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Abstract: We study conditions under which the solutions of nonlinear Volterra integro-dynamic system of the form

x∆ (t) = A(t)x(t)+
∫ t

t0
K(t,s,x(s))∆s

are stable on certain time scales. We give sufficient and necessary conditions for various types of stability, includinguniform stability,
asymptotic stability, exponential asymptotic stability and strong stability.
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1 Introduction and preliminaries

Stability theory is important when examining dynamic
responses of a system to disturbances as time approaches
infinity [9,10,11,13,16,28]. Stability of nonlinear
differential equations or difference equations can be
characterized using for example Lyapunov’s second
method, the method of variation of parameters,
inequalities, etc. [4,17,24,25,29,32].

Time scales theory, introduced by Hilger [18] at the
end of the twentieth century is a means to unify discrete
and differential calculus [5,6]. Volterra and Fredholm
type equations (both integral and integro-dynamic) on
time scales were discussed in [1,2,3,19,21,22,23,26,27,
30,31]. In [26] the authors discuss resolvent asymptotic
stability, boundedness of VIDE and show that the
principle matrix and resolvent are equivalent for linear
VIDE on time scales.

In this paper we provide sufficient conditions for
uniform stability, asymptotic stability, exponential
asymptotic stability and strong stability of the trivial
solution of a nonlinear Volterra intero-dynamic system of
the form

x∆ (t) = A(t)x(t)+
∫ t

t0
K(t,s,x(s))∆s, x(t0) = x0 (1)

whereA(t) is continuous and a regressiven×n matrix on
T0 := [t0,∞)T,0 ≤ t0 ∈ Tk and K(t,s,x) is continuousn
vector onΩ = {(t,s,x) : t0 ≤ s≤ t < ∞ andx∈ Rn}. We
obtain new results and we generalize to a time scale some
known properties concerning stability from the continuous
case [14,20].

In the remainder of this paper we assume that
K(t,s,0)≡ 0.

Let Rn be the space ofn-dimensional column vectors
x= col(x1,x2, ...xn) with a norm|| · ||. Also, with the same
symbol|| · || we will denote the corresponding matrix norm
in the spaceMn(R) of n×n matrices. IfA∈ Mn(R), then
we denote byAT its conjugate transpose. We recall that
||A|| := sup{||Ax||; ||x|| ≤ 1} and the following inequality
||Ax|| ≤ ||A||||x|| holds for allA∈ Mn(R) andx∈ Rn.

A time scaleT is a closed subset ofR. It follows that
the jump operatorsσ ,ρ : T→ T defined by

σ(t) = inf{s∈ T : s> t} andρ(t) = sup{s∈ T : s< t}

(supplemented by inf /0 := supT and sup /0 := infT) are
well defined. The pointt ∈ T is left-dense, left-scattered,
right-dense, right-scattered if
ρ(t) = t,ρ(t)< t,σ(t) = t,σ(t)> t, respectively. IfT has
a right-scattered minimumm, define Tk := T − {m};
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otherwise, setTk = T. If T has a left-scattered maximum
M, defineTk := T− {M}; otherwise, setTk = T. The
graininess function µ : T → [0,∞) is defined by
µ(t) := σ(t) − t. Given a time scale interval
[a,b]T := {t ∈ T : a ≤ t ≤ b}, then [a,b]

Tk denotes the
interval [a,b]T if a < ρ(b) = b and denotes the interval
[a,b)T if a< ρ(b)< b. In fact, [a,b)T = [a,ρ(b)]T. Also,
for a ∈ T, we define [a,∞)T = [a,∞) ∩ T. If T is a
bounded time scale, thenT can be identified with
[infT,supT]T.

Throughout this work, we assume that supT= ∞ with
bounded graininess, i.e.,µ(t) < ∞. Moreover, the delta
derivative of a functionf : T → R at a pointt ∈ Tk is
defined by

f ∆ (t) = lim
s→t

s6=σ(t)

f (σ(t))− f (s)
σ(t)− s

.

A function f is called rd-continuous provided that it is
continuous at right dense points inT, and has finite limit
at left-dense points, and the set of rd-continuous functions
is denoted byCrd(T,R). The set of functionsC1

rd(T,R)
includes the functionsf whose derivative is inCrd(T,R).
Fors, t ∈ T and a functionf ∈Crd(T,R), the∆ -integral is
defined to be

∫ t

s
f (τ)∆τ = F(t)−F(s),

whereF ∈C1
rd(T,R) is an anti-derivative off , i.e.,F∆ = f

onTk.
A function f ∈ Crd(T,R) is called regressive if

1+ µ(t) f (t) 6= 0 for all t ∈ T
k, and f ∈ Crd(T,R) is

called positively regressive if 1+µ(t) f (t)> 0 onTk. The
set of regressive functions and the set of positively
regressive functions are denoted byR(T,R) and
R

+(T,R), respectively.
Let f ∈ R(T,R) and s ∈ T. Then the generalized

exponential functionef (·,s) on a time scaleT is defined
to be the unique solution of the initial value problem

{

x∆ (t) = f (t)x(t)
x(s) = 1.

Forh∈R
+, setCh := {z∈ C : z 6=−1/h},Zh := {z∈C :

−π/h< Im(z) ≤ π/h}, andC0 := Z0 := C. For h ∈ R
+
0

andz∈ Ch, the cylinder transformationξh : Ch → Zh is
defined by

ξh(z) : =

{

z, h= 0
1
hLog(1+ zh), h> 0,

and the exponential function can also be written in the
form

ef (t,s) : = exp

{

∫ t

s
ξµ(τ)( f (τ))∆τ

}

for s, t ∈ T.

For more details, see [5]. Clearly,ef (t,s) never vanishes.

Let T1 andT2 be two given time scales and putT1×
T2 = {(x,y) : x∈ T1,y∈ T2}, which is a complete metric
space with the metric (distance)d defined by

d((x1,y1),(x2,y2)) =

√

(x1− x2)
2+(y1− y2)

2

for (x1,y1),(x2,y2) ∈ T1×T2.

A function f : T1×T2 →R is said to be continuous at
(x,y) ∈ T1×T2, if for everyε > 0 there existsδ > 0 such
that ‖ f (x,y)− f (x0,y0)‖ < ε for all (x0,y0) ∈ T1 × T2
satisfying d((x,y),(x0,y0)) < δ . If (x,y) is an isolated
point of T1 ×T2, then the definition implies that every
function f : T1 × T2 → R is continuous at(x,y). In
particular, every functionf : Z×Z → R is continuous at
each point ofZ×Z.

Theorem 1.([15, Theorem 5 p. 102])Let f(x,y) be a
real-finite valued function whose domain is the Cartesian
product S1 × S2. Suppose f(x,y) is continuous in y at
y = b uniformly for x in S1, and continuous in x at x= a
for each y in S2, then f(x,y) is continuous in(x,y) at
(a,b).

Let Crd(T1×T2,R) denote the set of functionsf (x,y)
onT1×T2 with the following properties:

(i) f is rd-continuous inx for fixedy;
(ii) f is rd-continuous iny for fixedx;
(iii) if (x0,y0) ∈ T1 × T2 with x0 right-dense or

maximal and y0 right-dense or maximal, thenf is
continuous at(x0,y0);

(iv) if x0 andy0 are both left-dense, then the limit of
f (x,y) exists (finite) as(x,y) approaches(x0,y0) along any
path in{(x,y) ∈ T1×T2 : x< x0,y< y0}.

A brief introduction into the two-variable time scales
calculus can be found in [8].

Lemma 1.([7])
(i) For a nonnegativeϕ with −ϕ ∈ R+, we have the

following inequality

1−
∫ t

s
ϕ(u)∆u≤ e−ϕ(t,s)≤ exp

(

−

∫ t

s
ϕ(u)∆u

)

for all t ≥ s.
(ii) If ϕ is rd-continuous and non-negative, then

1+
∫ t

s
ϕ(u)∆u≤ eϕ(t,s)≤ exp

(

∫ t

s
ϕ(u)∆u

)

for all t ≥ s.

2 Stability

In the remainder of this paper when we say the zero
solution of (1) we mean the zero solution of (1) with
x0 = 0.
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Definition 1.The zero solution of (1) is stable, if for every
ε > 0 there exist aδ > 0 such that for any solution x(t) of
(1), the inequality‖x0‖< δ implies‖x(t)‖< ε for t ∈ T0.

In this section, we assume that the zero solution of

y∆ (t) = A(t)y(t), y(t0) = y0 (2)

is stable. This is equivalent [13, Theorem 2.1] to assuming
that there existsη > 0 such that

‖ΦA(t,s)‖ ≤ η for s∈ [t0, t]T , (3)

whereΦA(t,s) is a fundamental matrix of (2).
We now put conditions onK(t,s,x) so that the zero

solution of (1) is stable.
We make the following assumption:

(A1) There existsα > 0 so that‖K(t,s,x)‖ ≤ C(t,s)‖x‖
with C(t,s) rd-continuous fors∈ [t0, t]T and‖x‖ < α.

Theorem 2.Suppose that the assumptions (3) and (A1)
hold and there exists a positive constant M> 0 such that

∫ ∞

t0

∫ s

t0
C(s,u)∆u∆s< M. (4)

Then the zero solution of (1) is stable.

Proof.For any 0< ε <α let δ (ε)< ε
ηeηM and‖x0‖< δ (ε).

Suppose that there existst1 ∈ T0 such that‖x(t1)‖= ε and
‖x(t)‖ < ε on [t0, t1)T. From the variation of parameters
formula [5], we have

‖x(t)‖ ≤ ‖ΦA(t, t0)‖‖x0‖+

∫ t

t0
‖ΦA(t,σ(s))‖

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s

≤ ηδ (ε)+η
∫ t

t0

∫ s

t0
C(s,u)‖x(u)‖∆u∆s

for t ∈ [t0, t1]T.
Let q(t) = sup

s∈[t0,t]T

‖x(s)‖ and we obtain

q(t)≤ ηδ (ε)+η
∫ t

t0

∫ s

t0
C(s,u)q(u)∆u∆s.

From Gronwal’s inequality [5, Theorem 6.4] and Lemma
1, we have

‖x(t)‖ ≤ q(t)

≤ ηδ (ε)exp

(

∫ t

t0
log

(

1+µ(s)η
∫ s
t0 C(s,u)∆u

µ(s)

)

∆s

)

≤ ηδ (ε)exp

(

∫ t

t0

∫ s

t0
ηC(s,u)∆u∆s

)

≤ ηδ (ε)eηM < ε for t ∈ [t0, t1]T.

Therefore‖x(t1)‖ < ε, which is a contradiction. Thus the
zero solution of (1) is stable. The proof is complete.

Instead of (A1) assume
(Ã1) ‖K(t,s,x)‖ ≤ C(t,s)‖x‖ , where C(t,s) is
rd-continuous fors∈ [t0, t]T andx∈Rn.

Remark.Suppose that the assumptions (3), (4) and (Ã1)
hold. Then the solutions of (1) are bounded.

3 Asymptotic stability

Assume that there exists a constantβ > 0 such that

∫ t

t0
‖ΦA(t,σ(s))‖∆s< β (5)

for all t ∈ T0 with t ≥ σ(t0). (This is equivalent [13,
Theorem 2.3 and Theorem 2.4] to assuming that the zero
solution of (2) is asymptotic stable).

Note that

ΦA(t, t0)→ 0 ast → ∞. (6)

Definition 2.The zero solution of (1) is asymptotically
stable, if it is stable and attractive (i.e. if for any solution
x(t) of (1), there existδ0 ≥ 0 such that‖x0‖ < δ0 implies
‖x(t)‖→ 0 as t→ ∞).

Theorem 3.Suppose that the assumptions (A1) and (5)
hold and

sup
t∈T0

∫ t

t0
C(t,s)∆s<

1
β
. (7)

Furthermore, suppose that

lim
s→∞

∫ t

t0
C(s,u)∆u= 0 for all t ∈ T0. (8)

Then the zero solution of (1) is asymptotic stable.

Proof.We first show the stability of the zero solution of (1).
From (7) there exists a positive constantγ such that

0< γ <
1
β

and sup
s∈T0

∫ s

t0
C(s,u)∆u≤ γ. (9)

From (6) there exists a positive constantN such that

‖ΦA(t, t0)‖ ≤ N for all t ∈ T0. (10)

For any 0< ε <α andt0 let δ (ε)<min{(1−γβ )ε/N,ε}.
Consider the solutionx(t) of (1) such that‖x0‖ < δ .

Suppose that there existst1 ∈ T0 such that‖x(t1)‖= ε and
‖x(t)‖ < ε on [t0, t1)T0. From the variation of parameters
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formula [5], we have

‖x(t)‖ ≤ ‖ΦA(t, t0)‖‖x0‖+

∫ t

t0
‖ΦA(t,σ(s))‖

×
∫ s

t0
C(s,u)‖x(u)‖∆u∆s

= ‖ΦA(t, t0)‖‖x0‖+
∫ t

t0
‖ΦA(t,σ(s))‖

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s

< Nδ + ε
∫ t

t0
‖ΦA(t,σ(s))‖

∫ s

t0
C(s,u)∆u∆s

< (1− γβ )ε + εβ γ = ε for t ∈ [t0, t1]T.

Therefore‖x(t1)‖ < ε, which is a contradiction. Thus the
zero solution of (1) is stable.

Next we will show that the zero solution of (1) is
attractive. Letε = 1, then there existsδ0 = δ (1)< 1 such
that‖x0‖< δ0 implies

‖x(t)‖< min(α,1) for all t ∈ T0. (11)

Suppose there existsx0 with ‖x0‖ < δ0 such that the
solutionx(t) of (1) satisfies

lim sup
t→∞

‖x(t)‖= λ > 0. (12)

From (9) γβ < 1, and there exists a constantθ such that
γβ < θ < 1. From (12), there existst1 ∈ T0 such that

‖x(u)‖ ≤
λ
θ

for all u∈ [t1,∞)T (13)

and from (8), there existsT ∈ (t1,∞)T such that
∫ t1

t0
C(s,u)∆u<

(θ − γβ )λ
2θβ

for all s∈ [T,∞)T. (14)

Then we have

‖x(t)‖ ≤ ‖ΦA(t, t0)‖δ0+
∫ t

t0
‖ΦA(t,σ(s))‖

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s

≤ ‖ΦA(t, t0)‖δ0+ ‖ΦA(t, t0)‖
∫ T

t0
‖ΦA(t0,σ(s))‖

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s+

∫ t

T
‖ΦA(t,σ(s))‖

×

∫ t1

t0
C(s,u)‖x(u)‖∆u∆s+

∫ t

T
‖ΦA(t,σ(s))‖

×

∫ s

t1
C(s,u)‖x(u)‖∆u∆s.

From (5), (11) and (14) we have
∫ t

T
‖ΦA(t,σ(s))‖

∫ t1

t0
C(s,u)‖x(u)‖∆u∆s≤

(θ − γβ )λ
2θ

.

Moreover, using (5), (9) and (13), we obtain

∫ t

T
‖ΦA(t,σ(s))‖

∫ s

t1
C(s,u)‖x(u)‖∆u∆s≤

γβ λ
θ

.

Thus we have

‖x(t)‖ ≤ ‖ΦA(t, t0)‖δ0+ ‖ΦA(t, t0)‖
∫ T

t0
‖ΦA(t0,σ(s))‖

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s+

(θ + γβ )λ
2θ

.

Since ‖ΦA(t, t0)‖ → 0 as t → ∞ by (6), we have

λ ≤
(θ+γβ )λ

2θ and thusλ < λ , a contradiction. Therefore
the zero solution of (1) is attractive. The proof is
complete.

4 Exponential asymptotic stability

Definition 3.The zero solution of (1) is exponentially
asymptotically stable, if there existη > 0 and for every
ε > 0 there existδ > 0 such that for any solution x(t) of
(1), ‖x0‖< δ implies‖x(t)‖< εe−η (t, t0) for t ∈ T0.

We assume that there existsM,η > 0 with
−η ∈ R+(T,R) such that

‖ΦA(t,s)‖ ≤ Me−η (t,s) for all s∈ [t0, t]T . (15)

(This is equivalent [13, Theorem 2.2 and Theorem 2.4] to
assuming that the zero solution of (2) is exponentially
stable).

Theorem 4.Suppose that the assumptions (A1) and (15)
holds and there exists a positive constantν such that

sup
t∈T0

∫ t

t0
e−ν(s,σ(t))C(t,s)∆s<

η
M
. (16)

Then the zero solution of (1) is exponentially
asymptotically stable.

Proof.Using (15) for all t ∈ T0 and‖x0‖< α/M, we have

‖x(t)‖ ≤ ‖ΦA(t, t0)‖‖x0‖+

∫ t

t0
‖ΦA(t,σ(s))‖

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s

≤ Me−η (t, t0)‖x0‖+M
∫ t

t0
e−η(t,σ(s))

×

∫ s

t0
C(s,u)‖x(u)‖∆u∆s.

(17)

There exist positive constantsϑ < ν andε with −ϑ ,−ε ∈
R+(T,R) such that−η =−ϑ ⊕−ε and

sup
t∈T0

∫ t

t0
e−ϑ (s,σ(t))C(t,s)∆s<

ε
M
.
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Multiply by e−ϑ (t0, t) on both sides of (17) to obtain

e−ϑ (t0, t)‖x(t)‖ ≤ Me−ε(t, t0)‖x0‖+M
∫ t

t0
e−ϑ (t0,σ(s))

×e−ε(t,σ(s))
∫ s

t0
C(s,u)‖x(u)‖∆u∆s

= Me−ε (t, t0)‖x0‖+M
∫ t

t0
e−ε(t,σ(s))

∫ s

t0
e−ϑ (u,σ(s))

×C(s,u)e−ϑ (t0,u)‖x(u)‖∆u∆s.

If we defineq(t) = sup
s∈[t0,t]T

e−ϑ (t0,s)‖x(s)‖ , it follows that

e−ϑ (t0, t)‖x(t)‖ ≤ Me−ε (t, t0)‖x0‖

+Mq(t)
∫ t

t0
e−ε(t,σ(s))

∫ s

t0
e−ϑ (u,σ(s))C(s,u)∆u∆s

≤ Me−ε(t, t0)‖x0‖+ εq(t)
∫ t

t0
e−ε(t,σ(s))∆s.

Using [5, Theorem 2.39], we obtain that

e−ϑ (t0, t)‖x(t)‖ ≤ Me−ε(t, t0)‖x0‖+ {1−e−ε(t, t0)}q(t).
(18)

Now we consider two cases
(I): In this casee−ϑ (t0,s)‖x(s)‖ ≤ e−ϑ (t0, t)‖x(t)‖ for

anys∈ [t0, t]T, so we haveq(t) = e−ϑ (t0, t)‖x(t)‖ . Then
from (18) we have

q(t)≤ Me−ε(t, t0)‖x0‖+ {1−e−ε(t, t0)}q(t).

Thus q(t) ≤ M‖x0‖ for all t ∈ T0. Then
q(t) = e−ϑ (t0, t)‖x(t)‖ implies‖x(t)‖ ≤ Me−ϑ (t, t0)‖x0‖
for all t ∈ T0.

(II): In this case there existss∈ [t0, t]T such that

e−ϑ (t0,s)‖x(s)‖ > e−ϑ (t0, t)‖x(t)‖ .

There exists t1 ∈ [t0, t)T such that
q(t) = e−ϑ (t0, t1)‖x(t1)‖ . Then from (18) we have

q(t1) = e−ϑ (t0, t1)‖x(t1)‖

≤ Me−ε(t1, t0)‖x0‖+ {1−e−ε(t1, t0)}q(t1).

Thus q(t1) ≤ M‖x0‖ for all t1 ∈ T0. Then
q(t1) > e−ϑ (t0, t)‖x(t)‖ implies
‖x(t)‖ ≤ Me−ϑ (t, t0)‖x0‖ for all t ∈ T0.

Thus from (I) and (II), the zero solution of (1) is
exponentially asymptotically stable. The proof is
complete.

5 Strong stability

Definition 4.The zero solution of (1) is said to be strongly
stable if for everyε > 0, there existδ > 0 such that, for any
solution x(t) of (1), the inequalities t1 ∈ T0 and‖x(t1)‖<
δ implies‖x(t)‖< ε for all t ≥ t0 ∈ T0.

Theorem 5.([10, Theorem 4.3])Let ΦA (t,s) be a
fundamental matrix for (2). Then the zero solution of (2)
is strongly stable onT0 if and only if there exist a positive
constant K such that

∥

∥ΦA (t, t0)Φ−1
A (s, t0)

∥

∥≤ K for all t0 6 s≤ t < ∞

or equivalently,

‖ΦA (t, t0)‖6 K and
∥

∥Φ−1
A (t, t0)

∥

∥6 K for all t ∈ T0.

Let us consider the following hypotheses:
H1 : There exist a continuous functionϕ : T0 → (0,∞) and
the constantsp1 ≥ 1,K1 > 0 such that
∫ t

t0

(

ϕ (s)
∥

∥ΦA (t, t0)Φ−1
A (s, t0)

∥

∥

)p1 ∆s6K1, for all t ∈T0.

H2 : There exist a continuous functionϕ : T0 → (0,∞) and
the constantsp2 ≥ 1,K2 > 0 such that
∫ t

t0

(

ϕ (s)
∥

∥Φ−1
A (t, t0)ΦA (s, t0)

∥

∥

)p2 ∆s6K2, for all t ∈T0.

H3 : There exist a continuous functionϕ : T0 → (0,∞) and
the constantsp3 ≥ 1,K3 > 0 such that
∫ t

t0

(

ϕ (s)
∥

∥Φ−1
A (s, t0)ΦA (t, t0)

∥

∥

)p3 ∆s6K3, for all t ∈T0.

H4 : There exist a continuous functionϕ : T0 → (0,∞) and
the constantsp4 ≥ 1,K4 > 0 such that
∫ t

t0

(

ϕ (s)
∥

∥ΦA (s, t0)Φ−1
A (t, t0)

∥

∥

)p4 ∆s6K4, for all t ∈T0.

Theorem 6.Suppose that the fundamental matrixΦA (t,s)
satisfies one of the following conditions:

C1: H1 and H2 are true.
C2: H1 and H4 are true.
C3: H2 and H3 are true.
C4: H3 and H4 are true.
Then, the zero solution of (2) is strongly stable onT0.

Proof.We prove thatΦA (t, t0) andΦ−1
A (t, t0) are bounded

on T0. First consider the case C2. For this we prove that
ΦA (t, t0) is bounded onT0. Consider

q(t) = ϕ p1 (t)(‖ΦA (t, t0)‖)
−p1 for t ∈ T0.

From the identity
(

∫ t

t0
q(s)∆s

)

ΦA (t, t0) =
∫ t

t0

(

ϕ (s)ΦA (t, t0)Φ−1
A (s, t0)

)

×
(

q(s) (ϕ (s))−1 ΦA (s, t0)
)

∆s, for t ∈ T0,

it follows that
(

∫ t

t0

q(s)∆s

)

‖ΦA (t, t0)‖ ≤
∫ t

t0

(

ϕ (s)
∥

∥ΦA (t, t0)Φ−1
A (s, t0)

∥

∥

)

×
(

q(s)(ϕ (s))−1 ‖ΦA (s, t0)‖
)

∆s, t ∈ T0.
(19)
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If p1 = 1, we have thatq(s) (ϕ (s))−1‖ΦA (s, t0)‖ = 1.
From (19) and the hypothesis H1, it follows that

(

∫ t

t0

q(s)∆s

)

‖ΦA (t, t0)‖ ≤

∫ t

t0

(

ϕ (s)
∥

∥ΦA (t, t0)Φ−1
A (s, t0)

∥

∥

)

∆s≤ K1, t ∈ T0.

If p1 > 1, setq1 =
p1

(p1−1)
, such thatq(s)(ϕ (s))−1 ‖ΦA (s, t0)‖= (q(s))1/q1 . From

(19), it follows that

(

∫ t

t0

q(s)∆s

)

ϕ (t)(q(t))−1/p1 ≤
∫ t

t0

(

ϕ (s)
∥

∥ΦA (t, t0)Φ−1
A (s, t0)

∥

∥

)

×(q(s))1/q1 ∆s, for t ∈ T0.

Using the Hölder’s inequality [5], we obtain
(

∫ t

t0
q(s)∆s

)

ϕ (t)(q(t))−1/p1 ≤

(

∫ t

t0

(

ϕ (s)
∥

∥ΦA (t, t0)Φ−1
A (s, t0)

∥

∥

)p1 ∆s

)1/p1

×

(

∫ t

t0
q(s)∆s

)1/q1

for t ∈ T0.

Now using hypothesis H1, we obtain

(

∫ t

t0
q(s)∆s

)1/p1

ϕ (t)(q(t))−1/p1 ≤ K1/p1
1 , for t ∈ T0.

or
(

∫ t

t0
q(s)∆s

)

‖ΦA (t, t0)‖
p1 ≤ K1, for t ∈ T0.

Thus for p1 ≥ 1, the function‖ΦA (t, t0)‖ satisfies the
inequality

‖ΦA (t, t0)‖ ≤ K1/p1
1

(

∫ t

t0
q(s)∆s

)−1/p1

, for t ∈ T0.

Let Q(t) =
∫ t
t0

q(s)∆s for t ∈ T0, so

‖ΦA (t, t0)‖ ≤ K1/p1
1 (Q(t))−1/p1 , for t ∈ T0.

Note

Q∆ (t) = q(t)≥ K−1
1 (ϕ (t))p1 Q(t) , for t ∈ T0.

It follows that there exist a constantM1 such that
‖ΦA (t, t0)‖ ≤ M1 for t ∈ T0.

Now for proveΦ−1
A (t, t0) is bounded onT0. Consider

q(t) = ϕ p4 (t)
∥

∥Φ−1
A (t, t0)

∥

∥

−p4 for t ∈ T0.

From the identity
(

∫ t

t0
q(s)∆s

)

Φ−1
A (t, t0) =

∫ t

t0

(

q(s)(ϕ (s))−1Φ−1
A (s, t0)

)

×
(

ϕ (s)ΦA (s, t0)Φ−1
A (t, t0)

)

∆s, for t ∈ T0,

it follows that
(

∫ t

t0
q(s)∆s

)

∥

∥Φ−1
A (t, t0)

∥

∥≤
∫ t

t0

(

q(s)(ϕ (s))−1∥
∥Φ−1

A (s, t0)
∥

∥

)

×
(

ϕ (s)
∥

∥ΦA (s, t0)Φ−1
A (t, t0)

∥

∥

)

∆s.

If p4 = 1, we have thatq(s)(ϕ (s))−1∥
∥Φ−1

A (s, t0)
∥

∥ = 1.
Using hypothesis H4 it follows that
(

∫ t

t0
q(s)∆s

)

∥

∥Φ−1
A (t, t0)

∥

∥≤
∫ t

t0
(ϕ (s)‖ΦA (s, t0) )∆s

×Φ−1
A (t, t0)

∥

∥≤ K4 for t ∈ T0.

If p4 > 1, set q4 = p4
p4−1, such that

q(s)(ϕ (s))−1∥
∥Φ−1

A (s, t0)
∥

∥= (q(s))1/q4 . It follows that

(

∫ t

t0
q(s)∆s

)

∥

∥Φ−1
A (t, t0)

∥

∥≤

∫ t

t0

(∥

∥ΦA (s, t0)Φ−1
A (s, t0)

∥

∥

)

×(q(s))1/q4 ∆s for t ∈ T0.

Using Hölder’s inequality, we obtain
(

∫ t

t0
q(s)∆s

)

∥

∥Φ−1
A (t, t0)

∥

∥≤

(

∫ t

t0

(

ϕ (s)
∥

∥ΦA (s, t0)Φ−1
A (t, t0)

∥

∥

)p4∆s

)1/p4

×

(

∫ t

t0
q(s)∆s

)1/q4

for t ∈ T0.

Now using hypothesis H4, we obtain

(

∫ t

t0
q(s)∆s

)

∥

∥

∥
Φ−1

A (t, t0)
∥

∥

∥
≤

(

∫ t

t0
q(s)∆s

)1/q4

K1/p4
4 , t ∈ T0

or

(

∫ t

t0
q(s)∆s

)1/p4

‖ΦA (t, t0)‖ ≤ K1/p4
4 , t ∈ T0.

Thus for p4 ≥ 1, the function
∥

∥Φ−1
A (t, t0)

∥

∥ satisfies the
inequality

∥

∥Φ−1
A (t, t0)

∥

∥≤ K1/p4
4

(

∫ t

t0
q(s)∆s

)−1/p4

t ∈ T0.

Let Q(t) =
∫ t
t0

q(s)∆s for t ∈ T0, so

∥

∥Φ−1
A (t, t0)

∥

∥≤ K1/p4
4 (Q(t))−1/p4 , t ∈ T0.

NoteQ∆ (t) = q(t)≥ K−1
4 (ϕ (t))p4 Q(t) , for t ∈ T0. Thus

there exist a constantM2 such that
∥

∥Φ−1
A (t, t0)

∥

∥≤ M2 for
t ∈ T0.

Hence the conclusion follows immediately from
Theorem5. The proof is similar for the cases C1,C3 or C4.
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Our next result gives us an existence and uniqueness
criteria for solutions of equation(1) .

Theorem 7.Assume that the function K is continuous and
satisfies the condition

‖K (t,s,x)−K (t,s,y)‖ ≤ f (t,s)‖x− y‖ (20)

for t0 ≤ s≤ t < ∞ and for all x,y ∈ Rn, and there exist a
functionβ ∈ R+(T0,R) such that

sup
t∈T0

1
eβ (t, t0)

∫ t

t0
‖ΦA (t,σ (s))‖

∫ s

t0
f (s,u)

(21)

×eβ (u, t0)∆u∆s< 1 (22)

and

sup
t∈T0

1
eβ (t, t0)

‖ΦA (t, t0)‖< ∞, (23)

where f is a rd-continuous nonnegative function on D=
{(t,s) : t0 ≤ s≤ t <∞}. Then there exists a unique solution
of (1).

Proof.We consider the space of continuous function
C(T0;Rn) with

sup
t∈T0

‖x(t)‖
eβ (t, t0)

< ∞,

and we denote this space byCβ (T0;Rn). We couple the
linear spaceCβ (T0;Rn) with a metric, namely

d∞
β (x,y) = sup

t∈T0

‖x(t)− y(t)‖
eβ (t, t0)

.

It is easy to see thatCβ (T0;Rn) (coupled with the norm

‖x‖∞
β = sup

t∈T0

‖x(t)‖
eβ (t,t0)

) is a Banach space [22, Lemma 4.1].

Consider the operatorT from Cβ (T0;Rn) to
Cβ (T0;Rn) given by

Tx(t)=ΦA(t, t0)x(t0)+
∫ t

t0
ΦA (t,σ (s))

∫ s

t0
K (s,u,x)∆u∆s

(24)
and note

‖Tx‖∞
β = sup

t∈T0

1
eβ (t,t0)

‖ΦA (t, t0)x(t0)

+
∫ t

t0
ΦA (t,σ (s))

∫ s

t0
K (s,u,x)∆u∆s

∥

∥

∥

∥

≤ sup
t∈T0

1
eβ (t,t0)

(‖ΦA (t, t0)x(t0)‖

+

∫ t

t0

∥

∥

∥

∥

ΦA (t,σ (s))
∫ s

t0
K (s,u,x)

∥

∥

∥

∥

∆u∆s

)

≤ sup
t∈T0

1
eβ (t,t0)

‖ΦA (t, t0)‖‖x(t0)‖

+ sup
t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA(t,σ (s))‖

×

∫ s

t0
‖K (s,u,x)‖∆u∆s,

and using (20), (21) and (23), we obtain

‖Tx‖∞
β ≤ sup

t∈T0

1
eβ (t,t0)

‖ΦA (t, t0)‖‖x(t0)‖

+ sup
t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA(t,σ (s))‖

×

∫ s

t0
f (s,u)‖x(u)‖∆u∆s

≤ sup
t∈T0

1
eβ (t,t0)

‖ΦA (t, t0)‖‖x(t0)‖

+ sup
t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA(t,σ (s))‖

×

∫ s

t0
f (s,u)eβ (u, t0)

‖x(u)‖
eβ (u,t0)

∆u∆s

≤ sup
t∈T0

1
eβ (t,t0)

‖ΦA (t, t0)‖‖x(t0)‖

+‖x‖∞
β sup

t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA (t,σ (s))‖

×

∫ s

t0
f (s,u)eβ (u, t0)∆u∆s.

Also

‖Tx−Ty‖∞
β = sup

t∈T0

1
eβ (t,t0)

∥

∥

∥

∥

∫ t

t0
ΦA (t,σ (s))

×

∫ s

t0
K (s,u,x)−K (s,u,y)∆u∆s

∥

∥

∥

∥

≤ sup
t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA (t,σ (s))‖

×

∫ s

t0
‖K (s,u,x)−K (s,u,y)‖∆u∆s

≤ sup
t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA (t,σ (s))‖

×

∫ s

t0
f (s,u)‖x(u)− y(u)‖∆u∆s

≤ ‖x− y‖∞
β sup

t∈T0

1
eβ (t,t0)

∫ t

t0
‖ΦA (t,σ (s))‖

×

∫ s

t0
f (s,u)eβ (u, t0)∆u∆s.

HenceT is a contraction. The Banach fixed point theorem
guarantees there exists a unique solution of the system (1)
[22,23](note the variation of parameters formula [5]).

Theorem 8.Assume that the function K is continuous and
satisfies the condition

‖K (t,s,x)−K (t,s,y)‖ ≤ f (t,s)‖x− y‖ (25)

for t0 ≤ s≤ t < ∞ and for all x,y∈ Rn, such that

sup
t∈T0

∫ t

t0
‖ΦA (t,σ (s))‖

∫ s

t0
f (s,u)∆u∆s< 1 (26)

and
N = sup

t∈T0

‖ΦA (t, t0)‖< ∞, (27)

where f is a rd-continuous nonnegative function on D=
{(t,s) : t0 ≤ s≤ t < ∞}. Then the zero solution of (1) is
strongly stable onT0.
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Proof.For t1 ∈ T0, equation (24) yields

Tx(t) = ΦA (t, t0)x(t0)+
∫ t

t0
ΦA (t,σ (s))

∫ s

t0
K (s,u,x)∆u∆s

= ΦA (t, t1)ΦA (t1, t0)x(t0)+
∫ t1

t0
ΦA (t,σ (s))

×
∫ s

t0
K (s,u,x)∆u∆s+

∫ t

t1
ΦA (t,σ (s))

∫ s

t0
K (s,u,x)∆u∆s

= ΦA (t, t1)ΦA (t1, t0)x(t0)+
∫ t1

t0
ΦA (t, t1)ΦA (t1,σ (s))

×

∫ s

t0
K (s,u,x)∆u∆s+

∫ t

t1
ΦA (t,σ (s))

∫ s

t0
K (s,u,x)∆u∆s

= ΦA (t, t1)Tx(t1)+
∫ t

t1
ΦA (t,σ (s))

×
∫ s

t0
K (s,u,x)∆u∆s.

Applying Theorem7, we deduce that there exists a unique
solutionx(t) of (1) onT0, such that

‖x(t)‖ ≤ ‖ΦA (t, t1)‖‖x(t1)‖+
∫ t

t1
‖ΦA (t,σ (s))‖

×
∫ s

t0
‖K (s,u,x)‖∆u∆s

≤ sup
t∈[t1,∞)T

∫ t

t1
‖ΦA (t,σ (s))‖

∫ s

t0
‖K (s,u,x)‖∆u∆s

+ sup
t∈[t1,∞)T

‖ΦA (t, t1)‖‖x(t1)‖ .

Now using (25), we have

‖x(t)‖ ≤ sup
t∈T0

‖x(t)‖ ≤ ‖x(t1)‖ sup
t∈T0

‖ΦA (t, t0)‖

+ sup
w∈[t1,∞)T

‖x(w)‖ sup
t∈T0

∫ t

t0
‖ΦA (t,σ (s))‖

∫ s

t0
f (s,u)∆u∆s,

(28)
for t ≥ t0 ∈ T0. Let ε > 0 be arbitrary and let
δ (ε) = ε(1−P)

N , be such that

‖x(t1)‖< δ (ε), (29)

where

P= sup
t∈T0

∫ t

t0
‖ΦA (t,σ (s))‖

∫ s

t0
f (s,u)∆u∆s.

Now (28) yields

sup
t∈[t1,∞)T

‖x(t)‖(1−P)≤ N‖x(t1)‖ , i.e.,

sup
t∈[t1,∞)T

‖x(t)‖< ε.

This proves that the zero solution of (1) is strongly stable
onT0. The proof is complete.
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