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Abstract: This paper is concerned with the coupling of the inverse problem theory with the thermostatted kinetic theory. Specifically
an inverse problem is proposed where the data vector consists of m known measures, the data kernel is am×n matrix which depends
on the distribution function vector that is solution of the thermostatted kinetic theory model, and the unknown source or signal consists
of a n-dimensional vector. In particular the paper focuses on theunder-determined inverse problem, namelym< n, and the solution
is obtained by employing the principle of maximum Shannon entropy of the information theory. Applications refer to the financial
market and specifically to the derivation of the informationwhich triggers the evolution of global stock market indexes. Future research
directions are also discussed into the last section of the paper.
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1 Introduction

Since the last century scholars have proposed
mathematical models for the analysis of complex
phenomena occurring in life sciences systems, including
in the finance field. A complex system consists of
inhomogeneous and adaptive agents that interact both
with each others and the outside environment [1]. The
behavior and macroscopic features of the system are the
result of the collective nonlinear interactions occurringat
the microscopic scale [2–4]. The emerging behavior of
the system depends on both the interactions and the
ability of the particles to develop specific and autonomous
strategies (active particles). Among the complex systems,
the financial market has recently attracted many attention.

The first financial market model dates back to
Black-Scholes. The model proposed in [5] allows to
calculate the value of stock options by considering a risky
asset (the stock) and a riskless asset (the cash). In 1982,
R. Engle introduces the AutoRegressive Conditional
Heteroskedasticity (ARCH) process [6] in order to
analyse the financial data series. In statistics,
heteroskedasticity is the fact that the local variance of
stock prices is a function of time, and the volatility is the
measure of this variance. In [7] Bollerslev introduces the
Generalized ARCH (GARCH) process, keeping constant

the global variance but not the local variance, thus
allowing to identify more parameters. Volatility models
such as ARCH/GARCH become very popular among
traders, considering that volatility is linked to the risk.
The reader interested in recent contributions in this field
is referred to paper [8] and the references cited therein.
The main aim of this paper is twofold. On the one hand,
the paper is concerned with the definition of an inverse
problem coupled to the thermostatted kinetic theory. On
the other hand, the new framework is proposed for the
modeling and analysis of financial markets with special
attention to the signals which trigger the market
evolution. The arguments of the inverse theory and the
thermostatted kinetic theory are thus the main subjects of
the present paper.
The inverse theory is an approach well established in the
literature [9–11]. A universal formal definition for inverse
problems does not exist. However an inverse problem is
said ill-posed if there is no solution, or the solution is not
unique or unstable, namely arbitrarily small errors in the
measurement data may lead to indefinitely large errors in
the solution. An inverse problem is called a source
problem if it is required to determine the source. The
theory of inverse and ill-posed problems is widely used in
physics (astronomy, quantum mechanics, acoustics), in
geophysics (seismic exploration, electrical, magnetic and
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gravimetric prospecting), medicine (X-ray and NMR
tomography), ecology (air and water quality control,
space monitoring), economics (optimal control theory,
financial mathematics), see [12] and the references cited
therein.
The discrete thermostatted kinetic theory has been
recently proposed in [13] to model the evolution of a
complex system composed of particles which are able to
express a strategy. According to the strategy, the particles
are divided into different subsystems called functional
subsystems. The strategy is modeled by introducing in the
microscopic state of the particles a variable, called
activity, which can attain discrete real values. The
evolution of the system is obtained by employing a
statistical approach which is based on the definition of
distribution functions. Interactions among the particles
include conservative events (changing into the magnitude
of the activity variable) and nonconservative events
(proliferation and mutation of particles). Differently from
the classical framework of the generalized kinetic theory,
the thermostatted framework allows to model systems
which operate out of equilibrium, namely subjected to
external force fields, and in order to ensure the existence
of a nonequilibrium stationary state a dissipative term,
called thermostat, is introduced. The new thermostatted
framework has been employed for the modeling of
pedestrian dynamics into a metro station [14]. It is worth
stressing that the thermostatted framework generalizes the
kinetic approach that has been proposed in [15] for the
modeling of vehicular traffic. The thermostatted kinetic
theory has been also derived in the case of a continuous
activity variable. In particular the continuous
thermostatted kinetic theory framework has been
employed for the modeling of biological systems, and
specifically for the treatment of keloid [16] (thus
generalizing the framework proposed in [17]) and for the
antigen recognition process by the immune system [18]
(see also the recent review paper [19]). The continuous
framework has been also investigated for the derivation of
macroscopic equations by employing asymptotic
limits [20] thus allowing a multiscale analysis.
The present paper deals with applications in finance of the
inverse problem theory coupled with the thermostatted
kinetic theory. Specifically the interest focuses on the
reconstruction of sources/signals which trigger the market
evolutions. The inverse problem is treated within the
methods of the information theory and in particular the
principle of maximum Shannon entropy. In information
theory, entropy is the measure of amount of information
that is missing before reception. The principle of
maximum Shannon entropy states that subject to precisely
stated prior data, the probability distribution that best
represents the current state of knowledge is the one with
largest information theoretical entropy. The reader
interested in further details is referred to the review
papers [21–24] and the references cited therein. It is
worth mentioning that further computable entropy
measures have been proposed in the pertinent literature,

e.g. the Kolmogorov-Sinai entropy, the Ledrappier-Young
Entropy, the Pesin Entropy, the topological entropy, the
Von Neumann entropy, see the review paper [25].
The present paper is divided into 5 more sections which
follow this introduction. Specifically Section 2 deals with
the fundamentals of the discrete thermostatted kinetic
theory. Section 3 is devoted to the definition of an inverse
problem which is based on the distribution function
vector that is solution of the thermostatted kinetic model.
Section 4 is concerned with the resolution of the inverse
problem by employing the methods of the information
theory and specifically the principle of the maximum
Shannon entropy. Section 5 focuses with applications and
specifically with the derivation of the signals which
trigger the time evolution of global stock market indexes.
Finally Section 6 concludes the paper with references to
further research perspectives.

2 The discrete thermostatted kinetic theory

This section deals with the basics of the discrete
thermostatted kinetic theory approach that has been
recently proposed in [13] for the modeling of a
nonequilibrium complex system. The main aim of this
section is to introduce the reader to the underlying
mathematical framework which will be coupled with an
inverse problem.
Let S be a complex system composed of interacting
particles which are able to express a strategy or function
(active particles). The system is assumed to be
homogeneous with respect to the space and velocity
variables. Accordingly, the microscopic state of the
particles consists of a scalar variableu, called activity,
which can attain discrete values, namely

u∈ Du = {u1,u2, . . . ,un}, ui ∈ R.

The time evolution of the systemS is described by
employing a statistical mechanics approach which is
based on the definition of the following distribution
function:

f = f (t,u) : [0,+∞)×Du → R+.

According to the particle strategy, the overall systemS is
divided into n ∈ N subsystems called functional
subsystems. The time evolution of thei-th functional
subsystem, fori ∈ {1,2, ...,n}, is described by the
following distribution function:

fi(t) = f (t,ui) : [0,+∞)→R+.

Let f = f(t) = ( f1(t), f2(t), ..., fn(t)) ∈ R
n be the

distribution function vector. The discretep-th order
moment of the system is defined as follows:

Ep[f](t) =
n

∑
i=1

up
i fi(t), p∈ N. (1)
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In particular the density, the linear activity-momentum,
and the activity-energy are obtained forp= 0, p= 1, and
p= 2, respectively.

The time evolution of the functionfi depends on the
particle interactions which consist of jumping into the
activity variable values and particle-jumping among the
functional subsystems. Specifically the gain particle term
Gi [f](t) and the loss particle termLi [f](t) read,
respectively:

Gi [f](t) =
n

∑
h=1

n

∑
k=1

ηhkA
i
hk fh(t) fk(t), (2)

Li [f](t) = fi(t)
n

∑
k=1

ηik fk(t), (3)

whereηhk : D2
u → R+ models the interaction rate between

the particle with stateuh and the particle with stateuk; the
function Ai

hk = A(uh,uk,ui) : D3
u → R+ denotes the

probability density that a particle with stateuh falls into a
stateui after an interaction with a particle with stateuk. In
particular, the transition functionAi

hk has the structure of
a probability density with respect to the variableui , then:

n

∑
i=1

Ai
hk = 1, ∀ h,k∈ {1,2, . . . ,n}. (4)

The active particles that are able to change subsystems
(jumping subsystem process) can be modeled with the
following operator:

Mi [f](t) =
n

∑
h=1

n

∑
k=1

ηhkϕ i
hk fh(t) fk(t), (5)

whereϕ i
hk is the jumping rate into thei-th subsystem, due

to interactions between particles of theh-th subsystem and
particles of thek-th subsystem.

Bearing all the above in mind, the time evolution offi ,
for i ∈{1,2, . . . ,n}, is described by the following equation:

d fi
dt

= Ji [f]+Mi[f] = Gi [f]−Li[f]+Mi[f], (6)

which is calledthe discrete kinetic theory framework at
equilibrium.
In order to model complex systems out of equilibrium, the
external force field acting on the subsystems needs to be
defined. Accordingly, let

F(t) = (F1(t),F2(t), . . . ,Fn(t)) : [0,+∞[→R
n
+

be the external force field that maintains the system out of
the equilibrium. The time evolution of fi , for
i ∈ {1,2, . . . ,n}, now reads:

d fi
dt

= Ji [f]+Mi[f]+Fi −

(

Up · (J[f]+F)
Ep[f]

)

, (7)

which is calledthe discrete thermostatted kinetic theory
framework, whereJ[f] = (J1[f],J2[f], . . . ,Jn[f]) and Up =

(up
1,u

p
2, . . . ,u

p
n). In particular the term−α fi , where

α(J[f],Ep,F) =
Up · (J[f]+F)

Ep[f]
=

n

∑
i=1

up
i (Ji [f]+Fi)

n

∑
i=1

up
i fi

(8)

is the dumping term that makes the dynamic dissipative
thus avoiding the unbounded increase of thep-th order
moment. The termα is called the thermostat term which
allows the system to reach a nonequilibrium stationary
state in the long-time limit [26–28].

3 The underlying inverse problem

This section is devoted to the inverse problem definition,
which is based on the thermostatted kinetic theory
framework that has been revised in the previous section.
The following main definitions will be used in what
follows.

Definition 1.Let H1 be the space of the source
s : [0,+∞) → R and H2 be the measurements space
(observed data). Let A: H1 → H2 be an operator (data
kernel), and µ ∈ H2 an observed data. An inverse
problem consists in finding a solution s∈ H1 of the
following problem:

µ = A[s]. (9)

Definition 2.The inverse problem (9) is said well-posed in
the Hadamard sense if:

1.A solution s exists for anyµ in the observed data
space;

2.The solution s is unique;
3.The inverse mappingµ 7→ s is continuous.

This paper is concerned with the following inverse
problem. Letm∈ N

∗ and

µ(t) = (µ1(t),µ2(t), . . . ,µm(t)) : [0,+∞)→R
m,1

them-dimensionaldata vector, and

K [f] : [0,+∞)→R
m,n

the data kernel matrix, which contains the distribution
function vectorf solution of the discrete thermostatted
kinetic theory framework (7). The present paper is
concerned with an inverse problem, which consists in
finding then-dimensional sources (signals) vector

s : [0,+∞)→ R
n,1

solution of the following problem:

µ(t) = K [f](t)s(t), (10)
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where

K [f] =









K11[f] K12[f] . . . K1n[f]
K21[f] K22[f] . . . K2n[f]

...
...

Km1[f] Km2[f] . . . Kmn[f]









, (11)

and

µ =









µ1
µ2
...

µm









, s=









s1
s2
...

sn









. (12)

It is worth stressing that the inverse problem (10)
belongs to the class of the linear inverse problems. In
particular the linear inverse problem is well-posed if 1
and 2 hold. IfK is finite-dimensional, the corresponding
inverse problem is well-posed if either the property 1 or 2
holds.

Definition 3.The inverse problem (10) is said
under-determined (respectively over-determined) if the
number of measures m is less (respectively more) than the
number of unknown sources n.

Example 1.Assume that the complex system is
characterized by the following relations:

µ1[E0](t) =
n

∑
i=1

fi(t)si(t), (13)

µ2[E2](t) =
n

∑
i=1

u2
i fi(t)si(t). (14)

Accordingly, the measureµ1 is related to the densityE0
and the measureµ2 is related to the activity-energyE2.
Bearing all above in mind, we have:

µ =

[

µ1
µ2

]

, K [f] =
[

f1 f2 . . . fn
u2

1 f1 u2
2 f2 . . . u2

n fn

]

, (15)

and the unknowns vector reads:

s=









s1
s2
...
sn









. (16)

It is worth stressing that ifn= 2, and the determinant of the
matrixK [f] is different from zero (|u1| 6= |u2| and f1(t) 6= 0,
f2(t) 6= 0, ∀t ∈ R+) the inverse problem (13-14) admits
a unique solution (Cramer system). Ifn > 2 the inverse
problem (13) is under-determined.

4 The maximum entropy principle solution

This section is concerned with the problem to find a
solution of the inverse problem (10). Specifically the

section aims at constructing a solution of the inverse
problem (10) in the under-determined case and by
employing the maximum Shannon entropy method.

The concept of entropy has been employed in
different fields and different type of entropy has been
considered, among others, the Clausius thermodynamics
entropy [29], the Boltzmann/Gibbs statistical mechanics
entropy [30] and the Shannon information theory
entropy [31, 32]. In thermodynamics, if a certain small
amount of heatδQ is supplied quasi-statically to a system
with an absolute temperatureT, then the entropySof the
system will increase according to the following relation:

dS=
δQ
T

, (17)

whered represents an infinitesimal small change of a state
function andδ represents that of a path function.
In statistical thermodynamics, the Gibbs thermodynamic
entropySof a thermodynamic system reads:

S=−κB∑
i

pi ln pi , (18)

where the summation is taken over each possible statei,
pi is the probability of a microstate andkB is the
Boltzmann constant. In statistical mechanics, the
Boltzmann entropy is an approximation of the Gibbs
entropy to an ideal gas, namely is obtained under the
assumption that all the component particles of a
thermodynamic system are statistically independent (the
probability distribution of the system as a whole then
factorises into the product ofN separate identical terms,
one term for each particle). Accordingly:

SB =−NκB∑
i

pi ln pi . (19)

In information theory, the Shannon entropyH(X) is a
measure of the uncertainty associated with a discrete
random variable X = {x1,x2, . . . ,xn}. Specifically
H(X) = E(I(X)) whereE is the expected value andI is
the information content ofX (which is itself a random
variable). If p denotes the probability mass function ofX
then the entropy can explicitly be written as:

H(X) =
n

∑
i=1

p(xi)I(xi) =−
n

∑
i=1

p(xi) logb p(xi), (20)

whereb is the base of the logarithm used.
In [33] Jaynes has derived the principle of maximum
entropy from Shannon’s expression as a new type of
subjective statistic inference to set up probabilistic
distributions based on partial knowledge. The principle of
maximum entropy, allowing the least biased estimation
possible, made entropy a concept independent from
mechanical hypotheses and coherent with quantum
mechanics.
It is worth stressing that further scientific domains where
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the entropy theory has been employed include hydrologic
and geomorphic sciences [34], geography [35, 36],
economy [37], sociology [38].

As already mentioned, this section describes how to
solve the inverse problem (10) by using the maximum
Shannon entropy method. As known the information that
an event occurs varies inversely with the size of the
probability. An event with a very low probability that
occurs gives a great deal of information, whereas when an
event with a high probability occurs, this gives less
information. Accordingly, information varies inversely
with probability. Assume that there are two independent
events with probabilitiesp1 andp2 wherep1+ p2 = 1. If
the two events occur together with probabilityp1p2, the
information gained would be proportional to 1/p1p2, and
since the information should be additive, one should have
that the information gained is 1/p1 + 1/p2. Accordingly
the functionI should satisfy the following relation:

I

(

1
p1p2

)

= I

(

1
p1

)

+ I

(

1
p2

)

. (21)

The only solution of the above equation is ln(1/p)
(information gained by the occurrence of the event or
equivalently a measure of the uncertainty of the event
occurring). In order to have a value for the overall
information for the two events, the expected value can be
computed, which reads:

H(2) =−p1 ln p1− p2 ln p2. (22)

If the number of events isn and the related probability is
pi , for i ∈ {1,2, . . . ,n}, the average information is the
expected value of this series, which can be written as
follows:

H(n) =−
n

∑
i=1

pi ln pi . (23)

The functionH is the standard information entropy of
Shannon [31], which is equivalent to the
Boltzmann-Gibbs entropy. The Shannon entropy (23)
varies from a minimum value of zero to a maximum value
of ln(n). Specifically whenH = 0, then one event
dominates, that is,pi = 1 andpk = 0 for all k 6= i; when
H = ln(n), thenpi = 1/n for all i.

The maximum Shannon entropy method consists in
choosing a distribution that is the most likely or probable
within the constraints, because it is easy to show that the
maximum entropy is an approximation to the probability
of a particular macrostate occurring among all possible
arrangements (or microstates) of the considered events.
Let µ ∈ R+. Bearing all above in mind, the inverse
problem consists in findingn sources si under the
following constraints:

C1)
n

∑
i=1

si = 1, (24)

C2) µ =
n

∑
i=1

Ki [f]si , (25)

with f solution of the discrete thermostatted kinetic theory
framework (7). Accordingly the lagrangian functionL [f]
reads:

L [f](si ,λ0,λ1) = −
n

∑
i=1

si lnsi − (λ0−1)

(

n

∑
i=1

si −1

)

−λ1

(

µ −
n

∑
i=1

Ki [f]si

)

, (26)

where (λ0 − 1) and λ1 are the related Lagrangian
multipliers. Differentiating the lagrangian functionL [f]
with respect to each sourcesi and setting the result equals
to zero yields:

∂L [f]
∂si

=− lnsi −λ0−λ1Ki [f] = 0, i ∈ {1,2, . . . ,n}.

(27)
Accordingly the probability model reads:

si [f](t) = exp(−λ0−λ1Ki [f]), i ∈ {1,2, . . . ,n}. (28)

The above formula explains why the first multiplier has
been setλ0 − 1. The values of the parametersλ0 andλ1
can be determined by solving the model according to the
constraint equations. In particular:

exp(λ0) =
n

∑
i=1

exp(−λ1Ki [f]).

The exponential model can be rewritten as follows:

si [f](t) =
exp(−λ1Ki [f])

n

∑
i=1

exp(−λ1Ki [f])
,

n

∑
i=1

si = 1. (29)

It is worth stressing that if the Lagrangian multiplier
λ1 = 0 then the exponential model collapses to a uniform
distribution wheresi = 1/n. In particular the entropy for
this model is at its maximum when

Hmax=
n

∑
i=1

si ln(exp(−λ0−λ1Ki [f])) = λ0+λ1µ .

This maximum is a function of each multiplier and its
constraint, with the implication that entropy is a function
of the spread of the distribution, which is determined by
the constraint.
Bearing all above in mind, the generalized problem can
be solved. Specifically, letµ = (µ1,µ2, . . . ,µm)

T be the
m-dimensional measure vector,s = (s1,s2, . . . ,sn)

T the
n-dimensional source vector, with m < n
(under-determined system). The maximum Shannon
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entropy method allows to find the general model for the
sourcesi :























































s1 =
1

Z[f](λ )
exp

(

−
m

∑
i=1

λiKi1[f]

)

s2 =
1

Z[f](λ )
exp

(

−
m

∑
i=1

λiKi2[f]

)

...

sn =
1

Z[f](λ )
exp

(

−
m

∑
i=1

λiKin[f]

)

(30)

whereZ[f] is the partition function that reads:

Z[f](λ ) =
n

∑
j=1

exp

(

−
m

∑
i=1

λiKi j [f]

)

, (31)

and λi is the Lagrange multiplier obtained by replacing
the sourcesi in the equation (10), namely the vectorλ =
(λ1,λ2, . . . ,λn) is solution of the following problem:

∇(ln(Z[f](λ ))) =−µ , (32)

and then


























∂ ln(Z[f](λ )))
∂λ1

+ µ1 = 0
∂ ln(Z[f](λ )))

∂λ2
+ µ2 = 0

...
∂ ln(Z[f](λ )))

∂λm
+ µm = 0

(33)

5 Applications: The financial market

The thermostatted kinetic theory framework coupled with
the inverse problem theory can be considered as a general
paradigm for the modeling of complex systems. In
particular an important application is related to the
financial market which is composed by traders. A trader
denotes an individual who buys and sells financial items,
e.g. stocks, bonds, metals, agricultural products. The
price reflect supply and demand thus information defines
the market evolution.

Bearing the new framework in mind, the systemS
under consideration is the international market, which is
composed by three markets (functional subsystems): New
York (S1), London (S2), and Paris (S3), where the activity
variable represents the trading ability, see the table1. The
system is modeled according to the following main
assumptions:
A1) The system operates at equilibrium, thenFi = 0, for
all i ∈ {1,2,3}.
A2) The interaction rateηi j , for i, j ∈ {1,2,3}, is constant.
A3) The traders do not change their regional market, then
ϕ i

hk = 0, for all i,h,k∈ {1,2,3}.

Table 1: The functional subsystems, the activity variable, and the
distribution functions.

Subsystems Activity Distribution function
New York Trading ability f1(t)
London Trading ability f2(t)

Paris Trading ability f3(t)

The table of gamesA i
hk is derived according to a

leader-follower dynamics. Specifically:
• If h = k, namely the tradersh and k have the same
ability, the interaction does not imply a change in their
ability, then:

A
i

hh =

{

1 if i = h
0 otherwise ∀h∈ {1,2,3}. (34)

• The dollar has the biggest influence on the other markets
considering that it is the reference currency. Accordingly
the subsystemsS2 andS3 tends to followS1. The table of
games is thus defined as follows:

A
i

12 = A
i

21=







1−α if i = 1
α if i = 2
0 if i = 3

(35)

and

A
i

13= A
i

31 =







1−β if i = 1
0 if i = 2
β if i = 3

(36)

where 0< α,β < 1.

• The Brexit appears as an important factor for the
evolution of the subsystemS2 considering that it is
expected that the London market can plummet.
Accordingly the table of gamesA i

32 and A i
23 follow S2

describing a significant decrease in the market evolution:

A
i

23 = A
i

32=







0 if i = 1
1− γ if i = 2
γ if i = 3

(37)

where 0< γ < 1.

Bearing all the above in mind, the evolution equations of
the model read:

d f1
dt

(t) = (1−α)η21 f2(t) f1(t)+ (1−β )η31f3(t) f1(t)

−αη12 f1(t) f2(t)−β η13 f1(t) f3(t),
d f2
dt

(t) = αη12 f1(t) f2(t)+ (1− γ)η32f3(t) f2(t)

−(1−α)η21 f2(t) f1(t)− γη23 f2(t) f3(t),
d f3
dt

(t) = β η13 f1(t) f3(t)+ γη23 f2(t) f3(t)

−(1−β )η31 f3(t) f1(t)− (1− γ)η32f3(t) f2(t).
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The inverse problem is now defined. The information
which triggers or modifies the market evolution is
assumed to be a source/signals(t) = (s1(t),s2(t),s3(t)),
where eachsi refers to the marketi and such that
s1(t)+ s2(t)+ s3(t) = 1. The measureµ is related to the
stock market index, which tracks a portfolio of stocks.
Specificallyµ is a global stock market index, such as the
MSCI World or the S&P Global 100, which includes
stocks from multiple markets. Accordingly the evolution
of µ is assumed depends on the dynamics among the
three financial markets as follows:

µ(t) =
3

∑
i=1

Ki [f](t)si(t), (38)

whereKi [f](t) = fi(t) andf = ( f1, f2, f3) is solution of the
above defined model. Specifically the inverse problem
reads:

µ(t) = f1(t)s1(t)+ f2(t)s2(t)+ f3(t)s3(t).

The solution of the inverse problem is thus obtained by
employing (30) and it reads:

si [f](t) = exp(−λ0(t)−λ1(t) fi(t)), i ∈ {1,2,3}, (39)

where(λ0,λ1) is solution of the following problem:











λ0(t) = ln
(

e−λ1(t) f1(t)+e−λ1(t) f2(t)+e−λ1(t) f3(t)
)

,

3

∑
i=1

fi exp(−λ0(t)−λ1(t) fi(t)) = µ(t).

A numerical analysis can be performed for the quantitative
resolution of the inverse problem and for a future tuning of
the model with the empirical data.

6 Research perspectives

The present paper has been devoted to a further
generalization of the discrete thermostatted kinetic theory
proposed in [13] in order to resolve inverse problems
which are set within this framework. The inverse problem
has been resolved by employing the methods of the
information theory and specifically the principle of the
maximum Shannon entropy. The solution is based on a
probabilistic approach considering that the unknown
source/signal is assumed to be a discrete random variable
vector.
Future research directions can be pursued from the
theoretical and applications point of views. Indeed the
Shannon entropy is not the most general measure that can
be employed. In fact the Shannon entropy does not appear
an appropriated measure when the events are not
independents and if the entropy phase space does not
allow probabilistic events to occur in all parts of the
space. In particular, if the degree of information can be

improved, ana priori distribution function of the sources
can be defined and the relative entropy method can be
applied [39–42]. Precisely if the prior distribution is
denoted by{qi}, then the information (also known as the
discrete Kullback-Leibler divergence) reads:

I =
n

∑
i=1

pi ln

(

pi

qi

)

.

In this context, the distribution{pi} is called the posterior
distribution.I takes values between zero and infinity, and
it is zero whenpi = qi , ∀i, which means that no difference
exists between prior and posterior distributions (no
information is gained by moving from the prior to the
posterior). It is worth stressing that the concept of discrete
entropy presents some restrictions, including the fact that
depends onn (see [24]), then in some applications appear
more suitable the use of a continuous random variable
and thus a continuous distribution function. Accordingly
the inverse problem needs to be defined within the
framework of the continuous thermostatted kinetic theory,
where the activity variableu ∈ Du ⊆ R is continuous,
see [16, 18]. In this case each distribution function writes
f (t,u) and the inverse problem now reads:

µ(t) =
∫ t

0
K[f](t,u)s(u)du , t ∈ [0,+∞), (40)

where

–µ(t) = (µ1(t),µ2(t), . . . ,µm(t)) : [0,+∞)→R
m,1 is the

m-dimensional data vector,m∈ N
∗;

–s : Du → R
n,1 is then-dimensional sources vector,n∈

N
∗;

–K[f](t,u) : [0,+∞) × Du → R
m,n is the data kernel

matrix (Green’s function), which contains the
distribution functions vector solution of the
continuous thermostatted framework.

The continuous inverse problem (40) belongs to the class
of Volterra integral equations of the first kind [9]. The
reader interested to some algorithms of resolution is
referred to the book [10], the paper [43] and the
references cited therein. However, the solution of the
inverse problem (40) can be investigated in the context of
the information theory by means of the definition of a
continuous Shannon entropy measure and a continuous
relative entropy. This investigation constitutes the basis of
future works.
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