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Abstract: We study conditions under which the solutions of nonlinealtérra integro-dynamic system of the form
t
W () = AD)X() +/ K(t,5,(5)As
to

are stable on certain time scales. We give sufficient andssacg conditions for various types of stability, includungjform stability,
asymptotic stability, exponential asymptotic stabilibdastrong stability.
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1 Introduction and preliminaries whereA(t) is continuous and a regressines n matrix on

. o o _ To := [to,®)1,0 <ty € TX andK(t,s,x) is continuous
Stability theory is important when examining dynamic yector onQ — {(t,5,X) to < S<t < e andx € R"}. We
responses of a system to disturbances as time approachggiain new results and we generalize to a time scale some
infinity  [9,10,11,13,16,28]. Stability of nonlinear nown properties concerning stability from the continuous
differential equations or difference equations can becgqe 14,20].

characterized using for example. Lyapunov’'s second |, the remainder of this paper we assume that
method, the method of variation of parameters,K(tso) 0

mqualmes, etc.4,17, 24,25,29,32]- ] Let R" be the space df-dimensional column vectors
Time scales theory, introduced by Hilgetd] at the =y _ ¢6)(x) x5, ...x,) with a norm|| - ||. Also, with the same
end of the twentieth century is @ means to unify discretegympo|||. || we will denote the corresponding matrix norm
and differential calculus5 6]. Volterra and Fredholm i ihe spacdn(R) of n x n matrices. IfA € Mq(R), then
type equations (both integral and integro-dynamic) onye genote byAT its conjugate transpose. We recall that
time scales were discussed _m:z,s, 19,21,22,2326,27, I|AI| := sup{||AX|; ||x| < 1} and the following inequality
30,31]. In [26] the authors discuss resolvent asymptotic ||AXI| < [|A]]||x]| holds for allA € Mn(R) andx € R™.
stability, boundedness of VIDE and show that the ™ A {ime scaleT is a closed subset @. It follows that
principle matrix and resolvent are equivalent for linear the jump operators, p : T — T defined by
VIDE on time scales. ’
In this paper we provide sufficient conditions for o(t)=inf{s€ T:s>t} andp(t) =sup{se T:s<t}
uniform stability, asymptotic stability, exponential
asymptotic stability and strong stability of the trivial (supplemented by inf@= supT and sup®= infT) are
solution of a nonlinear Volterra intero-dynamic system of wel| defined. The point € T is left-dense, left-scattered,
the form right-dense, right-scattered if
t p(t) =t,p(t) <t,o(t) =t,o(t) > t, respectively. IfT has
XA(1) = AX(1) + o KEsx(s)as Xto) =% (1) 5 right-scattered minimumm, define Ty = T — {m};
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otherwise, seflx = T. If T has a left-scattered maximum Let T; andT, be two given time scales and plif x
M, defineTK := T — {M}; otherwise, seffTX = T. The T, = {(x,y): x € Ty,y € T2}, which is a complete metric
graininess functiony : T — [0,0) is defined by space with the metric (distancagdefined by

ut) = o(t) —t. Given a time scale interval
[ablr:={te T:a<t <b}, then[a,bjx denotes the _ Y o2
interval [a,b]t if a < p(b) = b and denotes the interval d((xa,y2), (x2.y2)) = \/(Xl X)"+ (n—y2)

a,b)r if a< p(b) < b. Infact,[a,b)r = [a, p(b)]r. Also,

1[or 2’;1 e, We( %Iefine[a,oo)qr [: [;,oo) [m ’ﬂ‘.( |3=] T is a for (x1,y1), (%2, ¥2) € T1 x T2.

bounded time scale, thefl can be identified with A function f : T1 x T, — R is said to be continuous at

[infT,supT]r. (x,y) € T1 x Ty, if for every € > 0 there exist® > 0 such
Throughout this work, we assume that §up o with  that || f(x,y) — f(xo,Yo)|| < € for all (xo,Yo) € T1 x T>

bounded graininess, i.eu(t) < «. Moreover, the delta satisfying d((x,y), (Xo,Yo)) < 0. If (x,y) is an isolated

derivative of a functionf : T — R at a pointt € T* is  point of Ty x Ty, then the definition implies that every

defined by function f : Ty x T, — R is continuous at(x,y). In
particular, every functiorf : Z x Z — R is continuous at
fA4(t) = lim M. each point ofZ x Z.
oy oM~

Theorem 1([15, Theorem 5 p. 102])Let (k,y) be a

A function f is called rd-continuous provided that it is real-finite valued function whose domain is the Cartesian
continuous at right dense pointsTh and has finite limit ~ Product § x $. Suppose (x,y) is continuous in y at
at left-dense points, and the set of rd-continuous funstion Y = b uniformly for x in 3, and continuous in x at x a

is denoted byCiq(T,R). The set of function€y (T,R)  for each y in 3, then f(x,y) is continuous in(xy) at

includes the function$ whose derivative is i€,y (T, R). (ab).
Fors,t € T and a functionf T,R), theA-integral is .
defined to be Cra(T.R) g LetCy(T1 x T2, R) denote the set of functiorgx, y)
. on Ty x T, with the following properties:
- B (i) f isrd-continuous irx for fixedy;
/s fmAT=F(1) - F(s), (ii) f isrd-continuous iry for fixed x;

_ o _ (iii) if (Xo0,Yo) € T1 x T2 with Xo right-dense or
whereF € Cy (T, R) is an anti-derivative of ,i.e.,F® =f  maximal andyo right-dense or maximal, therf is
on Tk, continuous atxo, Yo);

A function f € Cq4(T,R) is called regressive if (iv) if xo andyg are both left-dense, then the limit of
14 u(t)f(t) #0 for all t € T, and f € Cqy(T,R) is f(x,y) exists (finite) agx,y) approachegx, yo) along any
called positively regressive if £ (t)f(t) > 0onTX. The  path in{(x,y) € Ty x T2 : X< X0,y < Yo}
set of regressive functions and the set of positively A brief introduction into the two-variable time scales
regressive functions are denoted by(T,R) and calculus can be found ir8].

ZT(T,R), respectively.
Let f € Z(T,R) ands € T. Then the generalized Lemma 1([7])

exponential functiores (-,s) on a time scalél is defined (i) For a nonnegativep with —¢ ¢ %, we have the
to be the unique solution of the initial value problem following inequality
XA(t) = f(t)x(t t t
(s oo 1 [bwause 9 <exp( - [ gwau)

Forhe R", setCy:={ze C:z+# —1/h},Zy = {z€ C:
—mn/h < Im(z) < m/h}, andCp := Zg := C. Forh € R§
andz € Cy, the cylinder transformatiody, : Cy, — Zp is
defined by

forallt > s
(i) If ¢ is rd-continuous and non-negative, then

1+ t A !

< t,s) <
& (Z) {27 h=0 L ¢(U) u7e¢( S) eXp(/S ¢(U)AU>
h(z): = %Log(1+zh),h>0’ orallt>s

and the exponential function can also be written in the

form 2 Stability

t
er(ts): :exp{/s EH(T)U(T))AT} forsteT. In the remainder of this paper when we say the zero
solution of () we mean the zero solution ofl)( with
For more details, se&]. Clearly,e;(t,s) never vanishes.  xg=0.
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Definition 1.The zero solution oflj is stable, if for every
€ > Othere exist & > 0 such that for any solution(k) of
(1), the inequalityl|xo|| < & implies||x(t)|| < & fort € To.

In this section, we assume that the zero solution of

YA (t) = At)(t), Y(to) = Yo (@)

is stable. This is equivalentB, Theorem 2.1] to assuming

that there existg > 0 such that
| @a(t,s)]| < n forse [to,t]r, 3)

where®a(t,s) is a fundamental matrix oPj.

We now put conditions oK (t,s,x) so that the zero
solution of @) is stable.

We make the following assumption:
(Al) There existex > 0 so that||K(t,s,x)|| < C(t,s)||X||
with C(t, s) rd-continuous fos € [to,t] and||x|| < a.

Theorem 2Suppose that the assumptiory @énd (A1)
hold and there exists a positive constantM such that

00 S
/ C(s,u)Auds < M. 4)
to Jto

Then the zero solution of) is stable.

ProofForanyO< e < aletd(¢g) < an,M and||xol| < d(¢).
Suppose that there exigisc Tg such that|x(t1)|| = € and

[IX(t)|| < € on [to,t1)r. From the variation of parameters

formula [b], we have
t
X[ < [[Pat,to)]] H><0||+/to [@a(t,a(9)]
x/toC(s,u)||x(u)||AuAs
t S
<ns(e)+n [ [ clsu)xw)] uas

fort € [to,t1] .
Letq(t)= sup ||x(s)|| and we obtain
SE[to,t]T

qt) < n<5(£)+l7/tt tSC(s, u)q(u)AuAs.

From Gronwal’s inequalityq, Theorem 6.4] and Lemma

1, we have
[x(®)[| <q(t)
< no(e)exp (/tt log (1+“(S)'7 JeC(s, U)Au) As)

u(s)
<nd(e)exp (/t: /t:nC(s u)AuAs)

<nd(e)e™ <efort e [to,tg]r.

Therefore||x(t1)|| < €, which is a contradiction. Thus the

zero solution of {) is stable. The proofis complete.

Instead of (A1) assume
(AD) [K(t;sx)[ < C(t,9)|x], where C(t,s) s
rd-continuous fos € [to,t]; andx € R".

RemarkSuppose that the assumptior8), (4) and A1)
hold. Then the solutions ofi are bounded.

3 Asymptotic stability
Assume that there exists a constnt 0 such that

[ Ioat ot as<p ®)

for all t € To with t > o(tg). (This is equivalent 13,
Theorem 2.3 and Theorem 2.4] to assuming that the zero
solution of @) is asymptotic stable).

Note that

®a(t,to) — O ast — oo, (6)

Definition 2.The zero solution of1j is asymptotically
stable, if it is stable and attractive (i.e. if for any solui
X(t) of (1), there existd > 0 such that|x|| < & implies
[IX(t)|] — 0ast— o).

Theorem 3Suppose that the assumptions (A1) adi (
hold and

t
sup [ C(t,s5)As< 1 (7
teTo /1o B

Furthermore, suppose that

t
lim | C(s,u)Au=0forallt € To. (8)

S—0o0 tO
Then the zero solution of) is asymptotic stable.

ProofWe first show the stability of the zero solution @) (
From (7) there exists a positive constansuch that

1 S
O0<y< —=and sup/ C(s,u)Au<y. 9)
B se€Ty /1o

From () there exists a positive consta¥itsuch that

|| ®al(t,to)]] < N forallt € Ty. (10)
Forany O< € < a andtgletd(e) < min{(1—yB)e/N,&}.
Consider the solution(t) of (1) such that||xo|| < o.
Suppose that there exigis= Tg such that|x(t1)|| = € and
[x(t)|| < & on[to,t1)T,. From the variation of parameters
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formula [5], we have
)] < [ ntt o)l ol + | 19019

« [[clsuxw) auas
~ ot ol + | oatt.o(s)

« [[csuxw) auas

t S
<N6+£/ ||CDA(t,0(s))||/ C(s,u)Auds
t t

<(1—yB)e+eBy=ceforte [to,ta]r.

Moreover, usingg), (9) and (L3), we obtain

/ [ ®alt,o(s H/ C(s,u) ||x(u)|| Auds < =~ VB

Thus we have

;
X[ < [ @a(t;to)] o + H‘l’A(t,to)H/to |®a(to, o (s))

(6+yB)A

S
x/tOC(s,u)Hx(u)HAuAs—i— i

Since HCDA(t to)|] — 0 ast — o by (6), we have

A < BB and thush < A, a contradiction. Therefore
the zero solution of X) is attractive. The proof is

Therefore||x(t1)|| < &, which is a contradiction. Thus the complete.

zero solution of {) is stable.

Next we will show that the zero solution ofl)(is
attractive. Lee = 1, then there exist§y = 6(1) < 1 such
that||%o|| < & implies

[Ix(t)]] < min(a, 1) for all t € To. (11)

Suppose there existg with ||xo| < d such that the
solutionx(t) of (1) satisfies

limsup|x(t)||=A > 0. (12)
t—oo

From ) yB < 1, and there exists a constafitsuch that
yB < 6 < 1. From (12), there exist$; € Tp such that

XU < % forall u € [ty, ) (13)
and from @), there exist§ € (t1, )t such that
t _
1C(s u)Au < (O-yB)A forallse [T,o)r. (14)

to ’ 268

Then we have
)] < [ onttt0)| 8+ [ ont.o(8)]
x/tSC(s,u)Hx(u)HAuAs
.
< [[9a(t.to) | &+ [ Pa(t0)]| [ [ Palto.o()]
S t °
< [clswxuduas+ [ [ @at.o(9)]
i :
< [ clsuikwlauas+ [ joat. o)
x /SC(S, u) [X(u)|| Auds
6]

From (), (11) and (L4) we have

(6-yB)

[1ont.o)1 [ csu ) aus< O

4 Exponential asymptotic stability

Definition 3.The zero solution of 1) is exponentially
asymptotically stable, if there exigt > 0 and for every
€ > 0 there existd > 0 such that for any solution(k) of
(1), [|%ol| < & implies||x(t)|| < ge_p(t,to) fort € Ty.

We assume that there existM,n > 0 with
—n € Z*(T,R) such that
[|Pa(t,s)|| < Me_j(t,s) for all se [to,t] . (15)
(This is equivalent3, Theorem 2.2 and Theorem 2.4] to
assuming that the zero solution d)(is exponentially
stable).

Theorem 4Suppose that the assumptions (A1) am) (
holds and there exists a positive constarguch that
' n
sup [ e_y(s,a(t))C(t,s)As< —. (16)
teTo /to M
Then the zero solution of 1)
asymptotically stable.

is exponentially

ProofUsing (15) for all t € To and||Xo|| < o /M, we have

X[ < [ @a(t;to)] ||><o|\+/ [®a(t;o(s))]

/CSU Ix(u)|| Auds
(17)
<Me pt, to)|\xo|\+M/ e n(t,o(s))

/CSU Ix(u)[| AuAs.

There exist positive constanis< v ande with —3,—¢ €
Z*(T,R) such that-n = -9 ¢ —¢ and

t
sup

e g(s,0a(t))C(t,s)As< £
teTo /to M
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Multiply by e_3 (to,t) on both sides ofX7) to obtain

-5 t0.) XD < Me c(t.t0) o] +M | s t0.0(6)

xe_g(t,0(s /CSU Ix(u)[| AuAs

c(t10) ol +M [ o 2(t.0(9) [ e (u0(5)
2(t0.0)xw)[2uas

=Me_
xC(s,u)e_

If we defineq(t) = sup e_g(to,s)||X(s)]|, it follows that

Se [to !t]T

e 50,0 [X(0)| <Me-c(tt0) ol
Mq(t) /t e (t,0(9)) /t e_s(u,0(3))C(s U)AuAs

< Me_¢(t,to) || +£q(t)/tte_g(t,0(s))As.

Using [5, Theorem 2.39], we obtain that

e_s(to.t) [X(t)]| < Me_¢(t,to) [0l + {1 e_c(t.to) }q(t).
(18)
Now we consider two cases
(1): Inthis casee_s (to, ) [X()| < e s (to,t) |x(t)]] for
anyse€ [to,t]T, so we have(t) = e_g(to,t) ||x(t)||. Then
from (18) we have

q(t) < Me ¢(t,to) [[Xol| + {1 —e-e(t,to) }a(t).

Thus q(t) < M|x|| for all t € To. Then

q(t) = e_g(to,t) [[X(t)[| implies[[x(t)|| < Me_g(t,to) |||
forallt € To.
(ID): In this case there existse [to, t] such that

€9 (to,8)[[X(s) ]| > es (to,t) [[X(V)]| -

There exists t1 € [to,t)r such
q(t) =e_g(to,t1) [|X(t2)||- Then from (L8) we have

that

q(ts) = e (to,ta) [[X(ta) |

< Me_¢(tg,to) [|Xo + {1 — e_¢(t1,t0) }a(ts).

Then
implies

Thus q(t1) < M]xo| for all
at) > esot)|xt)]
[IX(t)]] < Me_g(t,to) ||%o| for all t € To.

Thus from (I) and (Il), the zero solution ofl) is
exponentially asymptotically stable. The proof
complete.

t1 € To.

is

5 Strong stability

Definition 4.The zero solution ofl]) is said to be strongly
stable if for eveng > 0, there exisD > 0 such that, for any
solution Xt) of (1), the inequalitiesst € T and ||x(t1)]| <
o implies||x(t)|| < € forallt > tg € To.

Theorem 5([10, Theorem 4.3])Let ®a(t,s) be a
fundamental matrix forZ). Then the zero solution o)
is strongly stable ol if and only if there exist a positive
constant K such that

(| @a(t,to) @pt (sto)|| <K foralltg <s<t <o
or equivalently,
[ Pa(t.t0)]| <

Let us consider the following hypotheses:
H; : There exist a continuous functign: To — (0, ) and
the constantp; > 1,K; > 0 such that

/ (9(9)

H, : There exist a continuous functign: To — (0, ) and
the constantp, > 1, K, > 0 such that

/tot (909

Hs : There exist a continuous functign: To — (0, ) and
the constantps > 1, K3 > 0 such that

/ (9(9)

H, : There exist a continuous functign: To — (0, ) and
the constantp, > 1,K4 > 0 such that

/tot (909

Theorem 6Suppose that the fundamental mat#i (t,s)
satisfies one of the following conditions:

Cq:
Co:

K and ||, (t,to)|| <K forallt € To.

(| @a(t,to) CD,jl(s,to)H)plAsg Ky, forallt € To.

| a2 (t,to) Pa(s to)||)? As< Ko, forallt e To.

| @a (s,to) @a(t,to)||)® As< Ka,for all t € T.

| ®a(sto) Pat(t,t0)||) ™ As< Ka, forallt € To.

H, and H are true.
H, and H, are true.
Cs: Ho and H; are true.
C4: Hz and H, are true.
Then, the zero solution o] is strongly stable offg.

ProofWe prove thai®, (t,tp) and CDgl(t,to) are bounded
on Ty. First consider the case,CFor this we prove that
@ (t,tp) is bounded orTy. Consider

q(t) =P (t) (|| Pa(t,to)]]) ™ fort € To.
From the identity

t t
< A q(S) ) CDA t to /t Q)A t to Q’ (S to))
0 0
X (q (3) (¢ (9) *dal( sto)) As, fort € To,
it follows that
(/ q AS) H(DA t to / H(DA t to Sto H) (lg)

X(q< 1| @ (s to) )Aste']l‘o
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If pp =1, we have thaty(s) (¢ (s))’1||CDA (sto)]| = 1.
From (19) and the hypothesis Hlit follows that

(/t[: Q(S)AS> |®a(t,t0)]| <

/t (6(9)[|a(t,to) Pt (s to)[|) As < Ky, t € To.
Jtg

If pp > 1, setqy =
(19), it follows that

2L suchthatq(s) (9 (5) ™ | %a(s1o)]| = ((s)"/*. From

</tq(S)AS)¢(t)(q(t))*1/plS/t (69| @ (t.t0) 25 (s10)]))
o ] ho
x(q(s))" 4s, fort € To.

Using the Holder’s inequalityq], we obtain

( ttq<s>As) b (1) ()P <
Ot b 1/p1
(/ (6 (5)||Pa(t,to) Pa* (st0)]]) 1AS>

to

t /oy
X ( q(s)As) fort € To.
to

Now using hypothesis H we obtain

t 1/p1 1
( q(s)As) 6 (1) (a(0) P < KMP:, fort € T,
to

or
t
(/ q(s)As) 1@ (t,to) | P* < Ky, fort € To.
to

Thus for p; > 1, the function ||®a (t,to)|| satisfies the
inequality

1 t -1/p1
| a(t,to)]| < KI/P: (/ q(s)As) fort € To.
fo
LetQ(t) = J; q(s)Asfort € To, so
1®a (t.to) ]| < Ki/P(Q(t) ™™, fort € To.

Note

Q*(t)=q(t) > K (9 (1)PQ(t), fort € To.
It follows that there exist a constaril; such that

[|[@a(t,to)]| <My fort € To.
Now for proveCD,;1 (t,to) is bounded ofTy. Consider

q(t) = P (1) | @x (t,to)|| ™ fort € To.
From the identity

(faas) o w0~ [ (a6 (9) 05t (s10)
X (¢ (S) Pa(s o) @;1 (t,to)) As, fort € Ty,

it follows that

(/IJQ(S)AS> |@at(t,to)]| <
t

| (a6 () o5 510

X (¢ (s) H(DA (s,to) (Dgl (t,to)”) As.
If ps = 1, we have that(s) (¢ () *||®xat(sto)|| = 1.
Using hypothesis it follows that

( / q(s)As) |ort (o) < / (6(9) | Pa(s10)) As
X@Kl (t,to)” <Ky fort € To.

If ps > 1, set q = pffl, such  that

q(s) (¢ () || @x(s.to)|| = (a(s))¥%. It follows that

(/t:q(s)As> | @2t (1) S/t:(H‘DA(S,to) (s to)])
x (q(s))Y% Asfort € To.

Using Holder’s inequality, we obtain

</ttq(s)As) @At (L 1) <
0t p4 1/pa
([ 60 onsw o5 c0])"s)

fo

t 1/da
X < q(s)As) fort € To.
fo
Now using hypothesis i we obtain

(/tIQ(s)As) Hq?,il(tﬂo)H < (/t:q(s)ﬂs) Y Ki/m, teT,

or
t 1/ps .
(/ q(s)As) 1@ (t.to)]| < KYP, t € To.
to

Thus for ps > 1, the function||®, (t,to)|| satisfies the
inequality

1 t —1/pa
Hd);l(t,to)HgK/p“ </ q(s)As) t € To.
to
LetQ(t) = J; a(s)Asfort € To, s

[@x2 (t.to)|| < K3/™(Q(t)) P, t € T.

NoteQ? (t) =q(t) > K4‘1 (@ (1))™Q(t), fort € To. Thus
there exist a constaM, such that|| @, (t,to)|| < My for
t € Tp.

Hence the conclusion follows immediately from
Theorenb. The proofis similar for the caseg €3 or Cy.
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Our next result gives us an existence and uniquenesand using 20), (21) and @3), we obtain
criteria for solutions of equatioft) .
, _ , ITx5 < Supe 157 | @a (o) | [ (to)
Theorem 7 Assume that the function K is continuous and .
satisfies the condition +sup (“o / | @at, o (3))]|

[K(t,s,x) —K(t,sy)l < f(ts)x=yl| (20)
_ / f(s,u) ||x(u)||AuAs
fortg < s<t < o and for all xy € R", and there exist a

functionf € %+ (To,R) such that SUPE iy || Pat.to) | [ x(to) |
1 t s
sup_—t— [ oatt. o) [ F(su +suptes [ ont.o @)
S | 19a @)l [ T(su) e
(21) / f (s,u)ep (u,to) o ((utJJ)AuAs
xeg (U,tg) AudAs< 1 22
s (Uto) (22) < Uty 19 ()] ()]
and
5 bt [1oat.o®)]
teL’]i‘E)eg (t,to) |1PA(E )] < e, (23) s ﬁte’ﬂ‘o e (tlo) Jy,

where f is a rd-continuous nonnegative function or-D X/t f (s,u)eg (u,to) Auls.
{(t,s) :tp <s<t < o}. Then there exists a unique solution 0
of (1). Also

ProofWe consider the space of continuous function
C(To;R") with

[ontot)
X _ « [K(su%) — K (suy)Auds

teTo eB (tato)
< st [ loat.o ()]

Tx—Tyl3 = Sup—+—
H HB teTy e[i(UO)

and we denote this space B (To;R"). We couple the

linear spac&€g(To; R") with a metric, namely / K (s,u,x) — K (s,u,y)||Auds
x(®) —y ()]l /
d3 (x,y) = supti—~ 221 <SUP [®a(t,o(s))ll
b (xY) te’JI‘(FJ) &g (t,to) tt
It is easy to see thalz(To; R") (coupled with the norm X/ f (su) [x(w)=y(u)lAuas
||x|| — SupeHx I ) is a Banach spac@®, Lemma 4.1]. <|Ix—yll3 SUpeB(n / | ®a(t,o(9))]|

ConS|der the operatorT from Cg(To;R") to

Cp(To;R") given by x/tof S,u)eg (u,to) AuAs.

HenceT is a contraction. The Banach fixed point theorem
guarantees there exists a unique solution of the system (

t S
Tx(t):dJA(t,to)x(to)+/ Pa(t,0(s)) | K(su,x)AuAs
t
° (24) [22,23](note the variation of parameters formut)[

to
and note Theorem 8 Assume that the function K is continuous and
|\Tx||ﬁ = supe tto ||(DA (t,t0) X(to) satisfies the condition
[K(t,sx)—K(t,sy)l<fts)lx=yl (25)

t
+ | Da(t,o(9) /K (s,u,x) AuAs
fortg <s<t <« and for all xy € R", such that

< SUDe (H‘DA(t to) X (to)
IETQ

sup HCDA(t o( H/f (su)Aulds< 1 (26)
(DAtUS /K sux)‘AuAs teTg /t

SUPe it || (o) |1 (to) and

N = sup||®a (t,to)|| < oo, (27)
teTo

where f is a rd-continuous nonnegative function oa=D

{(t,s) 1t < s<t < }. Then the zero solution ofl) is

strongly stable orfTy.

+ su —/ Dp(t,o (s
Supig [, 19at.o 9]

S
« [IK(sux) ] auss
to
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ProofFort; € Ty, equation 24) yields
't 'S
TXO) = Batto)x(0)+ [ ®alt,0(9) [ K(sux)duss
"ty
= O (t.1) Palteto)x(to) + | @alt.o ()
S it 'S
x/ K(s,u,x)AuAs—i—/tl GDA(t,o(s))/ K (s,u,x) AuAs

to t0

= Op(t,t1) Pa(t1,t0) X(to) +/ttl @ (t,t1) Pa(t1,0(s))

S t S
x | K(s,u,x)AuAs+ | ®Pa(t,o(s)) [ K(su,x)AuAs

to t to
t
=Pa(t,t1) TX(tr) + | Palt,a(s))

6]

S
x [ K(s,u,x)AuAs.

fo

Applying Theoreni, we deduce that there exists a unique

solutionx(t) of (1) on Ty, such that

[x®] < [[Pa(t. )]l |x(t1)||+/t: [®a(t,o(s))ll
X/to IK (s,u,X)[| AuAs

t s
< sup [ @atto(9)] [ K (sux)auas
0

te(ty, o) /i1
+ sup [ @a(t,ty)]|[|x(ty)[]-
te[t17°°)T

Now using @5), we have

X < sup|[x(t)]| < [Ix(t2)[| sup||®a (t.to)]]
teTy

teTo

t S
+ sup [xw)sup [ oa(t.o ()] [ f(sw)auds
teTo /1o fo

WE(tg,00)

(28)
for t > tg € To. Let € > 0 be arbitrary and let
3(e) = 2P be such that

[x(t2)[| < (), (29)

where

t S
P — sup HcDA(t,a(s))H/ f (s,u)Auds.
teTo /o to

Now (28) yields

sup [x()[| (1—-P) <N|x(ta)]], i.e.,
tefty, o)

sup (1) < &.
te[tbm)?l‘

This proves that the zero solution df)(is strongly stable
onTyp. The proofis complete.
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