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Abstract: A chiral spin flipping gate is simulated by specially desigrguantum circuits. We consider using ancillary qubits to
accomplish the algorithm as well as quantum circuits basedifferent basic operations. Three methods are appliediild these
algorithms, which result in three different quantum citsuhat all realize the evolution process of the system. \&fe iahplement our
guantum algorithms on the IBM Quantum Experience.
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1 Introduction design, simulation, testing, and actual execution of an
algorithm on a physical device. We know that the

We are now in the frontier of a new area of quantumquantum computers need not only new hardware
simulation [L,2], since Feynman3] proposed the idea of components but also software languages and algorithms.
quantum computer and envisioned the possibility of With the help of IBM QE, scientists can conveniently
efficiently simulating quantum systems, significant implement their own algorithms, which will greatly
progress has been made. It will be fundamentally morecontribute to the development of this area. Since it
efficiently to simulate the dynamics of quantum became available, a flurry of research results have been
many-body systems3[4] in condensed matter5[6,7], published derived from the platform hardwafe[19, 20,
quantum chemistryg, 9] and high-energy physic4p,11, 21,22,23,24,25].
12], which is intractable

on classical computers. Apart from simulation of the
physical or chemical systems, it can also be used to other
applications in high computational sciences, such as In this paper, we will introduce a chiral spin flipping
predicting rare natural phenomenons(volcanoesgate and then try to realize this model by quantum
earthquake, hurricane, etc) and simulating complexalgorithms. In Sec2, we illustrate the chiral spin flipping
systems (social phenomenon, economic predictions, etof three qubits. The quantum states of the three qubits
[1314,15). transfer to their neighbors in different directions

Recently, big companies (Google, IBM, US Defense) depending on the number of up spins. Later we will show
have invested towards conceiving and realizing quantunhow this operation can be realized in a quantum circuit
computer, but those quantum computers will bethatis composed by several basic quantum gates. In Sec.
inaccessible to most of the people. However, the advent 08 the basic concept and operations of quantum circuits
cloud quantum computation changes this situation. IBM,will be briefly introduced, and in Sed.the procedure of
in 2016, launched an interactive platform called thethree different methods to design the objective operation
Quantum Experience (QEL$,17], which released access will be explained. In Secb5, we will show how to
to a universal five-qubit quantum computer based onimplement our algorithms on IBM Quantum Experience
superconducting transmon qubits and allowed for circuit(QE).
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2 Physical Model 3.1 What is quantum circuit?
The Hamiltonian of the chiral spin rotation rea@§27] The quantum circuit is a straightforward and efficient way
. N to implement the quantum algorithms, that is, the
H = 'HKZ 91105 +he, (1) quantum operations to qubits. It is widely used in

where theo" and o are the raising and lowering duantum computation and is convenient and realistic for
many other applications. The circuit consists of “wires”

constant. Since the Hamiltonian in Eq) commutes with ar]:d gatt.es 1_28]h.\|N|restrepresent thz thb'ts V¥h'Ch store

5 o7, the number of the up spins is conserved. Thus, thécnocr::m?alggﬁa\llvol ngt"?‘oiss ?I:esg;z se?wsgertr?(ram s:nr?em
time evolution of the system occurs in a subspace Wheregircu?tuis vlery simFi)Iar t(l) the' classical circuit I’:or exg%pl )
e e S, e can S0t can see ne lasscal NOT gat (Fige) and
with integer spins. First we investigate the subspac auantum NOT gate (X gate, Fid(b)) in the circuits.

formed by the states 111), | |11) and | |11), whose el'hey have the same function of flipping the state of a

operators for thejth spin, k is a real-number coupling

Hamiltonian will be bit/qubit.

0-11

Heup=1ihk | 1 0 —1|. 2
-11 0
We then solve the Schrodinger equation in thisc 1 X 1
subspaceHg @) = iﬁ%up). Given the initial state
|w(0)) = | 1)l), we obtain its evolution,
(a) (b)

1
Y (®) = 3leo®) 1) +e-a (O 1) +e®) W], (3)
Fig. 1: NOT gates in classical and quantum circuits. (a) NOT gate

where in a classical circuit, which has inpaand output (the opposite

s state ofc). (b) NOT gate in a quantum circuit (X gate), which has
cj(t) =1+ 2003(\/§Kt + J—) : 4) inputq a?woﬁ o)utputj.g q (oate)

Attimet =T = 2m/(3v/3k), |¢(T)) = | I11), and at
timet = 2T, [¢(2T)) = | [11). One can see that the spin  Nevertheless, unlike the normal classical circuit, the
states move to the right during system evolution. ~ gates in quantum circuits must be reversible. For instance,
Similarly, we can calculate the time evolution in the fan-in and fan-out are impossible in quantum circuit,
another subspace spanned |bytt), | T41) and[11),  since they will change the number of the qubits and, hence,
where the states have two up spins and will move to theyye jrreversible. Meanwhile, the quantum circuits allow no

left. It is surprising that the moving direction is opposite «oops” which means feedback from one part of the circuit
to the previous case. This evolution process can be callegh gnother is forbidden.

a chiral spin flipping gate, where spin states in different
subspaces move in the opposite directions, namely

[T = L) = [ = [ 1), (5) 3.2 Controlled gates

Conditional operations are essential in both classical and
[0 = [ 11 = [T = [ 411). (6)  quantum computation. A controlled gate consists of two
This is an example of a quantum system where spintypes of qubits, the control qubit and the target qubit (or
states move in certain directions. Since states of a singl€ubits, if necessary). The dot on the control qubit means
spin span a two-dimensional space, we can regard the spiitat the operatiot is performed only if the control qubit
as a quantum bit (qubit). It motivates us to find a way to iS set to|1), and otherwis&J is disabled (Fig2(a)). It is
realize the spin rotation model in a quantum circuit with Similar to the conditional statement “if the control quisit i

several qubits and a series of reversible operations. 1), then do U” which allows us to do multi-qubit operation
in the circuit.
Notice that the stat¢l) should not be special, since
3 Quantum Circuit |0) and |1) are in fact equivalent. We can use a small

circle instead of the dot on the control qubit to represent
Before discussing how to design the chiral spin flipping the controlled gates performing operation of the control
gate in a quantum circuit, we first give a brief introduction qubit is set to|0). Conventionally, however, conditional
to the concept of quantum circuit and some basic quantundynamics on the target qubit occurs when the control bits
operations. are set td1). In practical circuits, we can use two X gates
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Fig. 3: The symbols in quantum circuits and truth tables of the fondamental quantum gates.
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Fig. 4. Use three CNOT gates to accomplish swap gate.

(a) (b)

Fig. 2: The “controlled-U” gates. (a) Normal controlled gate, the

operationU will be performed when the control qubit is set to y . \ S .
11). (b) |0)-controlled gate. The operatidi will be performed  c@lléd “Toffoli gate”. The target qubit is flipped only if

conditional on the control qubit being set|@. It can be realized ~ POth control qubits are set ). The function of CNOT
by adding two X gates to a normdl)-controlled gate. gate is|a,b,c) — [a,c&® ab), wherea, b are the control
qubits (Fig.3(b)).
In fact, in a quantum circuit or a classical reversible
circuit, Toffoli gate is a universal gate. A universal gaei
(NOT gates) on the control qubit to change this conditiongate that can be used to construct all other gates. However,
(Fig. 2(b)). we seldom use only one type of gate to build the circuit.
The circuit can be simplified by using different gates.

3.3 CNOT and Toffoli gates

NOT.gate is the most fyndamenta}l opgration .in both3 4 Swap and Fredkin gates

classical and quantum circuits, which simply flips the

state. However, as the NOT gate is only a single-qubit

operation, it yields no interactions between different o )

qubits. By adding a control qubit to the NOT gate, we can Swap operation is another fundamental gate, which swaps
obtain the “controlled-NOT” gate, or CNOT gate. CNOT (or Qxchanges) the states of two qubits in a circuit. Its
gate is the simplest controlled gate where the targefunction is[a,b) — |b,a). The swap operation can be
operationU is a NOT gate. As we have discussed, if the realized in a circuit simply by using a sequence of three
control qubit is|0), the target qubit will not be changed; if CNOT gates (Fig4). Its symbol in quantum circuits and
the control qubit is1), then the NOT gate is performed, {ruthtable are shown in Fig(c).

which flips the target qubit. Its representation and truth By adding a control qubit to the swap gate, we can
table are shown in Fig3(a). The function of CNOT gate obtain the “controlled-swap” gate, which is the so-called
is |a,b) — |a,a® b) wherea is the control qubit, aneé> is  “Fredkin gate”(Fig.3(d)). The two target qubits will be
plus modulo 2. Moreover, if we add another control qubit swapped when the control qubit is set [ig. Like the

to the CNOT gate, we can obtain the Toffoli gate, Fredkin gate is also a well-known universal
“controlled-controlled-NOT” gate, which is customarily gate for quantum and classical reversible computing.
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Table 1: Truth table of chiral spin flipping gate. Note that the wheretk means to flip the state af (use NOT gate), the

trivial input states000) and|111) are not included here.

Input

Output

9o 91 92 909192

1001)
1010)
1011)
1100)
1101)
1110)

1010)
1100)
1101)
1001)
1110)
1011)

4 Gate Designing Procedure

In order to design a gate in a circuit, first of all we have to
code different states. Let us denote the up state @jtand

multiplication sign (omitted) means AND operation and
the plus sign (+”) means OR operation.

However, in quantum circuit we cannot use this
method directly, since the classical AND and OR gates
are irreversible. For the AND and OR gates, we have only
one output bit with two input bits, which makes them
different from quantum gates. In order to realize the AND
gate in quantum circuits, we introduce the concept of
ancillary qubit. We conserve the values of input by two
qubits, which will not be changed during the operation,
and add an ancillary qubit to show the output. Then we
obtain a three-qubit “AND gate”. It is not difficult to find
that this gate is actually the Toffoli gate. When we use
control qubits for input and initially set the target quimt t
|0), then only if both control qubits (input qubits) a®
will the output of target qubit be flipped td), exactly
what AND gate does.

By using ancillary qubits, we can apply the techniques
in classical circuits to quantum circuits. The chiral spin
flipping gate operates on a three-qubit system. We need
three control qubits to be input qubits and another three for
the output. First we need to initialize the ancillary qubits
to |000). Then we use Toffoli gates to perform the AND
gate. The objective quantum circuit is shown in Fg.

the down state withl), then we can obtain the truth table h 41 92
of the chiral spin flipping gate (Tably according to Egs. do 060 01 11 10
(5, 6). Then our task is to design some quantum circuits 0l x o |l1 | 1 '
that perform the function described in the truth table. qo e .
1ol | X4 0

. . 4192

4.1 Semi-classical method 01 ! 00 01 11 10
==

In classical digital circuits, once we have the truth tatile, 0] X 1 E 0
is very easy to design a circuit accordingB[30]. We o 11 o0 11V P17 177 '
only need to treat the output bit by bit, list different outtpu foos [LCeedoooeo 1
states according to the input in tables, then combine the ) 91 92
minterms to represent the result in the most concise form q» 00 01 11 10
by Karnaugh maps3[], where the cells are ordered in 0l x 0 10 0
Gray code 82 33]. After knowing the relations between do === _ 1 s
the input and each output bits, we can apply classical 1 14 O iXI !

AND, OR and NOT gates to accomplish this relations in

the digital circuit.

If we have a 3-bit inpuj; 0203, after the gate the output Fig. 5: Karnaugh maps for three qubits. Each input state is

will be 03 05,. According to the truth table (TablB, we

represented by a cell in the tables, where the output state

can build the Karnaugh map for each output bit, and finddetermined by the input will be shown. The*in the cell means

the relations (Figb). From the tables we can see

0o = o0 + O10l2,

01 = G0z + GoCh,

0 = Qo2 + OOz,

()

(8)

9)

the output can be any state. In fact, every cell having “1” is
a minterm for the output qubit. Then we combine the different
minterms to obtain the most concise form, as shown by the red
dashed boxes.

This circuit is straightforward since it can be derived
from the classical method directly, but we need to double
the number of qubits since we use ancillary qubits.
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l90) a0}  the chiral spin flipping gate th@01) state become910),
whereq; andg; are flipped whileqo remains unchanged.
lq1) la1)  The statd001) is the flip state of botly; andgp.
For all the flip states oflp, we find that only the valid
laz) T laz)  input statesx01) (“x” means this qubit is eithef0) or
|1)) are not included, we know that onggis |1) or g is
A A .. 10), do should be flipped. In order to obtain the right
[0) NN 190"} output ofqg, theqp, we should apply a CNOT gate and a
A A .. Toffoli gate to the circuit to flipgo (the target qubit of the
10) o—D l91")  gates), as shown in Fig(a). We cannot simply use two

A A . CNOT gate because for thel0) state the target qubit
10) NP2 la2")  will be flipped twice. After the two-gate operation the 1st
qubit is exactly what we want to have in the output, and
Fig. 6: The quantum circuit for chiral spin flipping gate with th_e remaining two QUb'FS are unchanged. We should deal
ancillary qubits. In this circuit we directly use the resot ~ With them in the following steps. As the current state is

classical method and apply Toffoli gates with differentwon ~ NOW different from the original input becaugg has been
conditions to accomplish the function of chiral spin flipgin changed, the flip states of the remaining two qubits
gate. Notice that the input qubits remain unchanged dutieg t Should be updated accordingly, as showed in the Table
algorithm, while the ancillary qubits show the output. (2-b). Similarly, now we find that when eithe or gz is
|1), g1 will be flipped. We apply another two gates to
changeq; (Fig. 7(b)). After thatq; is already what we
want in the output. Then we perform the same procedure
Knowing that nowadays the number of qubits in a On g; (another two gates whose target qubitgi§ and
real-world device for universal quantum computation areobtain the final circuit (Fig7).
restricted to only approximately ten qubit34[17], this
requirement seems not scalable. It is even more difficult
to apply a series of gates if we want to see the evolution D O T e TR
process of the system, because in this form the number of 140 ;
qubits required will grow simultaneously. In the following :

sections, we will try to find better ways to realize the la2)
function of chiral spin flipping gate without this 0.} ! ! !
disadvantage. L0 L______r X X7

4.2 Quantum circuit based on CNOT-Toffoli Fig. 7: Quantum circuit for chiral spin flipping gate based on
gates CNOT and Toffoli gates. The three dashed boxes show differen
sub-operations for each qubit.

The Toffoli gate is a universal gate which can build an

entire space of reversible operations. Nevertheless, the

circuit would be complicated if we use Toffoli gate alone.

To some extent, CNOT gate is similar to the Toffoli gate, N .

because Toffoli gate has only one more control qubit thar+-3 Quantum circuit based on swap-Fredkin

CNOT gate. In this section we try to use CNOT and gates

Toffoli gates as the bases to build the quantum circuit of

chiral spin flipping gate. As we have mentioned, the Fredkin gate, or the controlled-
Note that these two gates are all based on the NOTswap gate, is another well-known universal gate. Here we

operation, the function of which is simply flipping the try to use swap gate and Fredkin gate as the basic gates,

qubit, no matter it is|0) or |1). Unlike the classical which are all based on swap operation.

method where we classify the input states by the output Now we should focus on the swap operation. Note

being|0) or |1), in order to apply NOT gates we should that the most notable part of the chiral spin flipping gate

pay attention to whether the qubits are flipped after chiralis that the states in single spin-up subspace and single

spin flipping gate. Let us call the input states “flip states” spin-down subspace move in different directions. Imagine

of a qubit if when input these states the qubit will be that we swapy andq; first then swam; andqp, the final

flipped after the chiral spin flipping gate. In Table (2-a) result will be every qubit moving to the left. Oppositely, if

we list the flip states for all of the three qubits (the trivial we change the steps, swap and g, first then swapyg

input states|000) and |111) are not included here) andqa, the result will be every qubit moving to the right,

according to the truth table (Tabig. For example, after exactly what the chiral spin-flipping gate does (F8Y.
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Table 2: The “flip state” of each qubit. (a) The table of flip states adowg to the truth table(Tabl&). (b) After applying two gates to
Jo, the updated flip states fog andqp. (c) After changingyp andqy, the current flip states fagp,.

Qubits qo [ qz Qubits qy a2 Qubits '
[010) | ]001} |[001) |[001) | [001) [011)
Fip | 1011) 1010} |]100) Fiip | 1110) [ 1000) Flip | 1000)
states | 1100) | [011) [[101) states | |111) | [101) staes | |111)
[110) | [101) [[110) [101) | [010) 1010)
Therest | 1001p | 1100) |[010) The rest | 1[0j0fOp | 1110 The rest | 1[10[0)
siates | qlo1p | [110) ||011) states | loftfo]y | |111) states | ||10f1)
@ ©) @©
qubits:  qo G 92 9 &1 92 9% 91 92 control qubit ¢; andg, are swapped ifjg is |1)), only the

swap qo,q1 swap q1,9;

states: |a0a1a2)=> |a1a0a2)=> |a1 a, ao) states in single spin-up subspace can be changed. That is
X _A because for the states in single spin-down subspace, they

have only one|l) qubit, and only the stat¢l00) will

. make the swap gate work. In this case the rest two qubits
qubits: Qo @ %2 Do @ % Q@ % g andgp are equal, which means it does not make any
states: |@pQyay)== |apA,a;)=== |a,a0a,) effect. As for the statéd11), it is true that the swap gate
is disabled by the only0) qubit, but likewise the other
two qubits are equivalent, so it makes no difference.
) , , Similarly, if we apply a different Fredkin gate that the
Fig. 8 Different swap orders to a three-qubit state. We can Seeswap gate is performed conditioned by the control qubit
that if we swap the first two qubits first and then swap the {ast t being |0), only the states in single spin-down subspace
qubit, the final states will be each qubit state moving to #fe | can be swapped. By using two Fredkin gates which have
If we change the order of the two swap operations, the MoViNg igtarant control states and a swap gate, we can obtain a
direction will be opposite accordingly. new quantum circuit for chiral spin flipping gate, as

shown in Fig 9.

result: |aga,a,) = |aja,a,), every state moves to the left.

result: |apaia,) = |aaga,), every state moves to the right.

|90) ? 190" 51BM QE Implementation

|q1) ¥ lq1")

192} 92" B — ; sad

Fig. 9: The quantum circuit of chiral spin flipping gate using o o
swap and Fredkin gates. The first Fredkin gate only swaps th¢ & n_é

last two qubits of the states in on@)- subspace, and for the last o1&l é—ﬂ E
Fredkin gate that performs swap operation conditional @ th ™ (b)

first qubit being|0), only makes effect on the states in gig-
subspace. So in this way the states in different subspade wil _.

be swapped in different order, result in the different rioat Fig. 105 Subroutings of the gates. (a) Thg "T"ﬁ@ate"
directions. subroutine for Toffoli gatea andb are control qubits andis the

target. (b) The the “Fredkigate” subroutine for Fredkin gata.
is the control qubit and swajsandc if set to|1).

We should manage to apply the swap operations in  In order to demonstrate our designed gates intuitively,
different orders in two different subspaces, where we carwe implement our algorithms on IBM QEL§)]. It is an
use controlled-swap gate, the Fredkin gate. It is obviousommercially available universal quantum computer
that when the two qubits are equivalent, the swapsystem where we can either simulate classically or run the
operation can do nothing to them. So if we apply the guantum algorithms on the real device. The circuits on
Fredkin gate to the three qubits, for instanggbeing the  IBM QE can be built by the “quantum composer”, where
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(a)

qlo] o)

q[1] o) ————

ql2] jo)— 8 —

<o’

(b)
alol o)

allo

af2] jo)—|

<o’

©
alo] o)

ql1] |0} =—q

Q2] jop=— & —

ql3] o
o "

<o

2 1 0

Fig. 11: Quantum scores of chiral spin flipping gate on IBM QE. On tigatside of the barriers (dashed lines) are the algorithris par
while on the left are the input parts. The qubits are autarabyi initialize to |0), we use a X gate to set the input statdtp The
example inputs in the circuits are &i01). And the X gates in circuits work for making th@)-controlled control qubits(Fi®(b)). (a)
Circuit of chiral spin flipping gate based on CNOT and Toffpdites. (b) Circuit of chiral spin flipping gate based on swaghredkin
gates. (c) Circuit of chiral spin flipping gate using ancilgubits for output. Note that we input the statesday~ g, and have the
output ingz ~ gs.

a circuit can be called “quantum score”, which are all circuits in Fig.11 we only put the X gate ifgp, so the
analogous to the musical terminology. Because of theinputs are all|001). We can change the number and
imperfection and some restrictions of the real device, it isposition of the X gates to change the input state. Note that
sufficient to implement our gate in simulation, which will a|0)-controlled control qubit, which is denoted by a small
yield the prospective output without device-based errorscircle on the control qubits, can be realized by adding two
Meanwhile, we can set the topology of the quantumX gates to a normall)-controlled control qubit (Fig.
circuit freely without the limits in the real device. 2(b)).

In a real quantum circuit it is comparatively difficult ~ According to the circuit shown in Figr and Fig.9,
to implement three-qubit gate like Toffoli and Fredkin We can get the quantum scores of the three-qubit circuits
gates. First of all, we need to decompose the two gate§ased on CNOT-Toffoli gates (Fig.11(a)) and
into a series of single-qubit and two-qubit gates. There aréwap-Fredkin gates (Fig-1(b)) on IBM QE. If we want
two fundamental single-qubit gates named “Hadamard© implement the “semi-classical” circuits(Fig. on IBM
gate” and 41/8 gate”. The Hadamard gate, denotedtby ~ QE, we need a circuit consisting of six qubits, as shown in
will Change the base of the quitS, i.e., Flg 1](C) This C'irCUit is more Complicated ComparEd to
0) — 2(10) + (1)), 1) — L(|0) ~ 1)) While the  the previous designs.
so-calledrr/8 gate, denoted by, will add arr/4 phase to
the statd1) but do nothing to the stat@), i.e.,|0) — |0),
|1) — €7/4|1). With these gates as well as the CNOT

gate, we can design the circuits for the three-qubit gatesn this work, three quantum algorithms have been
in Fig. (10). designed with different methods to simulate the evolution

Now the Toffoli and Fredkin gates are available for us process of chiral spin flipping system, which we can
to implement. We can build our “quantum scores” for the regard as a quantum operation, the chiral spin flipping
circuits of chiral spin flipping gate on IBM QE and test gate, to the qubits. In order to build the circuits for the
the results (Figll). The algorithm parts are on the right chiral spin-flipping gate, first we emulate the classical
side of the “barriers” (the dashed lines). To the very right method in digital circuits and apply it to quantum circuits
there are three pink symbols meaning that we measure thiey adding some ancillary qubits. This method is intuitive
qubits and project the results to the classical bits (the lin but needs extra qubits, which is not scalable in real
in the bottom). Notice thal is projected ta, while gy is devices. Then we try to use some basic gates to build the
projected tocy, because the on the platform the output circuits directly. For CNOT and Toffoli gates which are
readscyciCy rather thancocicp. On the left side of the based on the NOT operation, we considered the flip
barrier is the input. Since the qubits will all be initialze behavior of the states, while for swap and Fredkin gates
as |0), if we want to input|1) we need to use a X gate we focused on the swap operation. Then designed the
(NOT gate) to flip the|0) to |1). For example, in the algorithms accordingly.

6 Conclusion
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This work may inspire other scientists to conceive
guantum circuits to simulate some physical processes. It
shows that we can design quantum algorithms to
accomplish many different operations.
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