(r) = ∑N
k=0 rk−1∫ ∞

µ0
e−µrdwk(µ)

is generalized Yukawa potential, the operator U ′Λ (t)
generates a strongly continuous semigroup of bounded
operators on BΛ

+, whose generators coincide with the
operator

− i(H Λ +
1
2
W

Λ+
∫

Λ
A

Λ
xs+1

D
Λ
xs+1

dxs+1+

∫

Λ
A

Λ
xs+1

⋆D
Λ
xs+1

dxs+1)

on B̃Λ
+ everywhere dense in BΛ

+.

HereB+ is ideal ofB [18].

Proof.Using (10) in (4) andΓ −1Γ ϕ(t) = ϕ(t) we obtain:

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) = Γ ϕΛ

s (t,x1, ...,xs;x′1, ...,x
′
s) =

= Γ exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )Γ −1×

×Γ ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s)exp(−iHΛ t)] =

= Γ exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )×

×ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s)exp(−iHΛ t)]. (13)

Acting to (13) byΓ −1 we receive:

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) =

=U ′Λ (t)ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s) =

= exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )×

×ϕs(0,x1, ...,xs;x′1, ...,x
′
s)exp(−iHΛ t)]. (14)

The generator of the semigroupU ′Λ (t) coincides with

−i(H Λ +
1
2
W

Λ+

∫

Λ
A

Λ
xs+1

D
Λ
xs+1

dxs+1+

+

∫

Λ
A

Λ
xs+1

⋆D
Λ
xs+1

dxs+1),

on the setD(HΛ
s ).

So, (14) onD(−∑1≤i≤s△i) is the unique solution of
the Cauchy hierarchy of kinetics equations for correlation
matrices with generalized Yukawa potential (8),(9).

This proves the Theorem 2.
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