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Abstract: We study the interaction between a moving four-level atom and one-mode field in the presence of Kerr like medium and
obtain the exact solution of the model. The atomic inversion, Field entropy, Purity and Fidelity have been examined under various
values of detuning, the Kerr-like medium and the time-dependent coupling. We show that, the present system is a good candidate for
building the quantum devices, where the mentioned parameters can be used controllers. Finally, playing with the initial states setting,
one can obtain new features of the entanglement.
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1 Introduction

The interaction model between a four-level atom and a
single quantized mode of a radiation field, when the
rotating wave approximation (RWA) considered, is known
as the Jaynes-Cummings model (JCM) [1]. This model
was generalized to describe the multi-photon interaction
and included arbitrary forms of both the field and the
intensity-dependent atom-field coupling [2,3]. Also, the
standard JCM has been extended in many directions, such
as adding further levels [4] where the three-level atomic
systems have been discussed [5,6,7,8]. The influence of
the Kerr medium [9] and the intensity-dependent coupling
[10] on the dynamics of a three-level atomic system have
been investigated. the interaction between two three-level
atoms and a single-mode field with multi-photon
transition in the presence of Kerr medium and detuning
parameter has been studied in [11]. Recently, there has
been increasing interest in the study of the interaction
between a four-level atom and cavity fields. Various types
of a four-level atom [12,13,14,15,16,17,18,20,19] have
been demonstrated.

Entanglement is a property found in the composite
quantum systems, where the correlation between the
subsystems cannot be discussed classically. Entanglement
has been widely investigated in quantum information
processing [22,23,24,25,26,27] and plays important
roles in many potential applications, such as quantum

communication, quantum teleportation, quantum
cryptography, entanglement swapping, dense coding, and
quantum computing, etc. [28,29,30,31,32,33]. The
degree of entanglement (DEM) can be studied via
different measures such as von Neumann entropy, linear
entropy, purity and others measurements. Quantifying of
the state requires knowledge whether the state is pure or
mixed. The state of the system is a pure, then it is
sufficient to use the von-Neumann entropy. The time
evolution of atomic (field) entropy reflects the time
evolution of the degree of entanglement thus when the
entropy is high, the degree of entanglement is strong.

We aim at extending the previously cited treatments to
study the problem of a four-level atom in the consider
configuration interacting with a single-mode field to
investigate the properties of the degree of entanglement of
the above mentioned systems from the view point of the
Phoenix-Knight [34,35,36]. The structure of the levels is
given in figure 1. The assumed model contains, in fact,
three three-level subsystems with a common fourth level ;
one can distinguish here two Fig. 1. Energy-level scheme.
subsystems in the ladder configuration (levels 1-4-3 and
2-4-3) and one subsystem in the lambda configuration
(1-4-2). Here, we study a moving atomic system of a
four-level atom coupled to one mode electromagnetic
cavity field in the presence of both Kerr medium and the
detuning parameters. We describe the Hamiltonian and
derive the constants of motion. Also, this generalization
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takes into account the multi-photon processes. We derive
the general form of the probability amplitudes for the
considered system. Also, we calculate some statistical
aspects of the model such as the atomic inversion, the
field entropy, purity and fidelity, also, to examine the
influences of the field nonlinearity (Kerr-like medium),
detuning and the time dependent coupling on the degree
of entanglement.

2 Description of the model

The model consists of a four-level system consists of a
moving with states| j〉, ( j = 1,2,3,4), interacting with
single quantized field modes with the frequencyΩ and
various coupling constants [37]. The atom has excited
state|3〉, intermediate states|4〉 and|2〉 and ground state
|1〉, with energiesω3, ω4, ω2 and ω1, respectively. We
suppose that the allowed transitions|3〉 ←→ |4〉 and
|4〉 ←→ |1〉(|2〉) while the transition |1〉 ←→ |2〉 is
forbidden as shown in Fig.(1). The Hamiltonian
describing the non-resonant atom-field interaction
including the center of mass of the atom beside the
presence of the Kerr-like medium is given by,

Ĥ = ĤK + ĤA+F + ĤI , (1)

whereĤK is the non-linearity Hamiltonian,̂HA+F is the
Hamiltonian of the atom (field) and̂HI is the interaction
Hamiltonian, for simplicity, we set̄h=1. In the RWA these
terms are

ĤK = χ â†2â2,

ĤA+F =
p̂2

2M
+∑

j
ω j σ̂ j j +Ω â†â,

(2)

wherep is the momentum operator,M is the mass of the
atom, anda(a†) is the annihilation (creation) operator,
respectively. Also, χ is the dispersive part of the
fourth-order nonlinearity of the Kerr-like medium and
σ̂ jℓ = | j〉〈ℓ|; (ℓ=1,2,3,4) are the level occupation number
when j = ℓ and otherwise are the transition operators
from level j to ℓ. It is important to mention that the
operatorsσ̂ jℓ are 4× 4 matrices, the generators of the
unitary group U(4) [38,39]. On the other hand the
interaction HamiltonianĤI for the considered system is
given as

ĤI = λ1(t)(â
meim

−→
k .−→r σ̂41+ â†me−im

−→
k .−→r σ̂14)+λ2(t)(â

meim
−→
k .−→r σ̂42+ â†me−im

−→
k .−→r σ̂24)

+ λ3(t)(â
meim

−→
k .−→r σ̂34+ â†me−im

−→
k .−→r σ̂43), (3)

where,
−→
k and −→r are the propagation vector and the

position vector, respectively.λs(t) is the effective
coupling parameter and takingλs(t) = ηssin(δst + φ),
whereηs(s=1,2,3) is an arbitrary constant ( the constant
coupling parameter),δs is the fluctuation frequency while
φ is the relative phase andm is multiplicity of photons. In
the following, we present some interesting properties of
the operators of the considered model. Firstly, for the
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Fig. 1: The scheme for the considered atomic system

Fermion operatorŝσab and Boson operators(â and â†),
we can establish the following commutation relation in
su(4), for the atomic operator [38,39]:

[σ̂ab, σ̂cd] = σ̂adδbc− σ̂cbδda, ˆσab|b〉= |a〉, [âm, σ̂ab] = [â†m, σ̂ab] = 0. (4)

whereδda is the Kroneker delta. The operators ˆa† and â
are the Bose operators for the quantized field mode which
obey

[â, â†] = 1, [â, â] = [â†, â†] = 0, [â, n̂†] = â, [â†, n̂†] =−â†. (5)

In the general form it is easy to show that:

[â, â†m] = mâ†(m−1), [â†m, â] =−mâ†(m−1), (6)

Moreover, the field operators satisfy the following
relations:

âm|n〉 =
√

n!
(n−m)!

|n−m〉, n> m,

â†m|n〉 =
√

(n+m)!
(n)!

|n+m〉, (7)
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According to the previous relations, It is
straightforward to show that the constant of motion in the
atom-field system are given by

σ̂11+ σ̂22+ σ̂33+ σ̂44 = Î ,

â†â−m(σ̂11+ σ̂22+ σ̂33) = N̂1,
−→
P +
−→
k â†â = N̂2. (8)

Now, we turn our attention to find the wave function of the
system under consideration.

3 The wave function

To obtain the wave function|ψ(t)〉 at any timet > 0, we
write it as a linear combination of the states|−→P 0,1,n〉,
|−→P 0,2,n〉, |−→P 0 + 2m

−→
k ,3,n − 2m〉, and

|−→P 0+m
−→
k ,4,n−m〉, where|−→P 0〉 is the momentum eigen

state,| j〉 denotesjth atom level and|n〉, n = (0,1,2, ...)
are the eigen states of the number operatorn. We consider
the atom moving in a uniformly accelerated reference
frame. Under these considerations, the momentum
operator satisfies the following relations

[e±im
−→
k .−→r ,
−→
P ] = ±m

−→
k e±im

−→
k .−→r ,

e±im
−→
k .−→r |P0〉 = |

−→
P0±m

−→
k 〉

−→
P |P0〉 =

−→
P0|
−→
P0〉, (9)

Therefore, the state vector of the system takes the
following form:

|Ψ(t)〉 = ∑
n

qn{A(n, t)e−iβ1 |−→P 0,1,n〉+B(n, t)e−iβ2 |−→P 0,2,n〉

+ C(n−2m, t)e−iβ3 |−→P 0+2m
−→
k ,3,n−2m〉

+ D(n−m)e−iβ4 |−→P 0+m
−→
k ,4,n−m〉}, (10)

(11)

with

β1 =

−→
P 2

0

2M
+ω1+nΩ ,

β2 =

−→
P 2

0

2M
+ω2+nΩ ,

β3 =
(
−→
P 0+2m

−→
k )2

2M
+ω3+(n−2m)Ω ,

β4 =
(
−→
P 0+m

−→
k )2

2M
+ω4+(n−m)Ω , (12)

whereqn describes the amplitude of state|n〉 which are
the Fock states of the field modes and depend on the initial
state of the atomic type and the quantitiesA(n, t), B(n, t),
C(n−2m, t) andD(n−m, t) are the probability amplitudes
which determined the initial state|Ψ(0)〉.

In our study, we consider the field to be initially in
coherent state, thus the initial photon distributionqn is
given by

qn = exp(−n/2)nn/2/
√

n!. (13)

According to the Schrödinger equation

i
d
dt

Ψ (t) = Ĥ|Ψ(t)〉, (14)

and field operatorŝam andâ†
m on the state vector (10), we

obtain the following system of coupled ordinary
differential equations:

i
d
dt

A(n, t) = v1A(n, t)+g1 sin(δ1t+φ)ei∆1tD(n−m, t),

i
d
dt

B(n, t) = v1B(n, t)+g2 sin(δ2t+φ)ei∆2tD(n−m, t),

i
d
dt

C(n−2m, t) = v2C(n−2m, t)+g3 sin(δ3t+φ)e−i∆3tD(n−m, t),

i
d
dt

D(n−m, t) = g1 sin(δ1t +φ)e−i∆1tA(n, t)+g2 sin(δ2t +φ)e−i∆2t B(n, t)

+ g3 sin(δ3t +φ)ei∆3tC(n−2m, t)+v3D(n−m, t),

(15)

with

v1 = χn(n−1), v2 = χ(n−2m)(n−2m−1), v3= χ(n−m)(n−m−1),

g1 = η1

√
n!

(n−m)!
, g2 = η2

√
n!

(n−m)!
g3 = η3

√
(n−m)!
(n−2m)!

(16)

and

∆1 = ω1−ω4+mΩ− m2k2

2M
− m
−→̂
P0.
−→
k

M
,

∆2 = ω2−ω4+mΩ− m2k2

2M
− m
−→̂
P0.
−→
k

M
,

∆3 = ω4−ω3+mΩ− 3m2k2

2M
− m
−→̂
P0.
−→
k

M
. (17)

As one can see there are two exponential terms in each
equation: one is rapidly oscillating terms exp[i(δ1+∆s)t+
φ ] and the other is slowly varying terms
exp[i(δ1−∆s)t +φ ]). In this case if we neglect the rapidly
varying term compared with the slowly varying term, then
Eq.15reduces to:

i
d
dt

A(n, t) = v1A(n, t)− g̃1 expi[∆̃1t−φ ]D(n−m, t),

i
d
dt

B(n, t) = v1B(n, t)− g̃2 expi[∆̃2t−φ ]D(n−m, t),

i
d
dt

C(n−2m, t) = v2C(n−2m, t)+ g̃3 exp−i[∆̃3t−φ ]D(n−m, t),

i
d
dt

D(n−m, t) = g̃1 exp−i[∆̃1t−φ ]A(n, t)+ g̃2 exp

− i[∆̃2t−φ ]B(n, t)
− g̃3 expi[∆̃3t−φ ]C(n−2m, t)

+ v3D(n−m, t),

(18)

where

∆̃s = ∆s−δs, s= 1,2,3.

g̃s = (
−i
2
)gs, (19)

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1482 T. M. El-Shahat: A moving four-level atom in a nonlinear medium

To solve the coupled system Eq.(18), we consider that the atom
and the field are initially prepared in upper state and coherent
state, respectively. In this case the initial wave functioncan be
written as

|ΨAF(t = 0)〉= |ΨA(t = 0)〉⊗ |ΨF (t = 0)〉. (20)

where|ΨA(t = 0)〉, is the initial state of the atom and|ΨF (t = 0)〉,
is the initial state of the field. Then the initial state is given by

|ΨAF(t = 0)〉= ∑
n=0

qn|
−→
P 0+2m

−→
k ,3,n−2m〉, (21)

Now, we will resolve the above system in the non-resonant
case as follow.

4 The solution in the non-resonance case

In what follows, under the initial condition Eq.(21) at the
non-resonance case. It is obvious that the coefficients of the
coupled system differential equations (18) are time-dependent,
we can avoid this problem through the following transformation:

A(t,n) = Ḡ1(t,n)e
i∆̃1
2 t ,

B(t,n) = Ḡ2(t,n)e
i(∆̃2− ∆̃1

2 )t ,

C(t,n−2m) = Ḡ3(t,n−2m)e−i(∆̃3+
∆̃1
2 )t ,

D(t,n−m) = Ḡ4(t,n−m)e
−i∆̃1

2 t . (22)

According to this transformation, we have

i
d

dt




Ḡ1(t)

Ḡ2(t)

Ḡ3(t)

Ḡ4(t)




=




ῡ1 0 0 −g̃1e−iφ

0 ῡ2 0 −g̃2e−iφ

0 0 ῡ3 −g̃3eiφ

g̃1eiφ g̃2eiφ −g̃3e−iφ ῡ4







Ḡ1(t)

Ḡ2(t)

Ḡ3(t)

Ḡ4(t)




(23)

where

ῡ1 = υ1+
∆̃1

2
, ῡ2 = υ1+(∆̃2−

∆̃1

2
),

ῡ3 = υ2− (∆̃3+
∆̃1

2
), ῡ4 = υ3−

∆̃1

2
, (24)

Under this initial condition (21), the solution of (23) are in
the form:

Ḡ j(t) =
4

∑
x=1

ℑ jxeiµxt , (25)

where



ℑ1x
ℑ2x

ℑ3x
ℑ4x


=

1
µxkµk j µ jq




ℜ1 −g̃1g̃3e−2iφ 0 0
ℜ2 −g̃2g̃3e−2iφ 0 0
ℜ3 −(ῡ3− g̃2

3) −ῡ3 −1
ℜ4 g̃3(ῡ3+ ῡ4)eiφ g̃3e−iφ 0







1
µk +µx +µq

µkµx +µxµq +µqµk
µkµxµq




(26)

whereµxk = µx− µk, x 6= k 6= j 6= q= 1,2,3,4 and

ℜ1 = −(ῡ1+ ῡ3+ ῡ4)g̃1g̃3e−2iφ ,

ℜ2 = −(ῡ2+ ῡ3+ ῡ4)g̃2g̃3e−2iφ ,

ℜ3 = −ῡ3
3 + g̃2

3(2ῡ3+ ῡ4),

ℜ4 = −(g̃2
1+ g̃2

2+ g̃2
3− ῡ2

3− ῡ2
4− ῡ3ῡ4)g̃3e−iφ ,

(27)

It is worth to mentioning that,µ j satisfy the quadratic
equation

µ4+ z1µ3+ z2µ2+ z3µ + z4 = 0, (28)

where

z1 = ῡ1+ ῡ2 + ῡ3 + ῡ4,
z2 = ῡ3ῡ4 + ῡ1(ῡ3+ ῡ4)+ ῡ2(ῡ3+ ῡ4)+ ῡ1ῡ2+ g̃2

1 + g̃2
2+ g̃2

3,
z3 = ῡ3ῡ4(ῡ1+ ῡ2)+ ῡ1ῡ2(ῡ3+ ῡ4)+ g̃2

3(ῡ1+ ῡ2)+ g̃2
2(ῡ1+ ῡ3)+ g̃2

1(ῡ2+ ῡ3),
z4 = ῡ1ῡ2ῡ3ῡ4+ ῡ1ῡ2g̃2

3+ ῡ1ῡ3g̃2
2+ ῡ2ῡ3g̃2

1.
(29)

The general expressions for these roots are given by
using MATHEMATICA. Having obtained the wave
function |Ψ(t)〉. Now, we are able to study the quantum
dynamical properties of the atom and field such as
Atomic population inversion, field entropy, purity,
fidelity. It is worth mentioning that choosing different
values of the detuning, the Kerr-like medium and the
time-dependent coupling leads to different physical
results.

4.1 Atomic inversion

Here, the atomic inversion is defined in the consider
system as the difference between the probabilities of
finding the atom in the upper state|3〉 and in the lower
state|1〉. The maximal state defined as the probabilities of
fining the atom in excited state or ground state are equal.
Using the wave function|Ψ(t)〉 or the matrix ,ρA(t), and
assuming that the atom starts from its excited state, the
atomic inversionW(t) is giving by [41,42]:

W(t) =
inf

∑
n=0

Pn
{
|C(t)|2−|A(t)|2

}
= 〈C|C〉− 〈A|A〉, (30)

wherePn is the distribution function for the field initially
in the coherent state. In what follows, we shall investigate
numerically the influence of the detuning parameters and
non-linear Kerr-like medium on the dynamical behavior
of the atomic inversion ,W(t), when the atom is initially
prepared in its exited state. In our computations, we
choose the initial conditions of the system as follows: the
mean photon numbern = 40, the relative phaseφ = Π

4 ,
the coupling constants are equalλ1 = 0.7, λ2 = 0.02,
λ3 = 0.7 and the detuning parametersχ = 0.

In Fig.(2) we have plot the atomic inversion against
the scaledλ t, where Figs.(2a-2d) show the effect of the
detuning parameter. We show that in the absence of both
the detuning parameter and the Kerr-like medium see
Fig.(2a), the atomic inversion shows fluctuations between
negative and positive values. The amplitude of
oscillations of atomic inversion decreases when the
detuning is increased, see Fig.(2b,2c). One observes that
the negative fluctuation of the atomic inversion is revoked
when the detuning parameters are increasing see Fig.(2d),
the oscillations ofW(t) is shifted upward which means
that more energy is stored in the atomic system.

Moreover, the amplitude of the atomic inversion
oscillations increases when the Kerr-like medium is
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increased, see Figs.(3a,3b). It is shown that the period of
revival increases as soon as the value of the fluctuation
frequency ,δ , parameter increases, see Figs.(4a-4d). It is
interesting to note that the disappearance of the negative
values of the fluctuations means that the energy is stored
mainly in the atomic system and very little energy is
shared with the field (see from Fig.(4d)), the behaviour of
W(t) changed drastically, however it is shown an increase
of the collapse time of the collapse which means that the
atom reach’s the maximal state.
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(a) χ=∆=0.
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Fig. 2: The evolution of the Atomic inversion of the atomic
system versus the scaled timeλ t for the coherent state with
m= 1, n = 40, φ = π/4, χ = 0,η1 = 0.7,η2 = 0.02,η3 = 0.7,
δ = 0.5 and different values of∆ .

4.2 The field entropy

In this section, we use the field entropy as a measure the
degree of entanglement between the field and the atom of
the system under consideration. Quantum entanglement is
one of the main parts for the execution of quantum
information processing devices [34,43]. However,
According to Araki and Leib theorem [44], for any two
components of quantum systems (for instance, the one
under consideration), the entropies are limited by the
following triangle inequality:

|SA−SF | ≤ S≤ |SA+SF | (31)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

λ t

(a) χ=0.01.

W
(
t
)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

λ t

W
(
t
)

(b) χ=0.02.

Fig. 3: The same as in (Fig 2) but for∆ = 0, and different values
of χ for W(t).

where the subscriptsA and F refer to the atom and the
field, respectively. The total entropy of the atom field
system is denoted byS. If the atom is in a pure state, then
in a suitable bases the density matrix is diagonal and has a
single unit element. For this cases,S= 0, while if the
atom is in a mixed state,S 6= 0. Since the initial state is a
pure state, thenS= 0, eitherSf the field entropy orSA the
atomic entropy is used to measure the amount of
entanglement between the two subsystems. When
Sf = SA = 0, the system is disentangled or separable and
both the field and atomic subsystems are in pure states.
[35,36]. Therefore, instead of the evaluation of the field
entropy, we can obtain the entropy of the atom. The
entropies of the atom and the field, are defined through
the corresponding reduced density operators by:

SA(F) = −TrA(F)(ρA(F) lnρA(F)). (32)

The reduced density matrix of the atom required for
evaluating Eq.(35) is given by

ρA = TrF |Ψ (t)〉〈Ψ(t)|=




ρ33 ρ34 ρ32 ρ31
ρ43 ρ44 ρ42 ρ41
ρ23 ρ24 ρ22 ρ21
ρ13 ρ14 ρ12 ρ11


 (33)
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Fig. 4: The same as in (Fig 2) but forχ = ∆1 = ∆2 = ∆3 = 0 for
theW(t).

The matrix in Eq.(33) are given, for instance, by

ρ11= ∑∞
n=0 pn|A(n, t)|2,

ρ22= ∑∞
n=0 pn|B(n, t)|2,

ρ33= ∑∞
n=0 pn|C(n−2, t)|2,

ρ44= ∑∞
n=0 pn|D(n−1, t)|2,

ρ12= ∑∞
n=0 pnA(n, t)B∗(n, t),

ρ13= ∑∞
n=0qn−2q∗nA(n−2, t)C∗(n−2, t),

ρ14= ∑∞
n=0qn−1q∗nA(n−1, t)D∗(n−1, t),

ρ23= ∑∞
n=0qn−2q∗nB(n−2, t)C∗(n−2, t),

ρ24= ∑∞
n=0qn−1q∗nB(n−1, t)D∗(n−1, t),

ρ34= ∑∞
n=0qnq∗n−1C(n−2, t)D∗(n−2, t),

(34)

where in all of the above relations,Pn = |qn|2 is the
distribution of the initial radiation field, andA, B, C andD
are the atomic probability amplitudes derived in Eq.(22).
Hence, the entropy of the field or atom can be obtained by
the following relation:

SF = SA =−
4

∑
j=1

Γj lnΓj . (35)

whereΓj , the eigenvalues of the reduced atomic density
matrix in Eq.(33), which given by following equation:

Γ 4−Γ 3+ℜ1Γ 2+ℜ2Γ +ℜ3 = 0, (36)

where

ℜ1 = ∑
j

[ρ j j ρkk−|ρ jk|2], j < k,

ℜ2 = ∑
j 6=k6=ℓ

ρ j j |ρkℓ|2− ∑
j<k<ℓ

ρ j j ρkkρℓℓ

− [ρ12ρ23ρ31+ρ12ρ24ρ41+ρ13ρ34ρ41+ρ23ρ34ρ42+h.c.],

ℜ3 = ρ11ρ22ρ33ρ44+ ∑
j 6=k<ℓ<m

ρ j j [ρkℓρℓmρmk+h.c.]+ ∑
j<k<ℓ<m

|ρ jk|2|ρℓm|2

− ∑
j<k6=ℓ6=m

ρ j j ρkk|ρℓm|2− [ρ12ρ23ρ34ρ41+ρ12ρ24ρ43ρ31+ρ13ρ34ρ42ρ21+h.c.],

(37)

It is worth to mention that the four roots of Eq.(36)
are given as shown previously by using MATHEMATICA
program. Now, we turn our attention to examine
numerically the effect of the detuning operator and the
non-linear Kerr-like medium on the dynamical behavior
of the field entropy, In Fig.(5) the maximal states are
occurring at the collapses and the maximum degree of
entanglement occurring for different values of detuning
parameter. We see that the entropy is stable for a long
time. This mean that the time of maximal state increases
as the detuning parameter is increased (see Fig.(5b-5d)).
In Fig.(6) it is shown that the entanglement increased
when the atom is papered in maximal state with a
non-zero the Kerr like medium. The results in Fig.(7)
indicate that the evolution of the field entropy against the
scald time (λ t) from which the DEM is studied for
different values ofδ , we have considered the absence of
the detuning parameters and Kerr like medium , we
observe that when the entropy is dynamically reduced to
the minimum values for absence the detuning and Kerr
like medium and the field can not reach to the pure state,
we see that forδ = 0 there is increase of the number of
oscillation, we have maximal state, so we have high
entanglement see Fig.(7a), but for increasingδ we arrive
to pure state and the entropy field reich to zero value. see
Fig.(7b-7d).

5 The Purity

The purity defines a measure on quantum states, giving
information on how much a state is mixed. It is well
known that state entanglement and mixture state are
properties central to quantum information theory. The
relation between entanglement and mixture state have
attracted much attention. The purityP(t) of the system
may be used as a good tool to give information about the
entanglement of the components of the system. For this
reason we devote the present section to discuss the purity
of the system under consideration. The purity of the field
state can be determined from the quantity [45,46]

P(t) = Tr(ρ2(t)), (38)
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Fig. 5: The evolution of the Field entropy of the atomic system
versus the scaled timeλ t for the coherent state withm= 1, n=
40,φ = π/4, χ = 0, η1 = 0.7,η2 = 0.02,η3 = 0.7, δ = 0.5 and
different values of∆ .

whereρ is the field-reduced density matrix. For a pure
state, we haveP(t) = 1 i.e. the purity takes its maximum
value of one if the state is a one-dimensional projector,
while for a maximally mixed state, i.e., for a total mixture
ρ = 1

d , the purity reaches its minimal valueP = 1
d where

d is the dimension ofρ , i.e, the minimum value of this
quantity is bounded by the inverse of the dimension of the
system Hilbert space. A necessary and sufficient
condition for the ensemble to be described in terms of a
pure state is thatTr(ρ2(t)) = 1, in this case clearly a
state-vector description of each individual system of the
ensemble is possible. For the caseTr(ρ2(t))< 1, the field
will be in a statistical mixture state. However, for a
maximally mixed state ensemble corresponds to
Tr(ρ2(t)) = 1

2. From Eq.(33), it is easy to show that

P(t) = ρ2
11+ρ2

22+ρ2
33+ρ2

44+2|ρ12|2+2|ρ13|2+2|ρ14|2+2|ρ23|2+2|ρ24|2+2|ρ34|2.
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Fig. 6: The same as in (Fig. 5) but for∆ = 0, and different values
of χ for Sf .

To do the analysis and discuss the purity, we have
plotted the purity in Figs.(8,9,10) against the scaledλ t for
both the atomic and field subsystems for some chosen
parameters, in Fig.(8a) Corresponds to the absence of
both Kerr effect and detuning, shown that irregular
oscillatory behavior for the time evolution of the purity, it
is obvious that the purity of the system takes longer time
to be pulled down compared with the effect of detuning
parameter only. To visualize the influence of the detuning
on the purity, we set three different values of detuning
(χ = 0, ∆1 = ∆2 = ∆3 = 0), with all other parameters, we
notice that the purity becomes stable and less than 0.5,
and the field is in statistically mixed state. Generally, we
note thatP(t) ≃ 0.5 for the specifically values of the
detuning parameters seen in Figs.(8b-8d). This means that
the purity occurs in both subsystems at the same time and
precisely at the same rate.

To visualize the influence of Kerr-like medium on the
purity, see Figs.(9a,9b) respectively; Corresponds to the
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Fig. 7: The same as in (Fig. 5) but forχ = ∆ = 0 for the Field
entropy.
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Fig. 8: The time evolution of Purity of the atomic system versus
the scaled timeλ t for the coherent state withm = 1, n = 40,
φ = π/3, χ = 0,η1 = 0.7,η2 = 0.4,η3 = 0.8, δ = 3 and different
values of∆ .
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Fig. 9: The same as in (Fig 8) but for∆ = 0, and different values
of χ .
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Fig. 10: The same as in Fig.(8) but for∆1 = 2,∆2 = 1,∆3 = 2,
and for different values ofδ .

presence of Kerr medium and exact resonant condition
(χ 6= 0, ∆1 = ∆2 = ∆3 = 0). We plotted purity in Fig.(9a)
By takingχ = 0.001. we see that purity has increased and
many sharp peaks of high values appear with some kind
of periodicity. Also, we note that purity has more revivals,
and there is not entanglement between subsystem. But for
χ = 0.00001, it is noticed that in Fig.(9b) after a sufficient
time, the purity becomes stable and less than 0.5, which
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leads to decrease in the value of purity and the field is in
statistically mixed state, So the amplitude of the purity
decreases as the non-linear Kerr-like medium decreases.

In Fig.(10), the presence of time-dependent coupling
leads to decrease in the value of purity. With the increase
in the values ofδ the value of purity also begins to increase
seen in Fig.(10a), as well as Figs.(10b-10d) forχ = 0 and
∆ = 0), after a short time, With the increase of the values
of δ , the purity occurs in both subsystems, and it becomes
stable and less than 0.5. So that the field is in statistically
mixed state and there is an enhancement of exchanging
energy between the atom and the field.

6 The Fidelity

The fidelity is an important concept in quantum optics
and it is the good measure of distance between quantum
states. It has been adopted broadly as an important
physical parameter in quantum communication and
quantum calculations. We calculate the fidelity of the
transition between a pure state|Ψ (0)〉 and the final state
described byρ(t) = |Ψ(t)〉〈Ψ (t)|. This is equal to the
square root of the overlap between the state|Ψ(0)〉 and
the state defined byρ(t). The fidelity is given by the form
[47,?],

F(t) =
√
〈Ψ (0)|ρ(t)|Ψ(0)〉= |〈Ψ(0)|Ψ(t)〉|, (39)

Otherwise, the fidelity of quantum state is the degree
to keep the information of the initial state in a final state
and is given by the relation [50,49,51]

F(ρ1,ρ2) = [Tr(
√

ρ1ρ2
√

ρ1)
1
2 ]2 = ∑

i

√
λi , (40)

whereρ1 andρ2 are the density operators corresponding
to initial and final states,λi is the eigen values of

ρ
1
2
1 ρ2ρ

1
2
2 . F varies between 0 and 1. When ,F = 1, then

the initial state and the final state are coincided, indicating
that two density matrices equal to each other. In this case,
an ideal transmitting process takes place see
Figs.(11a,12a). forF = 0, it means that corresponding to
initial and final states are orthogonal each other,
indicating that the quantum information (i.e. quantum
state) is totally distorted in the transmission. If
0< F(ρ1,ρ2) < 1, indicating that certain distortion exists
in the transmission process of information. if att = 0 the
atom is in the excited state and the cavity field is prepared
in the coherent state, then the time evolution of the system
is described by the state vector Eq.(10) the Fs(t) , Ff (t)
andFa(t), (s, f anda) denote the system, field and atom,
respectively, as well as the initial condition of system, the

Fa(t), Ff (t) andFs(t) can be respectively expressed as

Fs(t) =

∣∣∣∣
∞

∑
n=0

PnCn−2(t)

∣∣∣∣
2

,

Fa(t) =
∞

∑
n=0

Pn

∣∣∣∣Cn−2(t)

∣∣∣∣
2

,

Ff (t) =

∣∣∣∣
∞

∑
n=0

qnq⋆n+2An(t)

∣∣∣∣
2

+

∣∣∣∣
∞

∑
n=0

qnq⋆n+2Bn(t)

∣∣∣∣
2

+

∣∣∣∣
∞

∑
n=0

pnCn−2(t)

∣∣∣∣
2

+

∣∣∣∣
∞

∑
n=0

qnq⋆n+1Dn−1(t)

∣∣∣∣
2

,

(41)

It is obvious that the fidelity of quantum state for the
atom, the field, and the system is related to the coupling
constantλ of atom field, Kerr-like medium of the initial
field. Since it is a kinetic system, the fidelity also depends
on the time t. Substituting Eq.(10) into Eq.(41), one can
get the resulting expressions of fidelity for the atoms, the
field, and the system. To visualize the influence of the
fluctuation frequencyδ on the Fidelity as a function of
scale timeλ t The numerical results are shown in Fig.(l1)
for different values of δ , for the special case
χ = 0,∆1 = 5,∆2 = 10,∆3 = 1, see Fig.(11a) forδ = 0 it
is observed thatFs ≈ 1 (solid line)(Fig.11a) andFa ≈ 1
(solid line)(Fig.11c) there are high fidelity, almost thereis
no interaction between field and atom, namely the
interaction of the field with atom is shielded by the
detuning.

We find that theFs(t),Ff (t) dependence on time, the
fidelity begin the value 1 but it sharply drops after short
time t = 3 to almost a constant value (collapse period)
(sudden death). seen in Figs.(11b,11e) but att = 10 the
fidelities go to along the collapse period, however, it
builds up towards a peak during the revival period and
drops again to the constant value until it reaches a second
lower peak at the second main revival. But we find the
effect of kerr and detuning onFa(t) are very important as
we see in Figs.(11c,11f) the behavior of function
completely changed by effect Kerr-like medium and
detuning. In Fig.(11a,11c)forδ = 1 (dotline), we find a
big deep gabs values as strong effect of fluctuation
frequencyδ onFs(t) andFa(t), fidelities.

To visualize the influence of the detuning parameter
on the Fidelity, the evolutions of the fidelity for (the atom,
the field and the system) with the coherent state. Fig.(12).
When χ = 0,∆1 = 4,∆2 = 5,∆3 = 0 (dashed line),
∆1 = 10,∆2 = 5,∆3 = 2 (dot line)and
∆1 = 0,∆2 = 2,∆3 = 0(solid line). shown there is
dramatic behavior of the three Fidelity as we see in
fig.(12a-12c), it is observed thatFs(t) ≈ 1 (solid line)
there are high fidelity, almost there is no interaction
between field and atom, namely the interaction of the
field with the atom shielded by the effect of detuning. But
Fs(t) and Fa(t) has strong interaction, and decrease
fidelity. as in Fig.(12b) there is delay ofFf (t) on the
fidelity of quantum information for the field. The time
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evolutions of fidelity of quantum information obviously
show the fidelity decreases gradually. It means that the
distortion increases gradually, the interaction between the
field and the detuning increases, and the fidelity of the
system decreases.

To visualize the influence of the Kerr Medium on the
Fidelity of Quantum State. TheFa, Ff and Fs with the
different values of Kerr coefficient and are plotted in
Fig.(13). It is obviously shown from Fig.(13) that the
periodicity of the evolutions of fidelities of quantum
information in the weak initial field is introduced by Kerr
medium. With increasing the Kerr coefficient, the
oscillation frequencies of the fidelitiesFf andFs increase,
while that of Fa decreases obviously, indicating Kerr
medium relatively weakens the relationship between the
field and the atom. Ifχ = 0.03,0.02,0.01, the evolutions
of the fidelities of quantum information exhibit the
oscillations and perfect in Figs.(13a-13c) it is observed
that Fs ≈ 0 see Figs.(13a,13b) (solid line) there are low
fidelity, with little oscillations, implying that the strong
initial coherent field greatly weakens the fidelities of
quantum information. almost there is interaction of the
field with the atom is shielded by effect of Kerr-like
medium see Figs.(13a,13b). Our results show that the
fidelity can provide more detailed information about the
system behavior than some global quantities such as the
field entropy.

7 Conclusion

We have examined the properties of the entanglement
between a four-level atom and a single-mode cavity field.
The model is generalized by assuming the existence of
the detuning parameters, the multi-photon process, the
Kerr-like medium and the intensity dependent coupling.
The general expressions of the conservation quantities of
motion are given. The exact solution for this model is
given when the atom-field is initially prepared in a
coherent superposition state. We have explored the
temporal evolution of the atomic inversion, the field
entropy, purity and fidelity are calculated. For the atomic
inversion, we have shown that the atom stay in maximal
entangled state when specially values of detuning and the
Ker like medium. The degree of this entanglement has
been measured by the field entropy. The purity occurs in
both subsystems at the same time for a maximally mixed
state and we found it in statistically mixed state. Our
results show that the fidelity can provide more detailed
information about the system behaviour than some global
quantities such as the field entropy.
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Fig. 11: The time evolution of the Fidelity for versus the scaled
time λ t with m= 1, n̄= 20, η1 = 0.1,η2 = 0.02,η3 = .08, φ =
pi/4 and for different values ofδ .
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Fig. 12: The same as in (Fig 11) but forδ = 0.5, χ = 0 and
different values of∆ for Fidelity different values of∆ .
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Fig. 13: The same as in (Fig 11) but for∆ = 0, and different
values ofχ for Fidelity.
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