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Abstract: We discuss the time-dependent interaction between moving two two-level atoms and squeezed coherent field. We obtain
the wave function in the presence of time dependent couplingbetween the squeezed coherent field and two-two level atoms.Some
statistical and nonclassical properties of the squeezed coherent field are discussed through the evolution of the Wehrlentropy. The
effects of the initial atomic state position, squeeze parameter and shape function of time-dependent coupling within the atomic speed
are examined. It is shown that the atomic speed and squeeze have the potential effect on the time evolution of the entanglement, the
Wehrl entropy and the single entropy squeezing. Finally, the results clarified that the manipulation of atom-atom entanglement and the
entanglement between the two atoms and squeezed field are greatly controlled by a suitable choice of the squeeze parameter and time
dependent coupling among the two atoms and squeezed field.
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1 Introduction

It is well known that the dynamical properties of the
quantum systems can be treated by Wehrl entropy (WE)
[1,2,3]. In this way, WE have been successfully applied
in description of different properties of the quantum
optical fields such as phase-space uncertainty [4], etc.
Also, the problem of measuring quantum correlations
(entanglement) in phase space with application of the WE
has been discussed [5]. The effect of phase damping of
the classical correlation measured by WE and Wehrl
phase distribution (Wehrl PD) has been investigated [6].
Also, the nonclassicality of the fields based on the
evolution of Wehrl entropy with and without atomic
motion effect has discussed [7].

Entanglement is a type of nonlocal correlation that
has been playing an important role in the field of quantum
information processing, precisely engineered entangled
states of interest can indeed be both fragile and difficult to
manufacture. It is often viewed as a fragile and exotic
feature of quantum mechanics, and its investigation of
practical and theoretical significance. Interestingly,

entanglement is a property of nonlocal correlations
between two or more quantum systems, which cannot be
increased under local operations and classical
communications [8]. Exploiting its features, it is used as
an essential resource for information processing tasks
such as quantum computation, quantum teleportation [9],
superdense coding [10], quantum cryptography [11,12]
and more recently, one-way quantum computation [13]
and quantum metrology [14]. These different quantum
applications cannot be performed by classical resources
and they are based on entangled states.

The quantification of entanglement is necessary to
understand and develop the quantum information theory.
For this reason different entanglement measures have
been used for the mixed and pure states such as
concurrence [15,16] entanglement of formation [17], and
negativity [18,19]. Also, the concurrence and negativity
are used as a good entanglement measures for mixed
states, but the von Neumann entropy has been proposed
for pure state entanglement [20], all these measures to test
whether a given quantum state is separable or entangled.
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Also, some interesting physical phenomena are observed
as a result of entanglement measure, such as
”entanglement sudden death” (ESD), entanglement
sudden birth (ESB) [21,22].

Considering the motion of the atoms, the
Tavis-Jaynes-Cummings Model (TJCM) with two moving
atoms has been investigated [23] and the authors of [24]
have shown the ESD and ESB which also experimentally
observed for entangled photon pairs [25] and the atom
ensembles [26]. In addition the entanglement and
geometric phase of two moving two-level atom
interacting with the field initially prepared in a coherent
state has been investigated [27], where the results show
that, the atomic motion in terms of the atomic speed and
acceleration play a central and impact role in the
dynamics of the atom-atom entanglement and geometric
phase. More recently the effect of time dependent
coupling on the dynamical properties of the nonlocal
correlation between two three-level atoms has been
examined [31]. The results have shown that the
entanglement between the two atoms decreases by
increasing the photons multiplicity when the time
dependent coupling effect is ignored.

The paper is prepared in the following order: In
section II the analytical solution for the model and density
matrix will be presented. The Wehrl entropy, single atom
entropy squeezing and entanglement quantifiers in terms
of the field and atomic density matrix will be defined in
sections III, and IV. In section V we will discuss the
numerical results. The main conclusion will be
summarized in section VI.

2 Model and its dynamics

We consider the model of the time-dependent interaction
between the input field modeF and two moving two-level
atoms (TLAs)A, B with energy levels denoted by|g〉 j is

the lower level and|e〉 j is the upper level of jth atom

( j = A,B). The interaction Hamiltonian̂HI of the system
in the rotating-wave approximation (RWA) can be written
as [27]

ĤI (t) =
2

∑
j=1

ξ j (t) (â
†Ŝ( j)

− + âŜ( j)
+ ). (1)

where ˆa (â†) the annihilation (creation) operator of the

field mode whileŜ( j)
+ (Ŝ( j)

− ) is the usual raising (lowering)
for jth two-level atom. Also,ξ j (t) is the shape function of

the cavity field which describe the one-dimensional
atomic motion [28,29]. Here, we consider the symmetric

case where the moving TLAs have the same shape
function of time dependent coupling

ξ1 (t) = ξ2 (t) = ε sin(β t + δ ), (2)

where β is the atomic speed and (ε,δ ) are an arbitrary
constants. For the case in whichβ = 0 andδ = π/2, the
constant coupling between the field and TLAs [30].

We assume that the initial state of the whole system is
|ψ (0)〉 = |ψAB (0)〉 ⊗ |ψF (0)〉 where |ψAB (0)〉 is the
initial general state of the TLAs
(i.e.|ψAB (0)〉 = (z1|ee〉+ z2|eg〉+ z3|ge〉+ z4|gg〉)) and
|ψF (0)〉 is the initial state of the field which supposed to
be in the squeezed coherent state

|ψF (0)〉= |α,r〉 =
∞

∑
n=0

bn|n〉, (3)

where

bn =

√

(1
2 tanh(r))n

n!cosh(r)
exp

{

[tanh(r)−1]
α2

2

}

×Hn

(

α
√

sinh(2r)

)

, (4)

with r is the squeeze parameter.

The wave function|ψ(t)〉 at any timet > 0, takes the
form

|ψ(t)〉 =
∞

∑
n=0

bn

{

F1(n, t)|ee,n〉+ F2(n, t)|eg,n+1〉

F3(n, t)|ge,n+1〉+ F4(n, t)|gg,n+2〉
}

. (5)

The coefficientsFj(n, t), j = 1,2,3,4 are obtained by
solving the Schrödinger equation
(i ∂ |ψ(t)〉/∂ t = ĤI(t)|ψ(t)〉). For example when the
TLAs are initially in Bell statesFj(n, t) have the form

F1(n, t) =
1√
2

cos
(

λ f (t)
√

4n+6
)

+

√

n! (n+2)!

[n!(n+2)+ (n+1)!]
√

2
×
{

cos
(

f (t)
√

4n+6
)

−1
}

,

F2(n, t) = L3(n, t) =−i

{
√

n+1
8n+12

+

√

n+2
8n+12

}

×sin
(

f (t)
√

4n+6
)

,

F4(n, t) =
1

n!(2n+3)
√

2

{

n!
[

n+1+(n+2)cos
(

f (t)
√

4n+6
)]

+
√

n!(n+2)!
[

cos
(

f (t)
√

4n+6
)

−1
]

}

.

where

f (t) =

t
∫

0

ξ (τ)dτ. (6)
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The atomic density matrix̂ρAB (t) can be calculated by
taking the trace of the field basis as follows

ρ̂AB (t) = TrF(|ψ (t)〉〈ψ (t) |) =
4

∑
j=1

4

∑
k=1

ρ jk (t) | j〉〈k|, (7)

where

ρ j j (t) =
∞

∑
n=0

∣

∣bnFj(n, t)
∣

∣

2
, j = 1,2,3,4 (8)

are the atomic occupation probabilities of the atomic
basis|ee〉, |eg〉, |ge〉 and |gg〉, respectively, and the other
elements of the atomic density matrix are given by

ρ12 = ρ13 =
∞

∑
n=0

bnbn+1F1(n+1, t)F∗
2 (n, t), (9)

ρ14 =
∞

∑
n=0

bnbn+2F1(n+2, t)F∗
4 (n, t), (10)

ρ23 =
∞

∑
n=0

|bnF2(n, t)|2 , (11)

ρ24 =
∞

∑
n=0

bnbn+1F2(n+1, t)F∗
4 (n, t), (12)

ρ34 =
∞

∑
n=0

bnbn+1F3(n+1, t)F∗
4 (n, t), ρk j = ρ∗

jk. (13)

On the other hand the field density matrix

ρF (t) =
∞

∑
n=0

∞

∑
m=0

bnbm

{

F1(n, t)F
∗
1 (m, t) |n〉〈m|

+2F2(n, t)F
∗
2 (m, t) |n+1〉〈m+1|

+F4(n, t)F
∗
4 (m, t) |n+2〉〈m+2|

}

. (14)

In the following section, we use the relations obtained
above to define the single atom entropy squeezing,
entanglement and Wehrl entropy for the system under
consideration.

3 Wehrl entropy (WE) and single-atom
entropy squeezing (SAES)

There are some measures that can be applied in the
classical phase space. In this regard, WE is a very
informative measure describing the time evolution of a
quantum system [32,33,34]. WE was introduced as a
classical entropy of a quantum state and can give
additional insights into the dynamics of the system, as
compared to other entropies. Any quantum state,

described by a density matrixρF , can be represented by
the Husimi quasi-distribution function,
QρF = 1/π 〈υ |ρF (t) |υ〉, where|υ〉 is the coherent state.
The Q-function in theϖ space is defined as follows

Qϖ (t) =
1
π
〈ϖ |ρ̂F (t) |ϖ〉 (15)

Now we use the definition of WE as a quantifier of
the statistical properties of a quantum state of the fieldρ̂F
defined as [34].

SW (t) =−
2π
∫

0

∞
∫

0

Qϖ (t) lnQϖ(t)|ϖ |d|ϖ |dϑ (16)

whereϖ = |ϖ |exp(iϑ).
The single atom entropy squeezing is consider as

application to the evolution of the reduced density matrix
operator of atomρA(t) = TrB {ρAB(t)} [35,36]. Let SX ,
SY andSZ are the atomic operators of the reduced atomic
density operatorρA(t). So the information entropies in
terms ofSX , SY andSZ has the form [35,36]

H(Sk) = −
1

∑
ℓ=0

{

1
2
+(−1)ℓ 〈Sk〉

}

ln

{

1
2
+(−1)ℓ 〈Sk〉

}

,

and k = X ,Y,Z. (17)

The fluctuation of the componentSk for k = X or Y of
the atomic dipole is said to be ”squeezed in entropy” if
the information entropyH(Sk) of Sk satisfies the

condition, E(Sk) = exp(H(Sk)) −
√

2
exp(H(SZ))

.

ThereforeE(SX) and E(SY ) quantify the single atom
entropy squeezing in the componentSX and
SY respectively.

4 Entanglement quantifier

In this section we use the von Neumann entropy to
measure the entanglement between TLAs and squeezed
coherent field. The expression of the von Neumann
entropy takes the form [38]

S =−Tr (ρ̂ ln ρ̂) (18)

This is zero for all pure stateŝρ2 = ρ̂ , whereρ̂ is the
density operator describing a given quantum state. For the
system under consideration i.e.ρ̂ = ρ̂AB and the von
Neumann entropy can be written as [39,40]

SAB (t) =−
4

∑
j=1

η j (t) lnη j (t) , (19)

whereη j (t) are the eigenvalues ofρ̂AB (t).
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Fig. 1: The time evolution of the: (a) concurrenceCAB (solid
line), von Neumann entropySAB (dashed line), (b) Wehrl entropy
SW , (c,d) the SAES componentsE(SX ), E(SY ) of a TLAs
interacting with field initially in the coherent states (i.e. for
r = 0) for α = 5. The TLAs are initially in the upper states (i.e.
z1 = 1,z2 = z3 = z4 = 0) and constant coupling case (i.e.β = 0,
δ = π/2).
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Fig. 2: The same as Fig.1 but the field is initially in the squeezed
coherent states forr = 0.5 andα = 5.

It is well known that the concurrence is considered as
the optimal measure to quantify the atom-atom
entanglement. The concurrence of the two atoms based on
the atomic density matrix̂ρAB (t), is given by [16]

CAB (t) = max{0,
√

µ1−
√

µ2−
√

µ3−
√

µ4} , (20)
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Fig. 3: Effect of symmetric time dependent coupling (i.e.ξ1(t) =
ξ2(t) = ε sin(t) on the time evolution of the: (a) concurrenceCAB
(solid line), von Neumann entropySAB (dashed line), (b) Wehrl
entropySW , (c,d) the SAES componentsE(SX ), E(SY ) of a TLAs
interacting with field initially in the squeezed coherent states (i.e.
for r = 0.5) for α = 5. The TLAs are initially in the upper states
(i.e. z1 = 1,z2 = z3 = z4 = 0) and constant coupling case (i.e.
β = 0, δ = π/2).

whereµi are the eigenvalues of the non-Hermitian matrix
ρ̂AB (t) ρ̃ (t) and listed in decreasing order ofρ̂AB (t) ρ̃ (t),
while ρ̃ (t) is the spin-flipped state of density operator
ρ̂AB (t)

ρ̃ (t) = (σ̂y ⊗ σ̂y)(ρ̂AB (t))
∗ (σ̂y ⊗ σ̂y) , (21)

where (ρ̂AB (t))
∗ is conjugate ofρ̂AB (t) in the standard

basis of two qubits and̂σy is the Pauli spin operator. The
concurrence has zero value i.e.CAB (t) = 0 for separable
state, whereasCAB (t) = 1 for the Bell states.

5 Numerical results and discussion

In Figs. 1-6 we discuss the main results of the dynamical
properties of the concurrence as a measure of atom-atom
entanglement E(A-B), von Neumann entropy as measure
of the entanglement between the TLAs and squeezed field
E(AB-F). In addition to the dynamical behavior of the
SAES componentsE(SX) and E(SY ). The results
obtained by exploiting the effect of the physical
parameters on the quantum quantifiers and showing the
required main conditions for obtaining a high amount of
E(A-B), and E(AB-F). A reasonable comparison between
the coherent and squeezed coherent field states will
enable us to understand the contribution of this effect of
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Fig. 4: The same as Figure 3 but the TLAs are initially taken in
the Bell states.
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Fig. 5: Effect of strong squeezing regime (r = 1) on the time
evolution of the: (a) concurrenceCAB (solid line), von Neumann
entropySAB (dashed line), (b) Wehrl entropySW , (c,d) the SAES
componentsE(SX ), E(SY ) of a TLAs interacting with field
initially in the squeezed coherent states (i.e. forr = 0.5) for
α = 5. The TLAs are initially in the upper states (i.e.z1 = 1,z2 =
z3 = z4 = 0) and constant coupling case (i.e.β = 0, δ = π/2).

the initial field state preparation on the dynamical
properties of quantum quantifiers. In Figs. 1(a), 1(c), and
1(d) we display, respectively, the variation of as a
measure of E(AB-F), as a measure of E(A-B), the SAES
componentsE(SX) andE(SY ). It is observed that there is
an opposite monotone behavior betweenSAB (t) andCAB
which lead to the decreasing for the entanglement
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Fig. 6: The same as Figure 5 but TLAs are initially taken in the
maximally in Bell states.

between the two atoms. The maximum values of the
entanglement quantifiers, increases gradually during time
evolution and the oscillations become irregular when the
scaled time is significantly large. In other words, when
the system is in a chaotic state and it loses its purity, then
it becomes partially mixed (see Fig. 1(a)). The maximum
E(AB-F) is obtained during the time evolution. There is
no squeezing at all in the componentE(SX) where the
squeezing only appears in the componentE(SY ) at the
initial stage of the time evolution. The WE is shown in
Fig. 1(b). It oscillates between a maximum and minimum
values which indicates the field close to the quantum and
classical states respectively. The WE shows
monotonically increasing behavior. This behavior is due
to the diffusion in phase space of the Q-function as the
time develops. Interestingly, the evolution of the WE
presents a richer information about the dynamical
properties of the interaction between the TLAs and
coherent field.

Figure 2 depicts the effect of squeeze parameter on
the evolution of the statistical quantities. As seen all the
quantities are affected by the change of the initial state of
the field from the coherent state (r = 0) to the squeeze
coherent state (r = 0.5). The entanglement is enhanced in
the case of squeezed field. The field being more quantum
as the time goes on and the intensity of oscillations of all
quantities increase in a chaotic behavior.

In Fig 3 we study the effect of the symmetric time
dependent coupling within the atomic speed on the
dynamics of the statistical quantities. It is observed that
E(AB-F) is enhanced with reducing of entanglement
between the TLAs E(A-B). Interestingly the maxima
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E(AB-F) corresponds to the death of E(A-B) and zero
value of E(SX) at εt = (2m + 1)π wherem = 0,1,2, ...
Also, the maximum value ofSW is obtained at these
points where the field being more quantum. Therefore, we
have a clear connection between the entanglement of the
system and statistical properties of the field. From Figs.
(c, d) we see the link between the entanglement,
non-classicality, and squeezing where the squeezing only
occurring in the componentsE(SY ) at the same time.

To visualize the effect of the initial state setting on the
dynamical properties of the entanglement, entropy
squeezing and non-classical properties so we plot in
figure 4 the time evolution of all quantities when the
two-atom start the interaction from the Bell states. As
seen from the comparison between figures 3 and 4 the
initial atomic state of the TLAs has a significant role in
the dynamics on the E(A-B), E(AB-F), WE and entropy
squeezing. It is clear that the E(A-B) increases with
appearance of the long living entanglement between the
TLAs. Also, there is no squeezing at all in the
componentsE(SX) and E(SY ). On the other hand the
properties of the field are affected by the Bell state where
the maximum atom-atom entanglement corresponding to
the maximum WE which the maximum entanglement
between the squeezed field and TLAs corresponding the
field close to classical.

In order to study the impact role of the squeeze
parameter on the temporal behavior of the information
quantifiers. In this regard, we plot the quantities as a
function of the scaled time for when the TLAs initial in
the upper state (Fig. 5) and the Bell state (Fig. 6) the main
difference between Figs (3,4) and (5,6) can be observed in
the two points. Firstly, the E(AB-F) increases and E(A-B)
decreases where the TLAs starts from the upper state
which E(A-B) is largely increased where the TLAs
initially in Bell states. Secondly, the increasing of the
squeeze parameter does not have a clear effect on the WE
and entropy squeezing. From the above analysis a high
amount of squeezing and entanglement of the system
under consideration can be obtained by optimal choice of
the initial atomic state setting and squeeze parameter

6 Conclusion

In summary, we have introduced a mathematical model
describing the interaction between a two two-level atom
and field mode initially prepared in the squeezed coherent
state. The proposed model is used to perform different
tasks of quantum information and computation. We have
obtained the solution of Schrodinger equation when the
time dependent coupling between the field and two atoms
is considered. We have investigated the evolution of some
measures such as Wehrl entropy which was used as a
measure of non-classicality when the field initially
defined in coherent and squeezed coherent states. The von
Neumann entropy was used as a measure of the nonlocal

correlation between the two atoms and squeezed coherent
field while the atom-atom entanglement has been
measured by the concurrence. We have shown that the
preservation and enhancement of the nonlocal correlation
greatly benefit with respect to the atomic state position
and squeeze parameter. Furthermore, we have found that
the entanglement between two atoms with field can be
controlled by the time dependent coupling. Also, we have
found that the field that are far from the classical case
when the in the presence of atom-atom entanglement
while the field is close to the classical case when the field
is maximally entangled with the two atoms. Our results
provide a useful quantum system to combat the influence
of squeeze parameter on the nonlocal correlation by a
proper choice of the physical parameters involved in the
system under consideration.
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