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Abstract: In this work, it is planned to model the formability of various grades of aluminium sheet metals using ANN and optimization
is done using ANFIS. Formability test is performed on aluminium sheet metals Al5052, Al6061 and Al8011 with thickness 0.8 mm,
1 mm and 1.2 mm. Forming limit diagrams are constructed usingstrain values obtained from the test. Tensile tests are conducted
on the sheet samples and the important mechanical properties which affect the formability are measured and calculated.Using the
forming limit strains at different states namely tension-tension, plane strain and tension-compression, modeling isdone using ANN
and optimization is performed using ANFIS. The architecture 7–14-14–9 is found to be the optimum and it is used in ANN modeling.
Using the strain values predicted by ANN, FLD curves are constructed. The predicted strain values are compared with experimental
strain values. Further optimized strain values are predicted using ANFIS. This work reveals that experimental FLD, ANNpredicted
FLD and ANFIS predicted FLD are in good agreement.
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1 Introduction

Sheet metal industries look for materials formed without
necking, fracture and wrinkling. Many research works
have been carried out to make use of various grades of
sheet metals which results in the usage of aluminium
sheet metals in military, marine, aeronautical and
processing industries, which is mainly due to the
excellent properties of aluminium alloys. The
aluminium-magnesium or Al5052 sheet metals are being
used for vehicle structures as they have attractive
combination of strength, formability, weldability and
corrosion resistance. The aluminium-magnesium silicon
or Al6061 sheet metals are used for architectural,
aircrafts, military bridges, boiler making, motor boats and
extruded sections as they have moderate strength,
weldability, formability and good corrosion resistance.
The aluminium-lithium or Al8011 sheet metals are being
used for aerospace applications as they have low density,
high stiffness and moderate formability.

The important tool to identify the strain limit up to
which sheet metals can be formed is the Forming Limit
Diagram which is emphasized by [4] and [5]. A model
has been proposed to predict the forming limits of sheet
metals [6]. A model is proposed using artificial neural
network by [1] to predict the forming limit of perforated
commercial pure aluminium sheet metals. In their work,
experiments were conducted by varying the width of the
blanks and size of perforation. A finite element based
model is developed for predicting the forming limit
diagram of aluminium 5xxx series sheet metals [10]. The
tensile properties of IF steel sheets are correlated with the
formability of sheet metals [11].

An ANN is a set of processing elements or neurons
and connections with adjustable weights. ANN can be
used to create a model easily based on the given input and
output. A design has been developed with three layer
back propagation network and it is described with the
help of flow diagram [2].

In this work, it is planned to find the optimum
architecture for ANN modeling based on the correlation

∗ Corresponding author e-mail:s.kannadasan@outlook.com

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/110521


1436 S. Kannadasan et al.: Modelling the forming limit diagram for...

Fig. 1: A typical die punch setup.

coefficient. Using the optimum ANN architecture, the
forming limit strains at different strain states are to be
predicted. Optimization is to be done using ANFIS and
the optimum limiting strains for all the nine sheet metals
are to be predicted.

2 Experimental procedure

2.1 Material

The material chosen for the study are aluminium sheet
metals Al5052, Al6061 and Al8011 with thickness
0.8 mm, 1 mm and 1.2 mm.

2.2 Tensile Test

The mechanical properties of materials play a vital role in
the forming behaviour. Specimens are prepared from all
the nine sheet metals as per the ASTM Standards and are
cut along 0◦, 45◦ and 90◦ to the rolling direction. Tensile
test is performed on these specimens in a tensile testing
machine. Using the true stress and true strain values
obtained from the tensile test, strain hardening exponent
(n-value) and strength coefficient (k-value) for all the
sheet metals are calculated using the expressionσ = kεn,
where ε is the true strain andσ is the true stress as
explained elsewhere [9].

The other mechanical properties such as strain rate
sensitivity, normal anisotropy, ductility, yield strength and
ultimate tensile strength (UTS) are found out using the
procedure as explained elsewhere [8]. The tensile test
values for all the sheet samples are shown in Table1.

2.3 Forming Limit Diagram

Forming limit test is an important tool to identify the
strain up to which a sheet metal can be formed without

necking, wrinkling and fracture as explained
elsewhere [4]. Aluminium sheet metals taken for study
are to be prepared to do the formability test. Sheet
specimen were sheared in a shearing machine to have
dimensions of 110× 110 mm, 110× 100 mm,
110×90 mm, 110×80 mm, 110×70 mm, 110×60 mm,
110× 50 mm, 110× 40 mm, 110× 30 mm and
110× 20 mm. The variation in width results in different
strain states of tension-tension, plane strain and
tension-compression regions as explained elsewhere [7].
The formability test is performed on a double action
hydraulic press of 30 ton capacity. All the specimen are
laser marked with standard circular grid pattern of 2 mm
on one side of the specimen. The specimen is placed in
between the die and punch as shown in Fig.1. The test is
continued till the sheet sample is subjected to fracture.
The circles are converted to ellipses. The major diameter
and minor diameter of the ellipse is measured. Using
these values, the major strain and minor strain along the
necked region, safer region and fractured region are
calculated using the formulae elsewhere [8].

Major strain= ln

[

major diameter of ellipse
original diameter

]

(1)

Minor strain= ln

[

minor diameter of ellipse
original diameter

]

. (2)

Forming limit diagram is constructed by joining the strain
path along necked region, called forming limit curve. The
forming limit diagrams for all the sheet metals are
constructed. The limiting strains for all the nine sheet
metals are shown in Table2.

3 Modelling the formability by ANN

The Artificial Neural Network (ANN) has been processed
by generalization of the mathematical model of the human
brain’s ability and neural biology [14, 15]. An ANN is a
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Table 1: Tensile test values for various grades of aluminium sheet metals.

Sheet
Metal
thickness

Orientation
relative to
rolling
direction

UTS
(MPa)

Yield
strength
(MPa)

Elongation at
break at non-
proportional
elongation

Strain
hardening
exponent
(n-value)

Strength
co-
efficient
(MPa)

Normal
anisotropy
(r)

Strain rate
sensitivity
(m)

Al5052 0.8 mm
0◦ 203 181.06 0.0553 0.10168 195.63907 0.1933 0.487
45◦ 195 173.71 0.05998 0.15049 253.306 0.111 0.391
90◦ 185 163.24 0.0683 0.139 290.618 0.1833 0.2718

Al5052 1.0 mm
0◦ 144 125.24 0.07984 0.3174 406.5362 0.1078 0.64
45◦ 162 143.01 0.07284 0.01349 406.5362 0.1065 0.5929
90◦ 336 302.13 0.06431 0.01349 306.0586 0.1555 0.4278

Al5052 1.2 mm
0◦ 145 121.1 0.0576 0.07351 194.09041 0.1403 0.305
45◦ 135 119.81 0.0505 0.17315 264.6574 0.1825 0.29
90◦ 136 117.09 0.0608 0.07726 183.347 0.2077 0.21

Al6061 0.8 mm
0◦ 535 438.37 0.049326 0.09256 750.001 0.1376 0.358
45◦ 557 442.45 0.052824 0.15433 961.29455 0.151‘ 0.2941
90◦ 555 399.08 0.0599 0.04767 670.43712 0.294 0.22

Al6061 1.0 mm
0◦ 476 350.24 0.05606 0.1221 736.2963 0.3572 0.656
45◦ 452 185.79 0.05042 0.10273 654.014 0.1235 0.273
90◦ 482 281.11 0.0582772 0.16709 854.286 0.161 0.261

Al6061 1.2 mm
0◦ 444 282.42 0.06337 0.17065 789.8222 0.1635 0.45
45◦ 439 296.89 0.0721 0.1692 776.4801 0.2132 0.33
90◦ 246 168.84 0.0822 0.0796 335.08006 0.5252 0.254

Al8011 0.8 mm
0◦ 238 202.2 243650797.3 0.10497 363.42977 0.1117 0.497
45◦ 249 232.55 253957998.7 0.06609 328.34062 0.4179 0.356
90◦ 256 235.52 261673460.2 0.08972 372.1522 0.1355 0.294

Al8011 1.0 mm
0◦ 194 177.37 197902573 0.09749 291.23085 0.2629 0.671
45◦ 208 184.38 211419563.3 0.11468 336.70546 0.3905 0.44
90◦ 200 186.51 203641947.9 0.0818 284.25412 0.45 0.36

Al8011 1.2 mm
0◦ 191 168.73 195630542.2 0.08508 271.48172 0.1052 0.6471
45◦ 185 173.62 187653430.3 0.08444 265.79323 0.1004 0.482
90◦ 191 157.83 195168427 0.07219 258.41906 0.2588 0.35

Table 2: Limiting strain evaluated from experiment at different strain state.

Sheet Metal Thickness Experimental Limiting Stain Strain State
FTC FTC1 FP FTT 1 FTT

Al5052 0.8 mm
Minor Strain −0.067 −0.0304 0 0.131 0.223
Major Strain 0.148 0.1527 0.135 0.2029 0.227

Al5052 1 mm
Minor Strain −0.05 −0.025 0 0.0907 0.161
Major Strain 0.131 0.113 0.09 0.1441 0.166

Al5052 1.2 mm
Minor Strain −0.025 −0.022 0 0.1171 0.231
Major Strain 0.161 0.152 0.124 0.1988 0.243

Al6061 0.8 mm
Minor Strain −0.025 −0.025 0 0.068 0.174
Major Strain 0.135 0.1266 0.112 0.153 0.186

Al6061 1 mm
Minor Strain −0.025 −0.02 0 0.081 0.135
Major Strain 0.1354 0.1266 0.123 0.186 0.207

Al6061 1.2 mm
Minor Strain −0.099 −0.046 0 0.025 0.169
Major Strain 0.223 0.169 0.147 0.161 0.27

Al8011 0.8 mm
Minor Strain −0.04 −0.0202 0 0.1088 0.161
Major Strain 0.113 0.1 0.081 0.131 0.166

Al8011 1 mm
Minor Strain −0.035 −0.0202 0 0.1133 0.194
Major Strain 0.178 0.131 0.103 0.1655 0.199

Al8011 1.2 mm
Minor Strain −0.051 −0.0036 0 0.0629 0.161
Major Strain 0.1 0.104 0.081 0.131 0.166

FTT , FTT1—Forming limit strain at tension–tension region,
FP—Forming limit strain at plane strain region,
FTC, FTC1—Forming limit strain at tension–compression region.
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set of neurons and connections with adjustable weights.
The biggest use of this neural network method is that a
model can be created easily based on the given input and
output [12,13]. This approach is very much useful where
complete understanding of the mechanism is difficult as in
sheet metal forming process. In this work, two-third of the
data is used for training and one-third of the data is used
for testing. The neural network learns by using training
data. The process is repeated until the network performs
well on the training data.

3.1 Back Propagation (BP) Network

A model for FLD using ANN is developed by [1] where
feed forward back propagation network design is used.
There are many algorithms and architecture for
developing a model using ANN. Most successful and
powerful network is the feed forward back propagation
network design. The network architecture consists of the
input layer, hidden layers and the output layer. Each layer
has several processing units called the neurons.

3.2 Model Description

In the process of creating a model, the mechanical
properties which are responsible for the forming behavior
of the sheet metals such as strain hardening index
(n-value), normal anisotropy (r-value), strength
coefficient (K), ductility (D), strain rate sensitivity
(m-value), yield strength (Y ), and ultimate tensile strength
(UTS) are taken as input parameters. The limiting major
strain and the limiting minor strain at different strain
regions are taken as output parameters. The input and
output dataset of the model is as shown in Fig.2.

3.3 Neural network design

Initially it is essential to identify the optimum architecture
which gives better performance for the output parameters.
In this work feed forward back propagation network is
designed with MATLAB 12.0 as explained elsewhere [1].
The network consists of three layers: the input layer,
hidden layers and the output layer. The designed network
has seven input neurons and nine output neurons. The
performance of the network is evaluated by calculating
the mean square error using the expression,

Ep =
p

∑
p=1

k

∑
k=1

(dpk − opk)
2 (3)

whered is the desired output,o is the calculated output,
p is the total number of epochs andk is the number of
neurons. To evaluate the predictability of the model, the

Fig. 2: Neural network model.

error in the predicted output for each node is found by the
following equation,

%Prediction error=
Actual value−predicted value

Actual value
×100.

(4)
The architecture is changed by changing the hidden layer.
The mean correlation (R) is noted down for each
architecture. In the process of identifying the optimum
architecture, 24 different networks with different hidden
layers have been tested for various grades of sheet metals
with different thickness and it is shown in Table3 The
identified optimum architecture is used to predict the
limiting strain values at different strain states for all the
nine sheet metals using Artificial Neural Network with
Visual Gene Developer, a neural network toolbox and is
as shown in the Table4.

4 Optimization by ANFIS

The daptive Neuro-Fuzzy Inference System is used to
identify the optimum limiting strains using the optimum
values of the input parameters. This process is done using
Neuro Fuzzy design of MATLAB 12.0. The tensile
parameters for all the sheet metals are given as input and
limiting strain at different strain state are given as output.
In this work, out of different methods, sub clustering
method is used to generate Fuzzy Information System.
The input and output data are trained using feed forward
back propagation design. The architecture 7–14-14–9 is
used to predict the limiting strain at different strain state.

During the process, it is identified that there is a
possibility to change the values of the seven input
parameters from low to high, for which the output will be
predicted. If the values of the input parameters are on the
higher side, then the forming limiting strain increases.
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Table 3: Mean Correlation between the experimental values and network predictions for different network of Al 5052
with thickness 0.8 mm.

Network
Architecture

Data Set Major true
strain

Minor true
strain

MSE Mean
Correlation

Mean Prediction
Error

7–2-9 Test Data 0.22972 0.22345 1.3013E−04 0.85781 0.724788

7–4-9 Test Data 0.231 0.25064 1.8955 E−06 0.99305 7.00077

7–6-9 Test Data 0.223 0.22681 2.1671 E−06 0.99285 −0.04185

7–8-9 Test Data 0.22247 0.22896 4.3819 E−05 0.97971 0.312884

7–10-9 Test Data 0.2234 0.22838 9.6329 E−04 0.92616 0.393651

7–12-9 Test Data 0.22336 0.22519 7.3779 E−06 0.91821 −0.31796

7–14-9 Test Data 0.22296 0.2267 1.0057 E−07 0.9869 −0.07505

7–16-9 Test Data 0.224 0.22647 5.3051 E−05 0.92819 0.107475

7–18-9 Test Data 0.21926 0.22874 2.7131 E−05 0.97042 −0.45531

7–20-9 Test Data 0.22264 0.22111 1.0727 E−05 0.98989 −1.37807

7–22-9 Test Data 0.22309 0.22455 9.4114 E−06 0.99234 −0.51947

7–24-9 Test Data 0.21855 0.22389 1.6523 E−04 0.94025 −1.68278

7–2-2–9 Test Data 0.231 0.15665 7.3418 E−04 0.88349 −13.7019

7–4-4–9 Test Data 0.2208 0.23251 8.0453 E−06 0.93705 0.720383

7–6-6–9 Test Data 0.22552 0.23977 6.2525 E−04 0.95244 3.377798

7–8-8–9 Test Data 0.22954 0.24586 8.0937 E−05 0.98988 5.620553

7–10-10–9 Test Data 0.22526 0.22749 5.1001 E−05 0.98739 0.614656

7–12-12–9 Test Data 0.22313 0.22607 1.1154 E−05 0.99043 −0.1757

7–14-14–9 Test Data 0.22247 0.23673 4.6138 E−06 0.99812 2.024338

7–16-16–9 Test Data 0.22398 0.22691 8.4451 E−07 0.99375 0.199907

7–18-18–9 Test Data 0.2203 0.22742 6.5839 E−07 0.98526 −0.51287

7–20-20–9 Test Data 0.22353 0.24401 1.5851 E−05 0.94887 3.86553

7–22-22–9 Test Data 0.2203 0.24772 1.2998 E−04 0.93141 3.958495

7–24-24–9 Test Data 0.22353 0.24146 2.7497 E−05 0.97091 3.303856

Table 4: Limiting strain predicted by ANN at different strain states.

Sheet Metal Thickness
ANN Predicted
Limiting Stain

Strain State

FTC FTC1 FP FTT 1 FTT

Al5052 0.8 mm
Minor Strain −0.0528 −0.0426 0 0.1338 0.219
Major Strain 0.1498 0.1535 0.13 0.199 0.225

Al5052 1 mm
Minor Strain −0.05 −0.025 0 0.097 0.1596
Major Strain 0.1277 0.11 0.09 0.1371 0.163

Al5052 1.2 mm
Minor Strain −0.0247 0.0217 0 0.1205 0.231
Major Strain 0.1549 0.1512 0.1234 0.194 0.2472

Al6061 0.8 mm
Minor Strain −0.0376 −0.0312 0 0.0588 0.1362
Major Strain 0.129 0.1225 0.1126 0.1476 0.1763

Al6061 1 mm
Minor Strain −0.0249 −0.0201 0 0.0754 0.1322
Major Strain 0.135 0.1235 0.1241 0.1733 0.2071

Al6061 1.2 mm
Minor Strain −0.0982 −0.0454 0 0.0237 0.1559
Major Strain 0.217 0.1685 0.1461 0.1621 0.2546

Al8011 0.8 mm
Minor Strain −0.0375 −0.02 0 0.1005 0.147
Major Strain 0.1088 0.0975 0.0815 0.1218 0.156

Al8011 1 mm
Minor Strain −0.0329 −0.0199 0 0.0955 0.176
Major Strain 0.1765 0.1318 0.0991 0.1659 0.1895

Al8011 1.2 mm
Minor Strain −0.0485 −0.0365 0 0.0703 0.1556
Major Strain 0.1012 0.1072 0.08 0.1251 0.1604
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Table 5: Limiting strain predicted by ANFIS at different strain state,

Sheet Metal Thickness
ANFIS
Predicted
Limiting Stain

Strain State

FTC FTC1 FP FTT 1 FTT

Al5052 0.8 mm
Minor Strain −0.0498 −0.0392 0 0.138 0.206
Major Strain 0.134 0.142 0.129 0.199 0.214

Al5052 1 mm
Minor Strain −0.0524 −0.0265 0 0.102 0.168
Major Strain 0.139 0.12 0.0951 0.155 0.176

Al5052 1.2 mm
Minor Strain −0.0226 −0.0199 0 0.126 0.179
Major Strain 0.138 0.136 0.112 0.209 0.226

Al6061 0.8 mm
Minor Strain −0.0227 −0.0229 0 0.0484 0.14
Major Strain 0.113 0.11 0.1 0.138 0.16

Al6061 1 mm
Minor Strain −0.0244 −0.0195 0 0.0792 0.132
Major Strain 0.132 0.124 0.12 0.182 0.202

Al6061 1.2 mm
Minor Strain −0.0355 −0.0776 0 0.0179 0.126
Major Strain 0.126 0.16 0.109 0.119 0.187

Al8011 0.8 mm
Minor Strain −0.0359 −0.0204 0 0.0857 0.159
Major Strain 0.113 0.1 0.0811 0.12 0.138

Al8011 1 mm
Minor Strain −0.0355 −0.0199 0 0.0971 0.184
Major Strain 0.175 0.129 0.101 0.161 0.19

Al8011 1.2 mm
Minor Strain −0.0499 −0.0351 0 0.0488 0.16
Major Strain 0.0982 0.102 0.0794 0.128 0.163

Since in this work it is proposed to optimize the
formability, the values of the seven input parameters are
selected as optimum and hence the predicted output is
optimum. The optimum limiting strain predicted by
ANFIS at different strain state are as shown in Table5.

5 Results and discussion

The main aim of this work is to analyse and model the
formability of various grades of aluminium sheet metals
using ANN. The correlation coefficient obtained for the
24 networks have been examined in order to decide the
optimum architecture. From Table3, it is evident that the
network architecture with two hidden layers of fourteen
neurons in each layer results in the best performance for
each of the output parameters (7–14-14–9). The mean
correlation coefficient for this architecture is 0.9983.

This optimum architecture (7–14-14–9) of ANN is
used for all the sheet metals to predict the limiting major
and limiting minor strains at various strain states. The
strain values are tabulated in Table4 for all the nine sheet
metals. The predicted limiting strains by ANN are
compared with the experimentally evaluated limiting
strains.

The ANFIS predicted limiting strains using the
optimum architecture (7–14-14–9) are tabulated in
Table 5. Forming limit diagrams are constructed for all
nine sheet metals using experimentally evaluated limiting
strains, ANN predicted limiting strains and ANFIS
predicted limiting strains and are as shown in Fig.3.
From Fig.3, it is evident that there is a good agreement

between experimental FLD, ANN predicted FLD and
ANFIS predicted FLD.

From Fig.3, it is evident that the forming limit curve
in the tension-compression region, the experimental
evaluation, ANN prediction and ANFIS prediction are
almost in line with each other for all the nine sheet metals.

In the plane strain region, for the sheet metals Al5052
with 1.2 mm thickness and Al6061 with 0.8 mm
thickness, the ANFIS prediction falls slightly lower when
compared to the experimental evaluation. For all other
sheet metals, the forming limit is almost same for
experimental evaluation, ANN prediction and ANFIS
prediction.

In the tension-tension region of the forming limit
diagram, the forming limit curve for experiment and
prediction traced the same path in the case of Al5052
with 0.8 mm thickness, Al6061 with 1 mm and 1.2 mm
thickness, Al8011 with 1 mm and 1.2 mm thickness. In
the case of Al5052 with 1 mm thickness, the ANFIS
curve trace a higher value when compared with
experimental output. In the case of Al5052 with 1.2 mm
thickness, the ANFIS output curve is slightly lower than
the experimental curve. For Al6061 with 0.8 mm
thickness and Al8011 with 0.8 mm thickness, the forming
limit curve for ANFIS slightly deviates from the
experimental curve.

6 Conclusion

In this work, it is observed thatn-value andr-value are
the most influencing factors in determining the FLD.
Upon training the 24 different ANN architecture, the
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Fig. 3: Variation of experimental FLD, ANN predicted FLD and ANFIS predicted FLD for various grades of aluminium
sheet metals.

correlation coefficient, mean square error and
convergence obtained are analyzed using the experimental
values and finally an optimum architecture is obtained.
Among the different ANN architectures trained, the
architecture with two hidden layers with fourteen neurons
in each layer is identified as the optimized network
model. In this optimized network model, the correlation
coefficient, mean square error and the convergence
perform well and lie within an acceptable range of error.

Using this architecture, the limiting strain at various
strain states are predicted for all the nine sheet metals.
Optimization is done using ANFIS and the optimum
limiting strains at various strain states are predicted for
the same. Experimental FLD, ANN predicted FLD and
ANFIS predicted FLD for all the nine sheet metals are in
good agreement.
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