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Abstract: This paper is concerned with the coupling of the inverse lpraltheory with the thermostatted kinetic theory. Spedifjca
an inverse problem is proposed where the data vector cemist known measures, the data kernel isia n matrix which depends
on the distribution function vector that is solution of thetmostatted kinetic theory model, and the unknown sours@aoal consists
of an-dimensional vector. In particular the paper focuses orutteer-determined inverse problem, namely n, and the solution
is obtained by employing the principle of maximum Shannotiagy of the information theory. Applications refer to thadncial
market and specifically to the derivation of the informatignich triggers the evolution of global stock market indexagure research
directions are also discussed into the last section of therpa
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1 Introduction the global variance but not the local variance, thus
allowing to identify more parameters. Volatility models
Since the last century scholars have propose u%h as ARC.E/GAR,[?H,[ belcct)_me .Velr.ykpgpt'“”irh amoEg
mathematical models for the analysis of complexriCtCn ST e e e recent contributions in this field
phenomena occurring in life sciences systems, includinqS referred to . )
pape] and the references cited therein.

in the finance field. A complex system consists of he main aim of this paper is twofold. On the one hand
inhomogeneous and adaptive agents that interact bot . papel . '
e paper is concerned with the definition of an inverse

with each others and the outside environmeljt The S
behavior and macroscopic features of the system are th roblem coupled to the thermostatted kinetic theory. On
e other hand, the new framework is proposed for the

result of the collective nonlinear interactions occurraig . . . . X )
the microscopic scale2f4]. The emerging behavior of mode_llng and analy§|s of flnan.C|aI m'arkets with special
’ gttentlon to the signals which trigger the market

the system depends on both the interactions and thevolution The arguments of the inverse theory and the
ability of the particles to develop specific and aUtonOmousthermostétted kingtic theory are thus the main syub'ects of
strategies (active particles). Among the complex systems y )

the financial market has recently attracted many attentionfhe present paper. . .
i . . The inverse theory is an approach well established in the
The first financial market model dates back to

Black-Scholes. The model proposed if] [allows to literature P-11]. A universal formal definition for inverse

lculate th | f stock oni b ideri ik problems does not exist. However an inverse problem is
caiculate the value ol Stock oplions by CONSIAEring a fskycq;q ill-posed if there is no solution, or the solution is not
asset (the stock) and a riskless asset (the cash). In 198

; . . hique or unstable, namely arbitrarily small errors in the
R. Engle mtrpqluces the AutoRegress_lve Cond't'onalmeasurement data may lead to indefinitely large errors in
Heteroskedasticity (ARCH) process][in order to

. . . .~ _the solution. An inverse problem is called a source
analyse the financial data series. In statistics,

het kedasticity is the fact that the local : fproblem if it is required to determine the source. The
eleroskedasticity 1S the fact that the local variance 0theory of inverse and ill-posed problems is widely used in
stock prices is a function of time, and the volatility is the

measure of this variance. I7][Bollerslev introduces the phySIr(;S (astror!omy, quelmtul[”'n mef:ha;rylcsl, acousutg[:d:s), n
Generalized ARCH (GARCH) process, keeping constantgeOp ysics (seismic exploration, electrical, magneti an
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gravimetric prospecting), medicine (X-ray and NMR e.g. the Kolmogorov-Sinai entropy, the Ledrappier-Young
tomography), ecology (air and water quality control, Entropy, the Pesin Entropy, the topological entropy, the
space monitoring), economics (optimal control theory, Von Neumann entropy, see the review paj2&j.[

financial mathematics), se&d] and the references cited The present paper is divided into 5 more sections which
therein. follow this introduction. Specifically Section 2 deals with
The discrete thermostatted kinetic theory has beerthe fundamentals of the discrete thermostatted kinetic
recently proposed in1f3] to model the evolution of a theory. Section 3 is devoted to the definition of an inverse
complex system composed of particles which are able tgroblem which is based on the distribution function
express a strategy. According to the strategy, the pasticlevector that is solution of the thermostatted kinetic model.
are divided into different subsystems called functional Section 4 is concerned with the resolution of the inverse
subsystems. The strategy is modeled by introducing in theroblem by employing the methods of the information
microscopic state of the particles a variable, calledtheory and specifically the principle of the maximum
activity, which can attain discrete real values. The Shannon entropy. Section 5 focuses with applications and
evolution of the system is obtained by employing a specifically with the derivation of the signals which
statistical approach which is based on the definition oftrigger the time evolution of global stock market indexes.
distribution functions. Interactions among the particlesFinally Section 6 concludes the paper with references to
include conservative events (changing into the magnituddurther research perspectives.

of the activity variable) and nonconservative events

(proliferation and mutation of particles). Differentlyofin

the classical framework of the generalized kinetic theory,2 The discrete thermostatted kinetic theory

the thermostatted framework allows to model systems

which operate out of equilibrium, namely subjected to This section deals with the basics of the discrete
external force fields, and in order to ensure the existencéhermostatted kinetic theory approach that has been
of a nonequilibrium stationary state a dissipative term,recently proposed in 13 for the modeling of a
called thermostat, is introduced. The new thermostattechonequilibrium complex system. The main aim of this
framework has been employed for the modeling ofsection is to introduce the reader to the underlying
pedestrian dynamics into a metro statidd][ It is worth  mathematical framework which will be coupled with an
stressing that the thermostatted framework generalizes thinverse problem.

kinetic approach that has been proposedlf for the  Let.” be a complex system composed of interacting
modeling of vehicular traffic. The thermostatted kinetic particles which are able to express a strategy or function
theory has been also derived in the case of a continuougactive particley. The system is assumed to be
activity variable. In particular the continuous homogeneous with respect to the space and velocity
thermostatted kinetic theory framework has beenvariables. Accordingly, the microscopic state of the
employed for the modeling of biological systems, and particles consists of a scalar variahlg called activity,
specifically for the treatment of keloid1§] (thus which can attain discrete values, namely

generalizing the framework proposed iti7]) and for the

antigen recognition process by the immune systég [ ue Dy ={ug,Up,....,un}, U ER.

(see also the recent review papé#]). The continuous . ) ) ]
framework has been also investigated for the derivation offhe time evolution of the systenv” is described by
The present paper deals with applications in finance of thdunction:
inverse problem theory coupled with the thermostatted

kinetic theory. Specifically the interest focuses on the
reconstruction of §ources/ signals W.hiCh trigger the .markeAccording to the particle strategy, the overall systefiis
evolutions. The_lnverse_problem IS tregted vy|th|n the givided into n € N subsystems called functional
methods of the information theory and in particular the subsystems. The time evoiution of theh functional

principle of maximum Shannon entropy. In information subsystem, fori € {1,2,...n}, is described by the
theory, entropy is the measure of amount of informationfo”OWing distribution function:

that is missing before reception. The principle of
maximum Shannon entropy states that subject to precisely fi(t) = f(t,u) :[0,+w) = R,.

stated prior data, the probability distribution that best

represents the current state of knowledge is the one witlhet f = f(t) = (fi(t), fa(t),..., fa(t)) € R" be the
largest information theoretical entropy. The readerdistribution function vector. The discret@-th order
interested in further details is referred to the review moment of the system is defined as follows:

papers 21-24] and the references cited therein. It is

worth mentioning that further computable entropy _ pe.

measures have been proposed in the pertinent literature, Eplfl(t) = 3 u'fi(t), peN. (1)

f = f(t,u):[0,40) x Dy — R;.

]
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In particular the density, the linear activity-momentum, (u‘f,ug,...,u,ﬁ’). In particular the term-a f;, where
and the activity-energy are obtained fore= 0, p= 1, and

p = 2, respectively. n
The time evolution of the functiorj depends on the UP-(J[f|+F) (3] +F)
. . . . . . . . =
particle interactions which consist of jumping into the a(J[f],Ep,F) = : = a (8)
activity variable values and particle-jumping among the Ep[f] uPf;
functional subsystems. Specifically the gain particle term i; '
Gif](t) and the loss particle termL;[f](t) read,
respectively: is the dumping term that makes the dynamic dissipative
N thus avoiding the unbounded increase of thth order
Z z Nk Fr () fi(t), (2)  moment. The ternu is called the thermostat term which
H=1K=1 allows the system to reach a nonequilibrium stationary
n state in the long-time limit26-28].

z Nik f(t) (3)

wherenpy : D2 — R, models the interaction rate between 3 The underlying inverse problem

the particle with state, and the particle with state; the

function AL, = A(Un, Uk, i) : D3 — R, denotes the This section is devoted to the inverse problem definition,
probability density that a particle with stalig falls intoa  which is based on the thermostatted kinetic theory
stateu; after an interaction with a particle with staig In framework that has been revised in the previous section.
particular, the transition functioA, has the structure of The following main definitions will be used in what

a probability density with respect to the variabjethen: follows.
n . el

P Definition 1.Let 27 be the space of the source

ziAhk_ 1, ¥hke{12...,n} (4) s: [0,+») — R and .74 be the measurements space

(observed data). Let As74 — 7% be an operator (data
The active particles that are able to change subsystemisernel), and u € % an observed data. An inverse
(jJumping subsystem process) can be modeled with thgroblem consists in finding a solutionss.7#; of the
following operator: following problem:
p=A[s. ©)

|
= h;k;nhk Pk fn(t) fi(t), ) Definition 2.The inverse problen®y is said well-posed in
the Hadamard sense if:
whereg), is the jumping rate into thieth subsystem, due
to interactions between particles of thth subsystem and
particles of the&k-th subsystem.
Bearing all the above in mind, the time evolutionfpf

fori €{1,2,...,n},is described by the following equation:

1.A solution s exists for any in the observed data
space;

2.The solution s is unique;

3.The inverse mapping — s is continuous.

df This paper is concerned with the following inverse
d_tl = J[f] + Mi[f] = Gi[f] — Li[f] + Mi[f], (6)  problem.Letme N* and
which is calledthe discrete kinetic theory framework at p(t) = (pa(t), H2(t),..., Hm(t)) 1 [0,+o0) — R™*
equilibrium

In order to model complex systems out of equilibrium, the them-dimensionatiata vector and
external force field acting on the subsystems needs to be _ mn
defined. Accordingly, let K[f]:[0,+) = R

F(t) = (Fa(t),Fa(t),...,Fa(t)) : [0, +-00[— R the data kernel matrix which contains the distribution
function vectorf solution of the discrete thermostatted

be the external force field that maintains the system out okinetic theory framework 7). The present paper is
the equilibrium. The time evolution off;, for  concerned with an inverse problem, which consists in

ie{1,2,...,n}, now reads: finding then-dimensional sources (signals) vector
dii _ _ UP-(J[f]+F) $:[0,+00) — R™
H_Jl[f]+M.[f]+F.—<W , (D

solution of the following problem:
which is calledthe discrete thermostatted kinetic theory

framework whereJ[f] = (J1[f],J2[f],...,dn[f]) and UP = p(t) = KI[f](t)s(t), (10)
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where section aims at constructing a solution of the inverse
K1a[f] Kaoff] ... Kan[f] problem (0) in the under-determined case and by
Ka1[f] Koo[f] ... Kanlf] employing the maximum Shannon entropy method.
K{f]= : ’ (11) The concept of entropy has been employed in
' different fields and different type of entropy has been
K [f] Kiref] Kinnf] considered, among others, the Clausius thermodynamics
and entropy R9], the Boltzmann/Gibbs statistical mechanics
H1 S entropy B0 and the Shannon information theory
H2 entropy B1, 32]. In thermodynamics, if a certain small
H=1 .1 S= (12) amount of headQ is supplied quasi-statically to a system
“'m Sn with an absolute temperatufg then the entropss of the

It is worth stressing that the inverse probled0)(

belongs to the class of the linear inverse problems. In
particular the linear inverse problem is well-posed if 1
and 2 hold. IfK is finite-dimensional, the corresponding

system will increase according to the following relation:

2Q

ds= ==, (17)

inverse prob'em is We”_posed if either the property 1or 2Whered represents an infinitesimal small Change of a state

holds.

Definition 3.The inverse problem 10) is said

function andd represents that of a path function.
In statistical thermodynamics, the Gibbs thermodynamic
entropyS of a thermodynamic system reads:

under-determined (respectively over-determined) if the

number of measures m is less (respectively more) than the

number of unknown sources n.

Example lAssume that the complex system
characterized by the following relations:

=) = 3 KOS, (13)

n

Ha[E2](t) = ;u? fit)s(t). (14)

Accordingly, the measurg; is related to the densit¥

and the measurg, is related to the activity-energiy.
Bearing all above in mind, we have:

u:[ﬁ;y K[]:|:f1 f ... fn

uZfy usfp ... u2fn |’ (15)
and the unknowns vector reads:

s=1.1- (16)

S

Itis worth stressing that i = 2, and the determinant of the

matrixK [f] is different from zero|{1| # |up| andf1(t) # 0,

fa(t) # 0, Vt € R,) the inverse problem13-14) admits
a unique solution (Cramer system).nf> 2 the inverse
problem (3) is under-determined.

4 The maximum entropy principle solution

S=-ks) pilnp; (18)
|

is Where the summation is taken over each possible state

pi is the probability of a microstate anklz is the
Boltzmann constant. In statistical mechanics, the
Boltzmann entropy is an approximation of the Gibbs
entropy to an ideal gas, namely is obtained under the
assumption that all the component particles of a
thermodynamic system are statistically independent (the
probability distribution of the system as a whole then
factorises into the product dff separate identical terms,
one term for each particle). Accordingly:

Ss=-Nkg ) pilnpi. (19)

In information theory, the Shannon entropy(X) is a
measure of the uncertainty associated with a discrete
random variable X = {x1,X,...,Xn}. Specifically
H(X) = E(I1(X)) whereE is the expected value ardis

the information content oK (which is itself a random
variable). If p denotes the probability mass functionXf
then the entropy can explicitly be written as:

HOX) = 5 p0x)1(6) = = 3 P logy L), (20

whereb is the base of the logarithm used.

In [33] Jaynes has derived the principle of maximum
entropy from Shannon’s expression as a new type of
subjective statistic inference to set up probabilistic
distributions based on partial knowledge. The principle of
maximum entropy, allowing the least biased estimation
possible, made entropy a concept independent from
mechanical hypotheses and coherent with quantum

This section is concerned with the problem to find a mechanics.

solution of the inverse probleml@). Specifically the

It is worth stressing that further scientific domains where
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the entropy theory has been employed include hydrologiavith f solution of the discrete thermostatted kinetic theory
and geomorphic sciences3q, geography 35, 36, framework ). Accordingly the lagrangian functio&’[f]
economy B7], sociology B8]. reads:

As already mentioned, this section describes how to
solve the inverse problenil@) by using the maximum n n
Shannon entropy method. As known the information that-Z[f](S,A0,A1) = — ZS Ins —(Ao—1) (le - 1)
an event occurs varies inversely with the size of the i= i=
probability. An event with a very low probability that n
occurs gives a great deal of information, whereas when an —A1 (Ll - Z\Ki [ﬂS) : (26)
event with a high probability occurs, this gives less i=
information. Accordingly, information varies inversely
with probability. Assume that there are two independentwhere (Ao — 1) and A; are the related Lagrangian
events with probabilitiep; andp, whereps + po = 1. If multipliers. Differentiating the lagrangian functiof’[f]
the two events occur together with probabilityp,, the  with respect to each sourseand setting the result equals
information gained would be proportional tgd; p,, and  to zero yields:
since the information should be additive, one should have
that the information gained is/p1 + 1/p». Accordingly 0.21f]

the functionl should satisfy the following relation: s Ins — Ao —A1Ki[f] =0, i€{1,2,....n}.
1 1 1 . . (27)
I (—) =1 (—) +1 (—) . (21)  Accordingly the probability model reads:
P1p2 P1 P2
The only solution of the above equation is(1rip) s[f](t) = exp(—Ao— A1Ki[f]), i€{1,2,....,n}. (28)

(information gained by the occurrence of the event or

equivalently a measure of the uncertainty of the eventrpe aphove formula explains why the first multiplier has
occurring). In order to have a value for the overall gqp sef\o — 1. The values of the parametets and A

information for the two events, the expected value can be&.an pe determined by solving the model according to the
computed, which reads: constraint equations. In particular:

H(2) = —p1In pr— pzIn p2. (22) .
If the number of events is and the related probability is exp(Ao) = ziexp(—)\lKi [f]).

pi, for i € {1,2,...,n}, the average information is the 1=
expected value of this series, which can be written as

follows: The exponential model can be rewritten as follows:
n
H(n)=— iInpi. 23
(n) i;pl Pi (23) exp—AKil) n B
. . . . sffj(t) = 7—————, le =1 (29
The functionH is the standard information entropy of exp—AKi[f]) =
Shannon 31], which is equivalent to the i; 1

Boltzmann-Gibbs entropy. The Shannon entro@p) (
varies from a minimum value of zero to a maximum value
of In(n). Specifically whenH = 0, then one event

dominates, that ispi =1 andp =0 for allk # i; when i o) ion wheres — 1/n. In particular the entropy for

H = In(n), thenp; = 1/nfor all . ... this model is at its maximum when
The maximum Shannon entropy method consists in

choosing a distribution that is the most likely or probable n

within the constraints, because it is easy to show thatthe - — 213 In(exp(—Ao — A1Ki[f])) = Ao+ A1
maximum entropy is an approximation to the probability =

of a particular macrostate occurring among all possible

arrangements (or microstates) of the considered events. This maximum is a function of each multiplier and its

Let u € R,. Bearing all above in mind, the inverse constraint, with the implication that entropy is a function
problem consists in findingn sourcess under the  f the spread of the distribution, which is determined by

It is worth stressing that if the Lagrangian multiplier
A1 = 0 then the exponential model collapses to a uniform

following constraints: the constraint.
n Bearing all above in mind, the generalized problem can
C1) 213 =1 (24)  pe solved. Specifically, lett = (1, llo, - .., thm) " be the
1= . m-dimensional measure vectos,= (Sr_L,Sg,...,Sn)T the
_ , n-dimensional source  vector, with m < n
o) b= i;K' UEE (25) (under-determined system). The maximum Shannon
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entropy method allows to find the general model for theTabIe 1: The functional subsystems, the activity variable, and the

SOUrCes:
1 m
s = ZH 0 exp —i;)\iKil[f]
1 m
==z P\ "M e
__1 m)\-K- f
Sh= Z[flA) exp _i; iKin[f]
whereZ[f] is the partition function that reads:
Zf)\:n —m)\iKi'f , 31
[f](A) glexp< i; M]) (31)

and A; is the Lagrange multiplier obtained by replacing
the sources in the equation10), namely the vectoh =
(A1,A2,...,An) is solution of the following problem:

O(nZIA)) = —u, (32)
and then
nz
— 2l 4+ u=0
dAp (33)

5 Applications: The financial market

The thermostatted kinetic theory framework coupled with

the inverse problem theory can be considered as a gener

paradigm for the modeling of complex systems. In
particular an important application is related to the

financial market which is composed by traders. A trader

denotes an individual who buys and sells financial items

e.g. stocks, bonds, metals, agricultural products. The
price reflect supply and demand thus information defines

the market evolution.
Bearing the new framework in mind, the systet

under consideration is the international market, which is

distribution functions.

Subsystemg Activity Distribution function
New York | Trading ability f1(t)
London Trading ability fa(t)
Paris Trading ability fa(t)

The table of gamess, is derived according to a
leader-follower dynamics. Specifically:

e If h =k, namely the tradert and k have the same
ability, the interaction does not imply a change in their
ability, then:

An={

e The dollar has the biggest influence on the other markets
considering that it is the reference currency. Accordingly
the subsystemS, andS; tends to followS;. The table of
games is thus defined as follows:

1lifi=h

0 otherwise "h€ 11,23}

(34)

_ , 1-aifi=1
o=y =1 O ifi=2 (35)
0 ifi=3
and
_ _ 1-Bifi=1
B ifi=3

where O< a,f < 1.

e The Brexit appears as an important factor for the
evolution of the subsysten$, considering that it is
expected that the London market can plummet.
Accordingly the table of games/z, and 7, follow S
8escribing a significant decrease in the market evolution:

_ _ 0 ifi=1
gy =g =X 1—yifi=2 (37)
y ifi=3
where O< y < 1.

Bearing all the above in mind, the evolution equations of

composed by three markets (functional subsystems): NevU1e mode| read:

York (S1), London &), and Paris $3), where the activity
variable represents the trading ability, see the tablEhe
system is modeled according to the following main
assumptions:

A1) The system operates at equilibrium, thign= 0, for
allie {1,2,3}.

Az) The interaction ratg;j, fori, j € {1,2,3}, is constant.

Ag) The traders do not change their regional market, then%

i =0, foralli,h,k € {1,2,3}.

%(t) = (1—a)naifz2(t) fr(t) + (1 — B)naafs(t) fa(t)
—ani2f(t) fa(t) — Bnusfu(t) fa(t),
9% 1) = anuah) flt) + (1 Pt fl0)
—(1—a)n21fa(t) fa(t) — ymasfa(t) fa(t),
(t) = Bnaafu(t) fa(t) + ynasfa(t) fa(t)

—(1=B)naafa(t) fa(t) — (1 - y)ns2fa(t) f2(t).

dt
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The inverse problem is now defined. The informationimproved, ara priori distribution function of the sources
which triggers or modifies the market evolution is can be defined and the relative entropy method can be
assumed to be a source/sigisét) = (s1(t),s(t),s3(t)), applied B9-42. Precisely if the prior distribution is
where eachs refers to the markei and such that denoted by{q;}, then the information (also known as the
s1(t) + (1) + s3(t) = 1. The measurg is related to the  discrete Kullback-Leibler divergence) reads:

stock market indexwhich tracks a portfolio of stocks.

Specificallyu is a global stock market index, such as the | — d n pi

MSCI World or the S&P Global 100, which includes —i;p. q /)

stocks from multiple markets. Accordingly the evolution B

of u is assumed depends on the dynamics among the this context, the distributiofip; } is called the posterior

three financial markets as follows: distribution.| takes values between zero and infinity, and
3 itis zero whenp; = g, Vi, which means that no difference

p(t) = ZKi [flt)s(t), (38)  exists between prior and posterior distributions (no
i information is gained by moving from the prior to the

posterior). It is worth stressing that the concept of digcre
whereK;[f|(t) = fi(t) andf = (f1, f2, f3) is solution of the  entropy presents some restrictions, including the fadt tha
above defined model. Specifically the inverse problemdepends om (see P4]), then in some applications appear
reads: more suitable the use of a continuous random variable
and thus a continuous distribution function. Accordingly
p(t) = fa(t)su(t) + fa(t)so(t) + fa(t)ss(t). the inverse problem needs to be defined within the
] ) . ) framework of the continuous thermostatted kinetic theory,
The solution of the inverse problem is thus obtained byynere the activity variablel € D, C R is continuous,

employing @0) and it reads: see [L6, 18. In this case each distribution function writes
SIT(0) = expl—Ao(t) — () (1)), i€ {123}, (39) f(t,u) and the inverse problem now reads:
where(Ao, A1) is solution of the following problem: p(t) = /Ot K[f](t,u)s(u)du, t € [0,+e),  (40)
o(t) = In (ef)\l(t)fl(t) e MR 4 ef)\l(t)fg(t)) ’ where N
i fiexp(—Ao(t) — (D) fi(1) = H(t). _#}(tcj)in_qefrﬁgi%)r{;fzcggté\}éf:lt"&%)% e RS
1= —%:*I?u — R js then-dimensional sources vectare

A numerical analysis can be performed for the quantitative
resolution of the inverse problem and for a future tuning of
the model with the empirical data.

—K[f](t,u) : [0,4) x Dy — R™" is the data kernel
matrix (Green’'s function), which contains the
distribution functions vector solution of the
continuous thermostatted framework.

6 Research perspectives The continuous inverse problem() belongs to the class
of Wolterra integral equations of the first kin@][ The

The present paper has been devoted to a furthefeader interested to some algorithms of resolution is

generalization of the discrete thermostatted kinetictheo referred to the book J0], the paper 43 and the

proposed in 13] in order to resolve inverse prob]ems references cited therein. However, the solution of the

which are set within this framework. The inverse problem inverse problem40) can be investigated in the context of

has been resolved by employing the methods of thehe information theory by means of the definition of a

information theory and specifically the principle of the continuous Shannon entropy measure and a continuous

maximum Shannon entropy_ The solution is based on delative entropy. This investigation constitutes the pasi

probabilistic approach considering that the unknownfuture works.

source/signal is assumed to be a discrete random variable

vector.
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